• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prolonged simulation of near-free surface underwater explosion based on Eulerian finite element method

    2020-03-27 03:43:20MingHeManZhangYunLongLiu

    Ming He, A-Man Zhang*, Yun-Long Liu

    College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    Keywords:Bubble dynamics Underwater explosion Free surface Eulerian finite element method

    ABSTRACT In the area of naval architecture and ocean engineering, the research about the underwater explosion problem is of great significance. To achieve prolonged simulation of near-free surface underwater explosion, the underwater explosion transient numerical model is established in this paper based on compressible Eulerian finite element method (EFEM). Compared with Geers-Hunter formula, EFEM is availably validated by simulating the free-field underwater explosion case. Then, the bubble pulsation and flow field dynamic characteristics of the cases with different underwater explosive depth are compared in this work. Lastly, the height of the water hump and the pressure of flow flied are analyzed quantitatively through the simulation results.

    Bubble dynamics is a critically vital research topic in a great deal of fields [1-4], especially in underwater explosion field [5-7].In modern naval battles, the underwater explosion of weapons in the water such as torpedoes and mines is one of the important reasons for the damage of ships [8]. The shock wave generated by the explosion causes transient damage to the structures,and then the pulsating bubble will continuously affect the vitality of the ships for a long time. At the same time, the water hump produced by the near-free surface explosion will also alter the movement characteristics of the ships [9]. Therefore, studying and mastering the physical mechanism of the full-cycle underwater explosion process is of great engineering significance.

    As early as the last century, Rayleigh, Plesset and other scientists established the Rayleigh-Plesset equation to describe the bubble dynamics problem [10]. For the whole process of real and complex underwater explosion problem, accurate analytical solutions are difficult to obtain. Experimental research is one of the reliable tools for researching underwater explosion problem.The countries with strong military strength such as the United States conducted underwater explosion tests on several occasions. In addition, some scientists used the scale model experiments to explore the mechanism of this problem [5, 11-13].However, factors such as experimental cost and period limit its wide range of engineering application. In contrast, numerical simulation has extremely significant advantages [6, 14-17]. Numerical simulation can save costs and simulate a large number of different cases in real time. At present, there are many works to study the underwater explosion problem by numerical simulation.

    Aiming at the current research status and the important research significance of underwater explosion problem, the underwater explosion transient numerical model is established in this work on account of compressible EFEM. The near-free surface underwater explosion problem is mainly studied in detail. The schematic diagram of near-free surface underwater explosion is shown in Fig. 1. Firstly, the numerical model is validated by simulating the free-field underwater explosion case. Then, the bubble pulsation and flow field dynamic characteristics of the cases with different underwater explosive depth are compared.Lastly, the height of the water hump and the pressure of fluid flied are analyzed quantitatively through the simulation results.

    The compressible EFEM has obvious advantages in disposing of transient large deformation problems [18-21]. For the sake of studying the mechanization of underwater explosion problem, the physical model is simplified into an axisymmetric model, which is relative mature for grid methods. This treatment improves the solution efficiency of the problem while ensuring the accuracy of the result. The governing equation of each element in this model is as follows

    where einisthe specific internalenergyper unit mass, ρisthe densityofthematerial, u={ur,uz}isspeed vector and gisthe gravitationalacceleration. Wemust payattention tothatwhere the subscript, i indicates the partial derivative with respect to the coordinate in the orientationi. The above equation is established in cylindrical coordinate system,where z and r are the axial and radial coordinates respectively.Equation (1) is separately the mass, momentum and energy equations, which can be written in a uniform format to solve the governing equations systematically, namely,

    where φ is unknown variable, and S is source item. Based on operator separation method, Eq. (2) can be divided into Eulerian and Lagrangian steps, which is the core idea of EFEM. The schematic diagram of EFEM is shown in Fig. 2.

    Fig. 1. Schematic diagram of near-free surface underwater explosion.

