• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial artificial neural network model for subgrid-scale stress and heat flux of compressible turbulence

    2020-03-27 03:43:30ChenyueXieJinchunWngHuiLiMinpingWnShiyiChenc

    Chenyue Xie, Jinchun Wng*, Hui Li, Minping Wn Shiyi Chenc

    a Shenzhen Key Laboratory of Complex Aerospace Flows, Center for Complex Flows and Soft Matter Research, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China

    b School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

    c State Key Laboratory of Turbulence and Complex Systems, Peking University, Beijing 100871, China

    Keywords:Compressible turbulence Large eddy simulation Artificial neural network

    ABSTRACT The subgrid-scale (SGS) stress and SGS heat flux are modeled by using an artificial neural network(ANN) for large eddy simulation (LES) of compressible turbulence. The input features of ANN model are based on the first-order and second-order derivatives of filtered velocity and temperature at different spatial locations. The proposed spatial artificial neural network (SANN)model gives much larger correlation coefficients and much smaller relative errors than the gradient model in an a priori analysis. In an a posteriori analysis, the SANN model performs better than the dynamic mixed model (DMM) in the prediction of spectra and statistical properties of velocity and temperature, and the instantaneous flow structures.

    Large eddy simulation (LES) has been widely applied to study turbulent flows in aerospace industry, combustion, astrophysics, and engineering problems [1-3]. Recently, data-driven methods have been used to develop more accurate turbulence models, including Reynolds-averaged Navier-Stokes (RANS)and LES models [4-23]. Duraisamy et al. [6] offered an excellent review of turbulence modelling in the age of data. Sarghini et al.[7] used a multilayer feed-forward neural network to reconstruct the subgrid-scale (SGS) model in LES of turbulence. An SGS model for a turbulent channel flow was developed by artificial neural network (ANN) [8], which gives the prediction of flow statistics similar to the gradient model in a priori tests and similar to the Smagorinsky model in a posteriori tests. An approximate data-driven deconvolution of the LES solution based on ANN architecture was proposed for compressible stratified turbulence [11]. The gradient of filtered velocity and the second derivative of filtered velocity are important for the ANN to establish the SGS model for LES [14]. The ANN methods are utilized for convolution and deconvolution of coarse-grained fields to account for subgrid scale effects of turbulence [15]. Zhou et al. [16]used the filtered velocity gradient tensor together with the filter width as input features for training the ANN to predict the SGS stress tensor. The SGS stress, SGS heat flux, and SGS force of compressible isotropic turbulence have been predicted with ANN model based on the first-order and second-order derivatives of filtered velocity and temperature on local stencil geometry [21, 22].

    The effect of the subgrid-scale dissipation can be restricted to the smallest resolved scales of the simulation based on the variational multiscale formulation of the Smagorinsky model [24].The sufficient conditions for the locality of energy cascade in turbulence implies that only adjacent subgrid modes contribute dominantly to the SGS stress [25]. The filter width Δ is usually assumed to be proportional to the grid size hLESin LES in order to minimize the numerical error [26, 27], i.e. the filter-grid ratio(FGR) (F GR=Δ/hLES) is typically chosen equal to 1 or 2. Since the numerical and modelling errors are significantly affected by the flow dynamics at the scales near the filter width Δ, the flow dynamics at the scales near the filter width Δ should be considered by ANN approach for LES of turbulence.

    In this study, we propose a spatial ANN (SANN) model for LES of compressible isotropic turbulence, based on direct numerical simulation (DNS) data of solenoidally forced stationary 10243compressible isotropic turbulence at grid resolution of [28,29]. The input features of SANN model are based on the first-order and second-order derivatives of filtered velocity and temperature at different spatial locations. The SANN model can predict the SGS stress and SGS heat flux with much higher accuracy as compared to the gradient model in a priori analysis. We also verify the accuracy of the proposed SANN model in a posteriori test.

    There are two important parameters for the DNS data of compressible isotropic turbulence: turbulent Mach numberMtis close to 0.4, and the Taylor Reynolds number R eλis close to 250 [30-34]. The resolution parameter η/Δx is η/Δx=0.98,where η is the Kolmogorov length scale and Δ x denotes the grid length in each direction.

    The dynamical equations for LES are derived using a top-hat filter in this study [28]. Favre filtering (mass-weighted filtering) is used to avoid additional SGS terms and simplify the treatments in the conservation equation of mass in compressible flows,which is defined as[35], where ρ denotes the fluid density, f represents velocity or temperature. The filtered dimensionless compressible Navier-Stokes equations for the resolved fields are [21-23, 36]:

    where τijis the SGS stress, Qjis SGS heat flux, Πdilis SGS pressure-dilatation, and ενis SGS viscous dissipation. τijand Qjare the dominant unclosed SGS terms, while other unclosed SGS terms are significantly smaller than the divergence of the SGS heat flux Qjand can be neglected for compressible turbulent flowsinthecurrent Mtand Reλ[37].Inthis paper, the SGS stress τijandtheSGS heatflux Qjare modelled.

    The compressible homogeneous isotropic turbulence is numerically simulated by a hybrid compact-weighted essentially non-oscillatory (WENO) scheme in a cubic box of ( 2π)3using a uniform grid with periodic boundary conditions [38]. The hybrid scheme combines an eighth-order compact finite-difference scheme for smooth regions [39] and a seventh-order WENO scheme [40] for shock regions. The force is only applied to the solenoidal component of velocity field by fixing the total kinetic energy in the first two wavenumber shells. Besides, we employ a spatially uniform thermal cooling Λ to sustain the internal energy in a statistically steady state [38].

    A fully-connected ANN is used to reconstruct the SGS stress and heat flux as shown in Fig. 1 [21-23]. which consists of four layers (input layer, two hidden layers, and output layer). The neuron numbers of four layers between the set of inputs and finumber of neurons of input layer, while the output layer connal output layer are ( M:1024:512:1), respectively. M is the sists of a single neuron associated with the component of τijand Qj. The transfer function in a layer l is calculated aswhere σ is the activation function,i s the weight, andis the bias parameter.are initialized to uniform by glorot-uniform, andare initialized to zeros. Two hidden layers are activated by a Leaky-Relu activation function:

    Meanwhile, linear activation σ (a)=a is applied to the output layer. The loss function is defined as 〈(XL-τij)2〉 or〈(XL-Qj)2〉, where 〈〉 represents the spatial average over homogeneous directions (i.e., the entire domain for isotropic turbulence). The back-propagation is used to minimize the loss function.

    In this research both the first-order and second-order derivatives of filtered velocity and temperature are used to generate the input variables of ANN. In addition, a thirteen-point stencil is designed to model the effect of spatial structures of flow field at the scales near the filter width Δ. The stencil is determined by the grid length Δg=Δ/2 in each dimension. We consider two sets of input variables:

    where the indices l, m and n correspond to discrete spatial locationsassociatedwith thegridlength Δg, p,q=1,2,3 arethe subscriptsoftheCartesiancoordinate,and i=1,2,3 isthe subscript of the filtered velocity component. The first set has 156 input neurons M =156, the second set has 624 input neurons M=624. For simplicity, SANN models with the two sets of input variables are abbreviated as SANN-1 and SANN-2, respectively.

    In order to increase the robustness of ANN training, all input features XIand output features XOare normalized by, whereandare rms values of the input and output variables. The rms values of SGS terms reconstructed from the gradient model are used in normalizations of output features for ANN training, since the real SGS stress and SGS heat flux are unknown in LES.

    LES is performed at grid resolution of 6 43(=Δ/2) with filter width Δ =32Δx . 1 63different data sets of 6 43coarse grid points in three dimensions by using a coarse-graining procedure involves the selection of every sixteenth grid point in each direction in the DNS data. We randomly choose ( 15×64)3grid points for the generation of 7 0% of training data and 3 0% of testing data. Finally, the Adam algorithm is used to train the ANN network [41] for a long duration (1000 epochs), with batch size being 1000 till the learning rate is minimal. The learning rate of the proposed SANN model for 2000 iterations is shown in Fig. 2.The learning process is well-formulated since the training and validation loss are nearly stable after 500 global iterations. It's reasonable to train 1000 iterations of the SANN model.

    In an a priori analysis, the performances of the SANN model are evaluated by calculating the correlation coefficient C (H) and the relative error Er(H) of the modeled term Hmodelas compared to the real unclosed SGS term H, where the C (H) and Er(H) are calculated by, respectively,

    Fig. 1. Schematic diagram of the ANN's network structure.