    Adopting the explicit finite element method, Eq. (2) is solved in the Lagrangian step firstly where the source item is ignored.The Galerkin formula used for solving the momentum conservation in cylindrical coordinate system could be derived from the Gauss-Green formula and the integration by part, namely,

    where Ω is the dispersed two-dimensional orthogonal computationregion, niistheunitarynormalvectordirectingthe outside of region in theithorientation,Γistheboundaryofthe Ω , and φ is the computational shape function. Equation (3) can besolvedbydispersing.Afterwardsthevelocity uiand displacementxoffluid nodeare renewedwiththe high-order explicit integral format and the mesh advances with the fluid parameter, namely,

    where δt is the time increment, a is the acceleration obtained by Eq. (3) and the superscript denotes the increment count. Then,thenewfluiddensityandthe specific internalenergyeinare renewedwiththe massandenergy conservingequation,namely,

    At this time, the Eulerian step begins which is demanded to move back the deformed mesh to its initial position after the Lagrangian step. It is worth mentioning that the volume of fluid method (VOF) is used to capture the fluid interface in Eulerian step and the monotonic upwind scheme for conservation laws can improve calculation accuracy [9]. After the Eulerian step, the pressure p is renewed with the material equation of state for the next increment. So far, the operation of a time step is over.

    The equation of state is important for numerical model which is related to the pressure, internal energy and density together. In this model, the equation of state of the water and air is chosen as the Tammann equation [22], namely,

    Fig. 2. Schematic diagram of EFEM.

    where Pwis the reference, γ is the specific value of heat. The equation of state of the explosive products are solved by Jones-Wilkens-Lee (JWL) equation [22], namely,

    where A,B, R1, R2and w are the specific constants for material,ρ0and ρ are respectively the densities of the explosive and the explosive products. And the fluid constants for equation of state is shown in Table 1.

    For free-field underwater explosion condition, the current model is relatively reliable. In this work, the correctness of the numerical model is availably validated by comparison with the Geers-Hunter model [23, 24]. Based on the underwater explosion problem studied in this paper, the large equivalent (110 kg)explosive underwater 100 m explosion case is simulated. Among them, the calculation domain is 50 m×50 m, the number of grids is 160000, the pressure measuring point is located 25 m away from the initial explosive position and the calculation boundary is a non-reflection boundary [25]. The bubble equivalent radius R and bubble migration distance Z curves of the two models areshown in Fig. 3. And the pressure comparison curve of the two models is shown in Fig. 4.

    Table 1 Specific material constants for equation of state [22].

    It can be drawn a conclusion from the Fig. 3 that the numerical model of the free-field explosion established in this paper agrees well with the Geers-Hunter model. In the bubble expansion stage, the bubble equivalent radius and the bubble migration distance curve are substantially identical. Since the Grees-Hunter model is based on the spherical bubble system and the no-spherical motion is considered in EFEM model under buoyancy, there are differences between the two models at the stage of bubble collapsing and jet generation. When the underwater explosion bubble reaches a certain volume, the bubble movement especially the pulsation cycle will change due to buoyancy.In addition, the pressure change trend and the second pulsation pressure peak of the two models are consistent as shown in Fig. 4. And the numerical viscosity reduces the peak value of the shock wave in numerical simulation. In summary, the numerical model established in this work has enough calculation accuracy.

    Fig. 3. Bubble equivalent radius and bubble migration distance curves of the two models (G-H model means Geers-Hunter model)

    Fig. 4. Pressure comparison curve of the Geers-Hunter model and EFEM.

    In this work, the underwater explosion of which the explosive depth is less than twice the maximum diameter of the bubble is defined as the near-free surface underwater explosion. In order to study the mechanization of underwater explosion problem, this work selects three cases (650 kg explosive under the conditions of 5 m, 10 m, and 20 m explosive depth) for comparative analysis. And the three cases are named case 1, case 2 and case 3. Among them, the calculation domain is 50 m×200 m, the grid size is 0.5 m, the calculation boundary is also a non-reflection boundary, and the pressure measuring point is located 40 m away from the initial explosive position and 50 m away from the free surface. Figures 5 and 6 show the changes of free surface and flow field pressure for case 1 and case 3. In addition, d represents the distance between the detonation and the free surface in the following paper.

    Fig. 5. Changes of free surface and flow field pressure for case 1 (650 kg explosive under the condition of 5 m explosive depth), surface crushing is shown in a, jet penetrates is shown in b, soaring water hump is shown in c and d, water hump falling is shown in e and surface calm is shown in f. Black line indicates interface outline.