    Meanwhile, two types of gradient models are compared with the SANN models:abbreviatedasVG1m, whereandaredetermined from DNS databyleast square method. Table1 showscorrelation

    Thefirstmodel isabbreviatedas VG1. Thesecondmodel is coefficients and relative errors ofτ11,τ12and Q1forthe SANN-1 and SANN-2models inthe testingset.The SANN-1model performs much better than the VG1 and VG1m models. The correlation coefficients are larger than 0.99 for the SANN-1 model,while the VG1 and VG1m models give correlation coefficients about 0.90. The relative error of the SANN-1 model can be less than 8%forτ11,whichismuchsmallerthanthose ofVG1 and VG1mmodels.With morereasonableinput features,theSANN-2 model performs better than other models. Thus, ANN can be used to explore the physical fundamentals of turbulence modeling.

    Fig. 2. Learning curve of the SANN-1 model of.

    Table 1 Correlation coefficients (C) and relative errors ( ) of, and for different models in the testing set.

    Table 1 Correlation coefficients (C) and relative errors ( ) of, and for different models in the testing set.

    In order to analyze the impact of spatial stencil sizes of input features, the SANN is trained with the first-order derivatives of filtered velocity and temperature with seven-point stencils({q1,q2,q3}∈{1,2,...,Nq}, Nq=1, M =84), nineteen-point stencils(Nq= 3, M=228) , and twenty-five-point stencils ( Nq= 4,M=300), which are abbreviated as SANN-3, SANN-4 and SANN-5, respectively. The a priori results of the SANN-3, SANN-4, and SANN-5 models are summarized in Table 1. The SANN-1,SANN-4 and SANN-5 models show similar correlation coefficients and relative errors of τ11,τ12,Q1with Nq≥2, indicating that the learning accuracy does not increase significantly with the increase of the size of the stencil for Nq≥2. Though the higher order derivatives have a potential to give higher accuracy, it is difficult to keep numerical stability when considering the third-order derivatives of velocity and temperature as input features.Thus, we have not considered the third order derivatives in this paper. We will focus on the ANN models with optimal stencil size and higher order derivatives in a follow-up study.

    In an a posteriroi test, we compare the performance of the SANN-1 model with large eddy simulations without any LES model (No-model), and using the dynamic mixed model (DMM)model [37, 42, 43]. Considering that the differences between LES results and filtered DNS results are mainly due to the LES models for F GR=2, we present a study of the different SGS models at grid resolution of 6 43(hLES=Δ/2, F GR=2) with the filter width Δ=32Δx.

    Fig. 3. Spectra of velocity and temperature for LES: a, b.

    The spectra of velocity and temperature are displayed in Fig. 3 for the DNS, filtered DNS (fDNS) and LES computations performed with the No-model, DMM and SANN-1 models. There is a long inertial region with a k-5/3scaling of velocity spectrum for DNS results. The errors of the spectra predicted by LES models increase as k increases. The spectrum of the velocity field predicted by the 'No-model' without enough dissipation is higher than that of the fDNS data at large wavenumbers. The spectra of velocity near the cut-off wavenumber are damped too strongly for the DMM model, which show a bumped spectral distribution. The SANN-1 model nearly overlaps with the filtered DNS data without bump for the velocity spectrum. Meanwhile, due to the excessive dissipation near the largest resolved wavenumbers,the temperature spectrum predicted by the DMM model is in reasonable agreement with fDNS for k ≤10 and significantly smaller at large k. Temperature spectrum predicted by the SANN-1 model is almost exactly for wavenumber k ≤20 by catching more smaller thermal scale structures.

    Figure 4 shows the probablity density functions (PDFs) of the normalized velocity incrementwhereis the longitudinal increment of the velocity for the separation r . Here r? =r/|r|. The velocity increment is normalization by the rms velocity. The PDFs of δrare almost symmetry. The DMM and SANN-1 model can predict the PDFs ofaccurately at large r (r =4Δ) . As r decreases,the SANN-1 model performs better than the DMM model.

    Fig. 4. PDFs of the normalized increments of the velocity for LES.a, b.

    Fig. 5. Contours of the normalized velocity divergence on an arbitrarily selected x-y slice, at (here is the largeeddy turnover time): a fDNS, b DMM, and c SANN-1.

    Finally, we compare the instantaneous coherent structures predicted by LES with initial input data from an instantaneous flow field of filtered DNS. The structures of velocity divergence of fDNS and LES with the DMM and SANN-1 models at the same instant are shown in Fig. 5. The large block-like structures of velocity divergence from fDNS can be catched by both DMM and SANN-1 models. The SANN-1 model can recover more smallscale structures than the DMM model.