    There are significant differences in flow field characteristics for underwater explosion with different explosive depth. It can be seen from Fig. 5 that when the distance d is smaller than the maximum radius of the bubble, the free surface breaking and reclosing will emerge in the bubble expansion stage. Moreover, the subsequent bubble pulsation at the free surface causes sharp splash of the free surface. The water hump is simulated vividly and its evolution is divided into three stages including production, soaring and falling. At the same time, the height of the water hump at the free surface can reach the order of 100 m as shown in Fig. 7, which is called the soaring water hump. The reason for the phenomenon is that a large amount of energy generated by the bubble can be transmitted to the free surface under this case, which causes vigorous movement of the fluid. At the moment of the explosion, the free surface fluid gained a larger speed and soared upward. What's more, the fluid can reach a higher height under the induction of inertial force. We must mention that this case is difficult to simulate by traditional numerical methods.

    As shown in Fig. 6, when the distance d is bigger, the bubble will firstly expand in form of spherical bubble and then rise under the effect of buoyancy. When the bubble rise to the free surface, it will also induce the production of water hump. At this time, the height of the water hump is lower, which is called mound water hump in this work. Compared with the case in Fig. 5, the free surface movement of this case is relatively stable.In addition, as the energy continues to dissipate, the free surface tends to calm after the underwater explosion for the two cases as shown in Figs. 5(f) and 6(f), which means the end of the underwater explosion. In a word, it can be seen from Figs. 5 and 6 that this paper can vividly and effectively simulate the full-cycle nearfree surface underwater explosion problem. And these two cases are typical and of great significance.

    Fig. 6. Changes of free surface and flow field pressure for case 3 (650 kg explosive under the condition of 20 m explosive depth), bubble expansion is shown in a, bubble rising is shown in b, mound water hump is shown in d and surface calm is shown in f. Black line indicates interface outline.

    The water hump is an iconic phenomenon for near-free surface underwater explosion. The water plume height is considered to be the distance between the highest water element and the free surface in this paper. As shown in Fig. 7, there are obvious differences in the change trend of water hump height for different explosive depth. When d=5 m, the water hump climbs directly up to 100 m. At this time, the free surface obtains more energy produced by bubble movement. When d equals 10 m and 20 m respectively, the height of water hump is lower at the stage of bubble expansion and reaches its peak value at the stage of bubble pulsation. We can also make a conclusion that when the explosive position reaches a certain depth, the peak of water hump is similar which is resolved by the total energy of system.For different explosive depth cases, there is the phenomenon of water hump pulsation in the later stage. This is caused by the unstable flow and involving the mutual transformation of kinetic energy and potential energy. When t=15 s, the free surface almost restores calm. In other word, the full cycle of the 650 kg TNT underwater explosion process is about 15 s from numerical simulation result. Due to the complexity of the real sea conditions, the cycle in reality may be longer.

    Pressure load is an important parameter for underwater explosion problem. It can be seen from the Fig. 8 that when d=20 m, the moment for the bubble to generate the jet is obviously advanced. Since when the explosion bubble is far away from the free surface, the buoyancy effect will be obvious. Under the action of buoyancy, the bubble will generate an upward jet. When d=5 m, the bubble generates a smaller secondary pulsation load due to the free surface breaking in the bubble expansion stage and part of the energy generated by the bubble is directly diffused into the air. When d=10 m, the secondary pulsation load generated by the bubble is the largest, so the damage effect of the underwater explosion is not linearly related with the distance d. The peak value of the bubble pulsation load is related to the minimum volume of the bubble. The more obvious the nonspherical motion, the greater the kinetic energy of the external flow field at the minimum volume, the smaller the internal energy of the bubble, and the smaller the pulsating pressure of the radiation. The free surface induce bubble to create a downward jet and the buoyancy induce bubble to create an upward jet.When d =10 m the bubble shape is closer to the sphere due to the offset effect of free surface and buoyancy, the pulsating pressure is bigger. In addition, through the local pulsation phenomenon of the pressure change curve, the reflection effect of the free surface on the shock wave can be seen.