    In this paper, the SGS stress and SGS heat flux of compressible turbulence are reconstructed by using the SANN model with the first and second order derivatives of filtered velocity and filtered temperature at different spatial locations. The SANN models can predict much higher correlation coefficients and much smaller relative errors than the gradient model in an a priori test. In an a posteriori test, the detailed comparisons of the SANN-1 model, No-model and DMM models show: the SANN-1 model performs better than No-model and DMM models in the prediction of spectra and statistical properties of velocity and temperature, and the instantaneous flow structures. In order to develop more advanced SGS models for LES of turbulence, more physical characteristics of SGS unclosed terms should be added to ANN framework, including the nonlinear couplings between velocity and thermodynamic variables, and the spatial-temporal non-locality of SGS dynamics.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grants 91952104, 11702127, and 91752201), and the Technology and Innovation Commission of Shenzhen Municipality (Grants KQTD20180411143441009,JCYJ20170412151759222, and ZDSYS201802081843517). This work was also supported by Center for Computational Science and Engineering of Southern University of Science and Technology. J. Wang acknowledges the support from Young Elite Scientist Sponsorship Program by CAST (Grant 2016QNRC001).

    午夜免费男女啪啪视频观看| 国产探花在线观看一区二区| 午夜亚洲福利在线播放| 欧美激情在线99| 桃色一区二区三区在线观看| 人人妻人人看人人澡| 人妻夜夜爽99麻豆av| 我的女老师完整版在线观看| 长腿黑丝高跟| 大香蕉97超碰在线| 女的被弄到高潮叫床怎么办| 国产v大片淫在线免费观看| 亚洲国产欧美在线一区| 亚洲伊人久久精品综合 | 亚洲av福利一区| 99九九线精品视频在线观看视频| 综合色丁香网| 久久6这里有精品| 午夜老司机福利剧场| 在现免费观看毛片| 国产成人aa在线观看| 国产v大片淫在线免费观看| 真实男女啪啪啪动态图| 赤兔流量卡办理| 91精品一卡2卡3卡4卡| 午夜免费男女啪啪视频观看| 色5月婷婷丁香| 亚洲电影在线观看av| www日本黄色视频网| 变态另类丝袜制服| 国产高清国产精品国产三级 | 99热这里只有精品一区| 国产淫语在线视频| 少妇高潮的动态图| 高清午夜精品一区二区三区| 国产三级中文精品| 五月伊人婷婷丁香| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 嫩草影院新地址| 99久国产av精品国产电影| 在线免费十八禁| 麻豆av噜噜一区二区三区| 亚洲天堂国产精品一区在线| 欧美激情国产日韩精品一区| 精品不卡国产一区二区三区| 纵有疾风起免费观看全集完整版 | 成人美女网站在线观看视频| 小蜜桃在线观看免费完整版高清| 亚洲经典国产精华液单| 国产爱豆传媒在线观看| 亚洲av中文av极速乱| 在线观看一区二区三区| 99在线人妻在线中文字幕| 欧美性猛交╳xxx乱大交人| 日本爱情动作片www.