    The underwater explosion transient numerical model is established in this paper on account of compressible Eulerian finite element method to achieve the prolonged simulation of near-free surface underwater explosion. Compared with the existing model, the results fully verify the correctness of the numerical model. Then, the analysis of three cases with different explosive depth are carried out. This paper concludes that when the distance d is smaller, free surface breaking and reclosing will emerge in the bubble expansion stage, and the movement of the surrounding flow field is very intense. When the distance d is bigger, the bubble will expand firstly and then collapse, and the movement of the surrounding flow field is relatively stable. It can be seen from the pressure change curve that the damage effect of the underwater explosion is not linearly related with the distance d. The free surface induce bubble to create a downward jet and the buoyancy induce bubble to create an upward jet. When the bubble is closer to the spherical motion because of the offset of free surface and buoyancy, the pulsating pressure is bigger.

    Fig. 7. Water hump height change curves for different explosive depth cases.

    Fig. 8. Comparison of pressure change curves for different explosive depth cases.

    Acknowledgements

    The authors would like to acknowledge the support of the National Natural Science Foundation of China (Grant 11672081)and the Industrial Technology Development Program (Grants JCKY2018604C010 and JCKY2017604C002). Finally, Thanks for the help of Zu-Hui Li during writing the paper.

    国产亚洲av嫩草精品影院| 最后的刺客免费高清国语| 国产色爽女视频免费观看| 午夜影院日韩av| 一级毛片我不卡| 免费无遮挡裸体视频| 亚洲精品国产成人久久av| 欧美高清性xxxxhd video| 午夜视频国产福利| 国产成人精品久久久久久| 一区二区三区免费毛片| 久久久久国产精品人妻aⅴ院| 国产精品三级大全| 精品久久久噜噜| 国产伦精品一区二区三区视频9| 中出人妻视频一区二区| 亚洲精品亚洲一区二区| 成人av在线播放网站| 精品一区二区三区视频在线观看免费| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 欧美激情在线99| 久久鲁丝午夜福利片| 中国国产av一级| 亚洲国产日韩欧美精品在线观看| 久久久久久大精品| 啦啦啦观看免费观看视频高清| 99久久中文字幕三级久久日本| 日本三级黄在线观看| 欧美bdsm另类| 色av中文字幕| 看非洲黑人一级黄片| 极品教师在线视频| 搡老岳熟女国产| 色av中文字幕| 深夜精品福利| 亚洲精品国产成人久久av| 搡女人真爽免费视频火全软件 | 亚洲一区二区三区色噜噜| 一级毛片aaaaaa免费看小| 人妻丰满熟妇av一区二区三区| or卡值多少钱| 伊人久久精品亚洲午夜| 美女内射精品一级片tv| 波野结衣二区三区在线| 插阴视频在线观看视频| 亚洲精品日韩在线中文字幕 | 在线观看美女被高潮喷水网站| 国产成人freesex在线 | 黑人高潮一二区| 97在线视频观看| 高清日韩中文字幕在线| 大型黄色视频在线免费观看| av在线亚洲专区| 中出人妻视频一区二区| 日本一二三区视频观看| 精品人妻熟女av久视频| 精华霜和精华液先用哪个| 又爽又黄a免费视频| 九色成人免费人妻av| 国产亚洲精品综合一区在线观看| 成人漫画全彩无遮挡| 看十八女毛片水多多多| 国内精品宾馆在线| 久久欧美精品欧美久久欧美| 成年女人毛片免费观看观看9| 一区福利在线观看| 国产综合懂色| 亚洲无线在线观看| 看免费成人av毛片| 99riav亚洲国产免费| 22中文网久久字幕| 一级av片app| 亚洲综合色惰| 可以在线观看毛片的网站| 一个人免费在线观看电影| 看十八女毛片水多多多| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕 | 一个人观看的视频www高清免费观看| 人妻制服诱惑在线中文字幕| 亚洲国产欧美人成| 国产探花极品一区二区| 亚洲精品国产av成人精品 | 国产成人a∨麻豆精品| 精品一区二区三区视频在线观看免费| 少妇熟女欧美另类| 久久婷婷人人爽人人干人人爱| 黄色欧美视频在线观看| 深爱激情五月婷婷| 小说图片视频综合网站| 一级黄片播放器| 男女下面进入的视频免费午夜| 又黄又爽又刺激的免费视频.| 91久久精品国产一区二区三区| 久久久久国产网址| 男人和女人高潮做爰伦理| 亚洲欧美日韩无卡精品| 亚洲第一电影网av| a级毛片a级免费在线| 日韩人妻高清精品专区| 村上凉子中文字幕在线| 久久婷婷人人爽人人干人人爱| 22中文网久久字幕| 国内久久婷婷六月综合欲色啪| 女生性感内裤真人,穿戴方法视频| 黄色一级大片看看| 成人性生交大片免费视频hd| 搡老岳熟女国产| 成人欧美大片| 毛片一级片免费看久久久久| 久久精品人妻少妇| 国产大屁股一区二区在线视频| 听说在线观看完整版免费高清| 国产精品久久久久久久电影| 桃色一区二区三区在线观看| 一边摸一边抽搐一进一小说| 九九在线视频观看精品| 女人被狂操c到高潮| 国产精品人妻久久久影院| 内射极品少妇av片p| 国产欧美日韩一区二区精品| 3wmmmm亚洲av在线观看| 看黄色毛片网站| 高清毛片免费观看视频网站| 2021天堂中文幕一二区在线观| 老女人水多毛片| 免费搜索国产男女视频| 亚洲真实伦在线观看| 国产成人a区在线观看| 亚洲av熟女| 日本与韩国留学比较| 国内精品久久久久精免费| av卡一久久| 91av网一区二区| 日韩欧美在线乱码| 国产片特级美女逼逼视频| 午夜老司机福利剧场| 91在线精品国自产拍蜜月| or卡值多少钱| 亚洲熟妇熟女久久| 高清日韩中文字幕在线| 国产精品av视频在线免费观看| 国产精品久久久久久精品电影| 欧美人与善性xxx| 麻豆精品久久久久久蜜桃| 精品久久久久久久久av| 不卡一级毛片| 亚洲天堂国产精品一区在线| 女人十人毛片免费观看3o分钟| av中文乱码字幕在线| 国产av麻豆久久久久久久| 在现免费观看毛片| 亚州av有码| 蜜臀久久99精品久久宅男| 色吧在线观看| 免费观看人在逋| 成人漫画全彩无遮挡| 成年女人永久免费观看视频| 亚洲av美国av| 精品一区二区免费观看| 少妇丰满av| 日本色播在线视频| 婷婷亚洲欧美| 亚洲国产精品久久男人天堂| 18禁在线无遮挡免费观看视频 | 国产亚洲av嫩草精品影院| 我的女老师完整版在线观看| 国产老妇女一区| 