在线观看| av在线播放精品| 中文乱码字字幕精品一区二区三区 | 国产免费一级a男人的天堂| 成人三级黄色视频| 亚洲精品乱久久久久久| 美女xxoo啪啪120秒动态图| 久久国内精品自在自线图片| 亚洲一区高清亚洲精品| 内地一区二区视频在线| 亚洲图色成人| 国产综合懂色| 欧美人与善性xxx| 插逼视频在线观看| 亚洲乱码一区二区免费版| 热99在线观看视频| 国产精品日韩av在线免费观看| 亚洲av熟女| 男人的好看免费观看在线视频| 久久人人爽人人片av| av线在线观看网站| 国产午夜精品一二区理论片| 国语自产精品视频在线第100页| 午夜福利高清视频| 九九久久精品国产亚洲av麻豆| 综合色av麻豆| 午夜激情欧美在线| www.av在线官网国产| 日韩精品有码人妻一区| 国产在视频线精品| 小蜜桃在线观看免费完整版高清| 五月伊人婷婷丁香| 国产亚洲精品久久久com| 国产日韩欧美在线精品| 亚洲精品久久久久久婷婷小说 | 国产精品久久视频播放| 久久久久久久国产电影| 欧美人与善性xxx| 欧美一区二区精品小视频在线| 亚洲成人精品中文字幕电影| 国产精品一及| 青春草亚洲视频在线观看| 美女内射精品一级片tv| 色视频www国产| 十八禁国产超污无遮挡网站| 中文资源天堂在线| 国产熟女欧美一区二区| 免费看a级黄色片| 亚洲av免费在线观看| 日韩成人av中文字幕在线观看| 中文乱码字字幕精品一区二区三区 | 视频中文字幕在线观看| 亚洲欧美一区二区三区国产| 精品少妇黑人巨大在线播放 | 最近最新中文字幕大全电影3| 免费观看在线日韩| 免费看美女性在线毛片视频| 久久精品国产鲁丝片午夜精品| 青春草视频在线免费观看| 身体一侧抽搐| 麻豆国产97在线/欧美| 热99re8久久精品国产| 亚洲性久久影院| 只有这里有精品99| 亚洲aⅴ乱码一区二区在线播放| 国产在线一区二区三区精 | 听说在线观看完整版免费高清| 韩国高清视频一区二区三区| av福利片在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲欧美日韩高清专用| 日韩欧美在线乱码| 免费观看a级毛片全部| 免费搜索国产男女视频| 国产欧美日韩精品一区二区| 成人三级黄色视频| 毛片女人毛片| 国产又色又爽无遮挡免| 亚洲欧洲国产日韩| 亚洲国产色片| 国产精品99久久久久久久久| 丰满人妻一区二区三区视频av| 99久国产av精品国产电影| 精品久久久久久久人妻蜜臀av| 亚洲自拍偷在线| 天天躁日日操中文字幕| 亚洲人成网站在线观看播放| 国产伦精品一区二区三区视频9| 午夜免费激情av| 中文字幕久久专区| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放| 乱码一卡2卡4卡精品| 日韩欧美 国产精品| 噜噜噜噜噜久久久久久91| 欧美成人精品欧美一级黄| 色网站视频免费| 国产一区二区在线av高清观看| 国产亚洲一区二区精品| 欧美三级亚洲精品| 免费观看人在逋| 久久精品国产鲁丝片午夜精品| 国产免费一级a男人的天堂| 最近视频中文字幕2019在线8| 18禁动态无遮挡网站| 在线观看66精品国产| 九色成人免费人妻av| 干丝袜人妻中文字幕| 黄色日韩在线| 97在线视频观看| 如何舔出高潮| 国产极品精品免费视频能看的| 噜噜噜噜噜久久久久久91| 成人亚洲精品av一区二区| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 蜜桃久久精品国产亚洲av| 麻豆久久精品国产亚洲av| av在线天堂中文字幕| 国产精品永久免费网站| 日本与韩国留学比较| 欧美xxxx黑人xx丫x性爽| 国产欧美日韩精品一区二区| 3wmmmm亚洲av在线观看| 狂野欧美白嫩少妇大欣赏| 久久鲁丝午夜福利片| 日韩三级伦理在线观看| 久久国内精品自在自线图片| 亚洲图色成人| 欧美高清成人免费视频www| 日本黄色视频三级网站网址| 最近视频中文字幕2019在线8| 蜜桃久久精品国产亚洲av| 午夜福利网站1000一区二区三区| 午夜亚洲福利在线播放| 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说 | 国产成人午夜福利电影在线观看| 日韩精品有码人妻一区| 国产老妇伦熟女老妇高清| 亚洲在久久综合| 爱豆传媒免费全集在线观看| 欧美成人免费av一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 99久久精品一区二区三区| 欧美日韩精品成人综合77777| 毛片女人毛片| 伦理电影大哥的女人| 亚洲熟妇中文字幕五十中出| 免费看日本二区| 国产午夜福利久久久久久| 免费看美女性在线毛片视频| 丝袜喷水一区| 久久精品夜夜夜夜夜久久蜜豆| 成人性生交大片免费视频hd| 大香蕉久久网| 欧美性猛交黑人性爽| 欧美成人午夜免费资源| 亚洲乱码一区二区免费版| 插阴视频在线观看视频| 国产免费男女视频| 国产国拍精品亚洲av在线观看| 欧美3d第一页| 大话2 男鬼变身卡| 欧美成人一区二区免费高清观看| 国产成人freesex在线| 天堂√8在线中文| 一卡2卡三卡四卡精品乱码亚洲| 男的添女的下面高潮视频| 亚洲欧美日韩卡通动漫| 亚洲无线观看免费| 色综合站精品国产| 真实男女啪啪啪动态图| 亚洲av成人精品一二三区| 午夜激情欧美在线| 欧美区成人在线视频| 美女xxoo啪啪120秒动态图| 国产精品麻豆人妻色哟哟久久 | 久久精品综合一区二区三区| 麻豆成人午夜福利视频| 可以在线观看毛片的网站| 久久久久精品久久久久真实原创| 久久精品久久久久久久性| 全区人妻精品视频| 国产黄片视频在线免费观看| 欧美变态另类bdsm刘玥| 久久久久久久久大av| 建设人人有责人人尽责人人享有的 | 国产 一区精品| 久久国内精品自在自线图片| .国产精品久久| 中国国产av一级| 国产一区有黄有色的免费视频 | 国产精品一及| 内地一区二区视频在线| 国产真实伦视频高清在线观看| 欧美色视频一区免费| 国产黄片美女视频| or卡值多少钱| 国产伦精品一区二区三区四那| 国产伦精品一区二区三区视频9| 少妇熟女欧美另类| 国产在线一区二区三区精 | 午夜福利在线观看吧| 午夜视频国产福利| 亚洲av男天堂| 久久草成人影院| 欧美一区二区精品小视频在线| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩东京热| 99在线人妻在线中文字幕| 99久久人妻综合| 亚洲欧美精品专区久久| 一级黄片播放器| 国产午夜福利久久久久久| 91久久精品国产一区二区成人| 欧美高清成人免费视频www| 国产精品,欧美在线| 麻豆av噜噜一区二区三区| 成人毛片60女人毛片免费| 18禁在线无遮挡免费观看视频| 国产成人一区二区在线| 噜噜噜噜噜久久久久久91| 国产成人a区在线观看| 亚洲精品成人久久久久久| 好男人在线观看高清免费视频| 国产白丝娇喘喷水9色精品| 成人漫画全彩无遮挡| 国产淫语在线视频| 亚洲av成人av| 一级爰片在线观看| 国产精品一及| 国产乱人偷精品视频| 哪个播放器可以免费观看大片| 日韩 亚洲 欧美在线| 白带黄色成豆腐渣| 变态另类丝袜制服| 国产精华一区二区三区| 久久精品久久精品一区二区三区| 精品人妻一区二区三区麻豆| 久久精品人妻少妇| 久久午夜福利片| 国产综合懂色| 婷婷色麻豆天堂久久 | 欧美极品一区二区三区四区| 国产午夜福利久久久久久| 久久精品久久久久久噜噜老黄 | 高清毛片免费看| 欧美精品一区二区大全| 两个人视频免费观看高清| 成人美女网站在线观看视频| 午夜福利在线在线| av国产久精品久网站免费入址| 久久久久久久久中文| 亚洲成人中文字幕在线播放| 插阴视频在线观看视频| 91精品一卡2卡3卡4卡| 九九久久精品国产亚洲av麻豆| 精品一区二区三区视频在线| 久久久久久久久久成人| 久久久久久伊人网av| 中文乱码字字幕精品一区二区三区 | 99久久精品国产国产毛片| 国产精品久久久久久久久免| 中文字幕制服av| 午夜福利网站1000一区二区三区| 