国产大屁股一区二区在线视频| 99riav亚洲国产免费| 美女黄网站色视频| 熟女电影av网| 真实男女啪啪啪动态图| 18禁裸乳无遮挡免费网站照片| 精品国产三级普通话版| 久久久久国产精品人妻aⅴ院| 亚洲欧美精品综合久久99| 淫秽高清视频在线观看| 又粗又爽又猛毛片免费看| 人人妻人人看人人澡| 最近2019中文字幕mv第一页| 精品久久久久久久久av| 日韩av不卡免费在线播放| 麻豆一二三区av精品| 久久人人爽人人片av| 噜噜噜噜噜久久久久久91| 午夜福利在线在线| 国产精品亚洲美女久久久| 91精品国产九色| 一个人观看的视频www高清免费观看| 国产精品av视频在线免费观看| 国产精品1区2区在线观看.| 日本三级黄在线观看| 18禁裸乳无遮挡免费网站照片| 深夜精品福利| 精品人妻偷拍中文字幕| av天堂在线播放| 国产精品亚洲美女久久久| 亚洲欧美精品综合久久99| 天天躁日日操中文字幕| 色综合亚洲欧美另类图片| 插逼视频在线观看| 一级毛片aaaaaa免费看小| 精品无人区乱码1区二区| 我要搜黄色片| 国产高清激情床上av| 小说图片视频综合网站| 亚洲在线观看片| 一进一出抽搐动态| 少妇裸体淫交视频免费看高清| 3wmmmm亚洲av在线观看| 欧美日韩综合久久久久久| 天堂网av新在线| 一级黄片播放器| 欧美激情在线99| 97超视频在线观看视频| 一区二区三区高清视频在线| 午夜视频国产福利| 如何舔出高潮| 一级毛片我不卡| 国产av不卡久久| 亚洲精品一区av在线观看| 亚洲欧美日韩东京热| 亚洲国产精品国产精品| 别揉我奶头~嗯~啊~动态视频| 俄罗斯特黄特色一大片| 热99在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 国产精品电影一区二区三区| 在线看三级毛片| 欧美成人a在线观看| 九色成人免费人妻av| 搡老岳熟女国产| 欧美三级亚洲精品| 在线播放无遮挡| 国产av一区在线观看免费| 能在线免费观看的黄片| 中国国产av一级| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品大字幕| 嫩草影院入口| 久久婷婷人人爽人人干人人爱| 91久久精品电影网| 少妇高潮的动态图| 亚洲在线自拍视频| 成人鲁丝片一二三区免费| 最近手机中文字幕大全| 国产精品精品国产色婷婷| 草草在线视频免费看| 成人毛片a级毛片在线播放| 久久久久国产网址| 成人综合一区亚洲| 晚上一个人看的免费电影| 亚洲四区av| 男女之事视频高清在线观看| 午夜福利在线观看吧| 亚洲第一电影网av| 真人做人爱边吃奶动态| 少妇熟女aⅴ在线视频| 精品熟女少妇av免费看| 97碰自拍视频| 男女做爰动态图高潮gif福利片| 国产高清有码在线观看视频| 日本 av在线| 亚洲真实伦在线观看| 国产精品一区二区性色av| 亚洲色图av天堂| 在线播放无遮挡| 亚洲三级黄色毛片| 别揉我奶头 嗯啊视频| 热99re8久久精品国产| 久久午夜福利片| 国产黄色小视频在线观看| 国产成人福利小说| 国产成人91sexporn| 国产国拍精品亚洲av在线观看| 最近2019中文字幕mv第一页| 99热精品在线国产| 中国美白少妇内射xxxbb| 变态另类成人亚洲欧美熟女| 22中文网久久字幕| 精品久久久久久久久亚洲| 日本精品一区二区三区蜜桃| 中国美女看黄片| 欧美xxxx黑人xx丫x性爽| 岛国在线免费视频观看| 美女xxoo啪啪120秒动态图| 国产一区二区亚洲精品在线观看| 亚洲国产精品国产精品| 国产视频内射| 三级毛片av免费| 国产淫片久久久久久久久| 午夜老司机福利剧场| 日日摸夜夜添夜夜爱| 黄色视频,在线免费观看| 精品久久久久久久久av| 黑人高潮一二区| 久久久久久久久大av| 五月伊人婷婷丁香| 午夜福利18| 97碰自拍视频| 一区二区三区高清视频在线| 你懂的网址亚洲精品在线观看 | 国产真实伦视频高清在线观看| 日韩人妻高清精品专区| 免费观看在线日韩| 熟女电影av网| 成人亚洲欧美一区二区av| 人妻制服诱惑在线中文字幕| 日日摸夜夜添夜夜添av毛片| 亚洲中文日韩欧美视频| 欧美潮喷喷水| 成人综合一区亚洲| 淫妇啪啪啪对白视频| 国产 一区 欧美 日韩| 日本三级黄在线观看| 99热这里只有精品一区| 久久草成人影院| 国产亚洲欧美98| 