国产男人的电影天堂91| 最近的中文字幕免费完整| 国产黄片美女视频| 91久久精品国产一区二区三区| 亚洲国产精品国产精品| 2022亚洲国产成人精品| 久久韩国三级中文字幕| 免费观看精品视频网站| 神马国产精品三级电影在线观看| 色播亚洲综合网| 免费黄网站久久成人精品| 九草在线视频观看| 成人特级av手机在线观看| 中文字幕亚洲精品专区| 成年女人看的毛片在线观看| av在线天堂中文字幕| 精品久久久噜噜| 五月伊人婷婷丁香| 国产成人aa在线观看| 久久久久久久久久久免费av| 成人特级av手机在线观看| 又爽又黄a免费视频| 边亲边吃奶的免费视频| 亚洲欧美日韩卡通动漫| 精品久久久噜噜| 色噜噜av男人的天堂激情| 少妇熟女欧美另类| 成年女人看的毛片在线观看| 听说在线观看完整版免费高清| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱| 最近手机中文字幕大全| 国产又色又爽无遮挡免| 国产精品,欧美在线| 老司机福利观看| 午夜福利在线在线| 大香蕉97超碰在线| 久久久久久久久久久免费av| 一边亲一边摸免费视频| 一本一本综合久久| 少妇高潮的动态图| av在线天堂中文字幕| 午夜精品一区二区三区免费看| 国产一区二区三区av在线| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 97在线视频观看| 精品人妻一区二区三区麻豆| 免费看a级黄色片| 欧美色视频一区免费| 国产毛片a区久久久久| 国产精品三级大全| 精品久久久久久成人av| 国产女主播在线喷水免费视频网站 | 久久精品国产自在天天线| 非洲黑人性xxxx精品又粗又长| 高清午夜精品一区二区三区| 观看美女的网站| 久久久久久久亚洲中文字幕| 国产精品无大码| 好男人视频免费观看在线| 秋霞伦理黄片| 亚洲伊人久久精品综合 | 国产精品99久久久久久久久| 国产黄a三级三级三级人| 亚洲人成网站在线播| 波多野结衣高清无吗| 一区二区三区乱码不卡18| 国产成人freesex在线| 亚洲精品国产成人久久av| 日韩视频在线欧美| 日韩精品有码人妻一区| 亚洲人与动物交配视频| 国产精品.久久久| 国产黄色小视频在线观看| 青春草视频在线免费观看| 男女视频在线观看网站免费| 亚洲无线观看免费| 97在线视频观看| 欧美一区二区亚洲| 亚洲av成人精品一区久久| 日韩欧美精品v在线| 99久久精品国产国产毛片| 欧美不卡视频在线免费观看| 国产亚洲91精品色在线| 精品久久久久久久久久久久久| 国产 一区精品| 美女内射精品一级片tv| 少妇熟女aⅴ在线视频| 男女国产视频网站| 国产免费福利视频在线观看| 波多野结衣巨乳人妻| 亚洲怡红院男人天堂| 亚洲天堂国产精品一区在线| 高清av免费在线| 赤兔流量卡办理| 国产高清国产精品国产三级 | 精品免费久久久久久久清纯| .国产精品久久| 男人的好看免费观看在线视频| 精品一区二区三区人妻视频| 99热6这里只有精品| 欧美日韩在线观看h| 欧美极品一区二区三区四区| 最近最新中文字幕免费大全7| 国产色婷婷99| 青春草亚洲视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲婷婷狠狠爱综合网| 日本黄色视频三级网站网址| 国产精品美女特级片免费视频播放器| 亚洲自拍偷在线| 欧美另类亚洲清纯唯美| 久久久久久久久久黄片| 赤兔流量卡办理| 少妇裸体淫交视频免费看高清| 亚洲性久久影院| 91久久精品国产一区二区三区| 啦啦啦观看免费观看视频高清| 精品久久久久久电影网 | 成人毛片a级毛片在线播放| 欧美xxxx黑人xx丫x性爽| 26uuu在线亚洲综合色| 嫩草影院入口| 亚洲在久久综合| 嫩草影院精品99| a级一级毛片免费在线观看| 亚洲自偷自拍三级| 99久久成人亚洲精品观看| 日本午夜av视频| 午夜爱爱视频在线播放| 午夜福利在线观看免费完整高清在| av国产久精品久网站免费入址| 国产毛片a区久久久久| 嫩草影院新地址| 特级一级黄色大片| 日韩欧美精品免费久久| 久久久亚洲精品成人影院| 超碰97精品在线观看| 日本wwww免费看| 欧美一级a爱片免费观看看| 国产精品爽爽va在线观看网站| 一个人看视频在线观看www免费| 亚洲婷婷狠狠爱综合网| 91久久精品电影网| 久热久热在线精品观看| 