亚洲成a人片在线一区二区| 三级毛片av免费| 最近的中文字幕免费完整| 能在线免费观看的黄片| 国产真实乱freesex| 国产欧美日韩一区二区精品| 亚洲四区av| 精品一区二区三区视频在线| 国产精品嫩草影院av在线观看| 美女cb高潮喷水在线观看| 性色avwww在线观看| 欧美xxxx黑人xx丫x性爽| 欧美xxxx黑人xx丫x性爽| 欧美成人一区二区免费高清观看| 亚洲五月天丁香| av卡一久久| 日韩av在线大香蕉| 男女视频在线观看网站免费| 日日撸夜夜添| 久久精品国产清高在天天线| 精品乱码久久久久久99久播| 久久精品国产清高在天天线| 97超视频在线观看视频| 欧美精品国产亚洲| 色哟哟·www| 欧美性感艳星| 女人十人毛片免费观看3o分钟| 欧美在线一区亚洲| 久久天躁狠狠躁夜夜2o2o| 国产成人影院久久av| 亚洲最大成人手机在线| 国产精品一区www在线观看| 亚洲人与动物交配视频| 成年免费大片在线观看| 免费看日本二区| 久久久久久久久久久丰满| 日韩欧美国产在线观看| 亚洲在线自拍视频| 波多野结衣巨乳人妻| 国产成人一区二区在线| 精品福利观看| 中文亚洲av片在线观看爽| 精品一区二区三区视频在线观看免费| 91久久精品电影网| 亚洲真实伦在线观看| 黄片wwwwww| 色综合亚洲欧美另类图片| 波多野结衣高清作品| a级毛片a级免费在线| 日日干狠狠操夜夜爽| 18禁在线无遮挡免费观看视频 | 国产精品99久久久久久久久| 黄色配什么色好看| 亚洲电影在线观看av| 久久精品人妻少妇| eeuss影院久久| 我的女老师完整版在线观看| 精品久久国产蜜桃| 一夜夜www| 亚洲欧美清纯卡通| 亚洲人与动物交配视频| 欧美成人免费av一区二区三区| 乱码一卡2卡4卡精品| 久久久欧美国产精品| 国产精品一区二区三区四区免费观看 | 亚洲国产精品国产精品| 99精品在免费线老司机午夜| 欧美日本视频| 久久久精品94久久精品| av在线天堂中文字幕| 少妇猛男粗大的猛烈进出视频 | 免费一级毛片在线播放高清视频| 少妇被粗大猛烈的视频| 久久久久性生活片| 国产精品不卡视频一区二区| 亚洲精品在线观看二区| 欧美性感艳星| 老司机午夜福利在线观看视频| 成人高潮视频无遮挡免费网站| 欧美bdsm另类| 国产精品三级大全| 久久午夜福利片| 在线看三级毛片| 99热这里只有是精品50| 日本熟妇午夜| 我的老师免费观看完整版| 亚洲精品日韩av片在线观看| 免费高清视频大片| av在线播放精品| 熟女人妻精品中文字幕| 国产91av在线免费观看| 亚洲中文日韩欧美视频| 99视频精品全部免费 在线| 国产精品福利在线免费观看| 黑人高潮一二区| 国产高清有码在线观看视频| 一本精品99久久精品77| 自拍偷自拍亚洲精品老妇| 免费搜索国产男女视频| 色尼玛亚洲综合影院| 在线观看66精品国产| 免费电影在线观看免费观看| 亚洲精品国产av成人精品 | 日韩制服骚丝袜av| 男插女下体视频免费在线播放| 国产亚洲精品av在线| 人妻夜夜爽99麻豆av| 久久精品国产清高在天天线| 精品免费久久久久久久清纯| 亚洲欧美中文字幕日韩二区| 午夜久久久久精精品| 看免费成人av毛片| 99国产极品粉嫩在线观看| 国产高清视频在线观看网站| 日韩av在线大香蕉| 成人鲁丝片一二三区免费| 99久久精品一区二区三区| 小说图片视频综合网站| 日韩中字成人| 偷拍熟女少妇极品色| 精品人妻熟女av久视频| 又黄又爽又刺激的免费视频.| 看十八女毛片水多多多| 色在线成人网| 淫秽高清视频在线观看| 国产亚洲精品久久久com| 免费黄网站久久成人精品| 啦啦啦观看免费观看视频高清| 日韩一区二区视频免费看| 亚洲中文字幕日韩| 精品国产三级普通话版| 亚洲av第一区精品v没综合| 亚洲成a人片在线一区二区| 免费一级毛片在线播放高清视频| 亚洲第一区二区三区不卡| 91麻豆精品激情在线观看国产| 丝袜美腿在线中文| 极品教师在线视频| 亚洲无线观看免费| 97碰自拍视频| a级毛片免费高清观看在线播放| 免费观看的影片在线观看| 国产大屁股一区二区在线视频| 三级男女做爰猛烈吃奶摸视频| avwww免费| av在线播放精品| 国产精品久久久久久久久免| 中文资源天堂在线| 日产精品乱码卡一卡2卡三| 99在线人妻在线中文字幕| 日韩欧美在线乱码| 校园春色视频在线观看| 