亚洲精品乱久久久久久| kizo精华| 18禁在线无遮挡免费观看视频| 大话2 男鬼变身卡| 美女高潮的动态| 九九久久精品国产亚洲av麻豆| 黄色欧美视频在线观看| 在线观看美女被高潮喷水网站| 国产精品一区二区在线观看99 | 欧美丝袜亚洲另类| 国内揄拍国产精品人妻在线| 欧美97在线视频| 欧美一区二区亚洲| 精品国产一区二区三区久久久樱花 | 观看免费一级毛片| 日韩强制内射视频| 三级经典国产精品| 国产精品一区www在线观看| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全电影3| 久久久久久久午夜电影| 少妇高潮的动态图| 国产精品久久久久久精品电影小说 | 日韩亚洲欧美综合| 欧美日韩在线观看h| 天堂影院成人在线观看| 国产视频首页在线观看| 亚洲色图av天堂| 精品一区二区三区视频在线| 哪个播放器可以免费观看大片| 久久人妻av系列| 国产高清国产精品国产三级 | 国产成人aa在线观看| 免费观看a级毛片全部| 十八禁国产超污无遮挡网站| 18禁在线播放成人免费| 99视频精品全部免费 在线| 免费黄色在线免费观看| 九九久久精品国产亚洲av麻豆| 可以在线观看毛片的网站| 免费观看性生交大片5| 天堂中文最新版在线下载 | 嫩草影院新地址| 亚洲国产高清在线一区二区三| 日韩一区二区三区影片| 亚洲av.av天堂| kizo精华| 日韩高清综合在线| 免费看a级黄色片| 又爽又黄a免费视频| 国产亚洲最大av| 欧美最新免费一区二区三区| 在线免费观看不下载黄p国产| 亚洲美女视频黄频| 波多野结衣巨乳人妻| 久久韩国三级中文字幕| 久久久亚洲精品成人影院| 成年av动漫网址| 国产亚洲午夜精品一区二区久久 | 国产成人一区二区在线| 美女cb高潮喷水在线观看| 国产精品福利在线免费观看| 久久人妻av系列| 国产精品女同一区二区软件| av.在线天堂| 欧美丝袜亚洲另类| 日韩欧美三级三区| 亚洲,欧美,日韩| 毛片女人毛片| 亚洲成人中文字幕在线播放| 精品国内亚洲2022精品成人| 日日摸夜夜添夜夜爱| 男的添女的下面高潮视频| 精品99又大又爽又粗少妇毛片| 有码 亚洲区| 三级经典国产精品| 99热6这里只有精品| 精品国产三级普通话版| 午夜免费男女啪啪视频观看| 成人无遮挡网站| 亚洲真实伦在线观看| 最近最新中文字幕大全电影3| 久久综合国产亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 国产精品,欧美在线| 中文资源天堂在线| 国产亚洲av嫩草精品影院| 少妇人妻一区二区三区视频| 免费观看精品视频网站| 色播亚洲综合网| 国产三级中文精品| 国产综合懂色| 国产黄片视频在线免费观看| 91久久精品电影网| 国产精品永久免费网站| 国产精品精品国产色婷婷| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧洲国产日韩| 看黄色毛片网站| 亚洲国产精品成人综合色| 亚洲精品自拍成人| 国产又黄又爽又无遮挡在线| 一夜夜www| 欧美一区二区精品小视频在线| 亚洲不卡免费看| 我要看日韩黄色一级片| 国产午夜福利久久久久久| 18禁动态无遮挡网站| 国产精品日韩av在线免费观看| 一级黄色大片毛片| 欧美3d第一页| 九色成人免费人妻av| 亚洲经典国产精华液单| 久久99热6这里只有精品| 精品午夜福利在线看| 99久久九九国产精品国产免费| 在线免费观看不下载黄p国产| 国产精品,欧美在线| 国产成人freesex在线| 水蜜桃什么品种好| 国产成人免费观看mmmm| 国产探花极品一区二区| 国产成人aa在线观看| 国产精品一及| 日韩,欧美,国产一区二区三区 | 久久久久精品久久久久真实原创| 久久久久久久久中文| 国产精华一区二区三区| 日韩中字成人| 18+在线观看网站| 亚洲av免费高清在线观看| 午夜a级毛片| 日韩成人伦理影院| 久久久国产成人免费| 久久久成人免费电影| 搞女人的毛片| 久久精品夜色国产| 黑人高潮一二区| 久久久久久久久久久免费av| 韩国av在线不卡| 亚洲熟妇中文字幕五十中出| h日本视频在线播放| 亚洲一区高清亚洲精品| 精品久久国产蜜桃| 高清午夜精品一区二区三区| 18禁动态无遮挡网站| 最近视频中文字幕2019在线8| 人妻夜夜爽99麻豆av| 尤物成人国产欧美一区二区三区|