欧美人与善性xxx| 色在线成人网| 我要搜黄色片| 一级av片app| 国产精品乱码一区二三区的特点| 亚洲欧美日韩无卡精品| 国产黄色小视频在线观看| 秋霞在线观看毛片| 国产亚洲精品综合一区在线观看| 亚洲激情五月婷婷啪啪| a级毛片免费高清观看在线播放| 一进一出抽搐动态| 在线国产一区二区在线| 嫩草影视91久久| 乱人视频在线观看| 最新在线观看一区二区三区| 国产午夜精品论理片| 精品人妻视频免费看| 亚洲av熟女| 日本在线视频免费播放| 亚洲最大成人手机在线| 黄色欧美视频在线观看| 91久久精品电影网| 欧美性猛交黑人性爽| 欧美色欧美亚洲另类二区| 亚洲欧美成人精品一区二区| 亚洲乱码一区二区免费版| 91在线精品国自产拍蜜月| 精品久久久久久成人av| 婷婷精品国产亚洲av| 久久久成人免费电影| 99久久精品国产国产毛片| 成人欧美大片| av中文乱码字幕在线| 69人妻影院| 日本三级黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 中文字幕久久专区| 欧美又色又爽又黄视频| 搡老妇女老女人老熟妇| 亚洲精品乱码久久久v下载方式| 国产亚洲精品久久久久久毛片| 日本精品一区二区三区蜜桃| 国产精品美女特级片免费视频播放器| 午夜视频国产福利| 无遮挡黄片免费观看| 丝袜美腿在线中文| 国产成人a区在线观看| 日本免费一区二区三区高清不卡| 俄罗斯特黄特色一大片| 内地一区二区视频在线| 成年女人看的毛片在线观看| 丰满乱子伦码专区| 如何舔出高潮| 成年女人看的毛片在线观看| 日韩强制内射视频| 亚洲人成网站在线播| 你懂的网址亚洲精品在线观看 | 成年免费大片在线观看| 三级经典国产精品| 我的女老师完整版在线观看| 成人性生交大片免费视频hd| 成人永久免费在线观看视频| 日本 av在线| 精品一区二区三区视频在线| 亚洲,欧美,日韩| 日韩欧美一区二区三区在线观看| 日韩亚洲欧美综合| 欧美绝顶高潮抽搐喷水| 久久中文看片网| 99热这里只有是精品在线观看| 国产精品1区2区在线观看.| 国产黄a三级三级三级人| 国产精品久久久久久久久免| 全区人妻精品视频| 成人漫画全彩无遮挡| 午夜久久久久精精品| av天堂在线播放| 在线观看午夜福利视频| 欧美高清成人免费视频www| 搡女人真爽免费视频火全软件 | 观看免费一级毛片| 女生性感内裤真人,穿戴方法视频| 国产激情偷乱视频一区二区| 免费观看人在逋| h日本视频在线播放| а√天堂www在线а√下载| 搡老熟女国产l中国老女人| 久久精品综合一区二区三区| 国产高清三级在线| 久久久久久久久大av| 国产久久久一区二区三区| eeuss影院久久| 久久精品国产99精品国产亚洲性色| 亚洲自拍偷在线| 精品人妻熟女av久视频| 变态另类成人亚洲欧美熟女| 深爱激情五月婷婷| 成人美女网站在线观看视频| 男人舔女人下体高潮全视频| 国产精品一区www在线观看| 亚洲专区国产一区二区| 偷拍熟女少妇极品色| 99热精品在线国产| 久久久久久久久大av| 国产精品伦人一区二区| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜爱| 欧美高清成人免费视频www| 日韩欧美三级三区| 中出人妻视频一区二区| 男女啪啪激烈高潮av片| 毛片女人毛片| 国产精品1区2区在线观看.| 免费大片18禁| 99精品在免费线老司机午夜| 色综合亚洲欧美另类图片| 久久精品国产99精品国产亚洲性色| 蜜臀久久99精品久久宅男| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 亚洲在线观看片| 欧美性感艳星| 黄色配什么色好看| 毛片一级片免费看久久久久| 日韩精品中文字幕看吧| 色播亚洲综合网| 亚洲专区国产一区二区| 中国美女看黄片| 国产熟女欧美一区二区| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在 | 18禁黄网站禁片免费观看直播| 国产中年淑女户外野战色| 22中文网久久字幕| 欧美色视频一区免费| 亚洲电影在线观看av| 在线观看午夜福利视频| 亚洲av五月六月丁香网| 亚洲av第一区精品v没综合| 国产亚洲精品av在线| 久久久久久大精品| 大又大粗又爽又黄少妇毛片口|