班樂,黃嘉豪,毛衛(wèi)東,吳苑標,肖志瑜
固溶時效處理對SLM成形CoCrWMo合金組織與性能的影響
班樂1,黃嘉豪2,毛衛(wèi)東3,吳苑標1,肖志瑜1
(1. 華南理工大學 國家金屬近凈成形工程技術(shù)研究中心,廣州 510640;2.廣州昶聯(lián)熱等靜壓材料制造有限公司,廣州 511458;3.佛山市南海中南機械有限公司,佛山 528247)
采用激光選區(qū)熔化成形工藝制備CoCrWMo合金,將合金在1 200 ℃固溶1 h后再分別在600,700,750,800和900 ℃下時效10 h,研究固溶?時效處理對合金組織與性能的影響。結(jié)果表明,SLM成形態(tài)CoCrWMo合金由FCC的γ相和HCP的ε相馬氏體組成。在固溶時效過程中,發(fā)生γ相(FCC相)向ε相(HCP相)的轉(zhuǎn)變,隨時效溫度升高,ε相馬氏體含量增加,同時析出沉淀物M23C6(M=Cr,Mo,W)。在750 ℃時效的合金中,ε相比例為77%,表明時效處理可促進FCC→HCP馬氏體的相變,所有時效態(tài)合金的顯微硬度均明顯高于固溶態(tài)合金的硬度。在750 ℃時效的合金,在兼顧伸長率的同時,強度提高,抗拉強度和屈服強度分別為1 076 MPa和820.8 MPa,伸長率達10.5%。
CoCrWMo合金;固溶時效;激光選區(qū)熔化;顯微組織;力學性能
鈷鉻合金由于其優(yōu)良的力學性能、耐腐蝕性能、耐磨性能、生物相容性及金瓷結(jié)合性,廣泛應(yīng)用于生物醫(yī)療領(lǐng)域,如口腔修復、骨科植入體等[1?5]。近年來,激光選區(qū)熔化(selective laser melting,SLM)成形作為一種新型增材制造技術(shù),可制備結(jié)構(gòu)復雜的零件[6?7],從而滿足醫(yī)療植入體的定制化要求[8],具有很大的臨床應(yīng)用前景。但在SLM成形過程中,熔池的冷卻速率高達106~108℃/s[9],快速的加熱和冷卻會導致成形件的殘余應(yīng)力較高,影響其力學性能[10]。因此,SLM成形的金屬零件通常需要通過熱處理來消除殘余應(yīng)力,進一步改善其結(jié)構(gòu)和力學性能。根據(jù)鈷鉻合金相圖,合金在升溫過程中會發(fā)生HCP相向FCC相的轉(zhuǎn)變,而室溫下的熱力學穩(wěn)定相為HCP相,顯然,在高冷卻速度下由FCC向HCP轉(zhuǎn)變十分困難。因此,在大多數(shù)鈷鉻合金中,F(xiàn)CC亞穩(wěn)相在室溫下占據(jù)優(yōu)勢,稱為γ相,通過應(yīng)變誘導馬氏體轉(zhuǎn)變[11?12]或等溫時效[13?14]可促進γ相轉(zhuǎn)變?yōu)镠CP相,獲得穩(wěn)定的HCP馬氏體相,稱為?馬氏體。研究表明,在650~ 950 ℃等溫時效時會發(fā)生FCC→HCP轉(zhuǎn)變[15?17],并且在?馬氏體形成的同時會析出一些顆粒狀的碳化物[18]。但與FCC結(jié)構(gòu)相比,HCP結(jié)構(gòu)增加會使材料的磨損率降 低[14, 19],因此需要通過改變HCP相的體積分數(shù)來提高合金的力學性能。已有學者對鑄造鈷鉻合金的相轉(zhuǎn)變進行了深入研究,但SLM制備的CoCrWMo合金組織與鑄造及鍛造組織完全不同,目前關(guān)于固溶時效對SLM成形的CoCrWMo合金組織與力學性能影響的研究還相對較少。本文作者對SLM制備的CoCrWMo合金進行固溶處理,然后分別在600,700,750,800和900 ℃下時效10 h,研究其馬氏體相變和析出,并測試合金的力學性能,系統(tǒng)研究固溶?時效溫度對SLM制備CoCrWMo合金組織與力學性能的影響。
實驗用原料為CoCrWMo合金粉,粉末的成分列于表1,粉末形貌與粒度分布如圖1所示。從圖1可知,CoCrWMo合金粉末形貌為球形或近球形,粒徑呈正態(tài)分布,粒徑范圍為15~45 μm,50=27.4 μm。
采用SLM工藝制備尺寸為 10 mm×10 mm× 10 mm 的CoCrWMo合金方塊,所用設(shè)備為德國Solutions公司的SLM 280HL設(shè)備?;宀牧蠟镠13鋼,成形前將基板在200 ℃下預(yù)熱。SLM工藝參數(shù)為:激光功率280 W,掃描速度800 mm/s,掃描間距0.1 mm,鋪粉層厚度0.03 mm。掃描策略為旋轉(zhuǎn)掃描法,層與層之間掃描方向旋轉(zhuǎn)15°,全程使用氬氣作保護氣氛,并保證氧含量小于0.3%。
表1 CoCrMoW合金粉末化學成分
圖1 CoCrWMo合金粉末的形貌與粒徑分布
首先對SLM成形態(tài)CoCrWMo合金(標記為1#合金)進行固溶處理:以10 ℃/min的升溫速率將合金加熱到1 200 ℃,保溫1 h,水冷。固溶后的合金標記為2#合金。將固溶態(tài)合金分別在600,700,750,800和900 ℃下進行時效熱處理,升溫速率為10 ℃/min,保溫10 h,空冷。時效處理的合金分別標記為3#,4#,5#,6#和7#合金。
將SLM成形態(tài)合金及熱處理后的合金樣品進行打磨拋光,用鹽酸+過氧化氫(體積比為1:4)混合溶液在室溫下腐蝕40 s,采用場發(fā)射掃描電鏡(NOVA NanoSEM430)觀察腐蝕后的顯微組織,并用X射線多晶衍射儀(Rigaku SmartLab SE)進行物相分析。
采用DHV-1000Z顯微維氏硬度儀測定合金的顯微硬度,加載載荷為1.96 N,加載時間為15 s,每個試樣測試5個點,計算平均值。采用島津萬能試驗機(AG-IC50KN)進行拉伸試驗,拉伸速率為1 mm/min,拉伸試樣尺寸如圖2所示。
圖2 拉伸試樣示意圖
圖3 不同狀態(tài)的CoCrWMo合金的XRD譜
(Alloys 1#and 2#are As-SLM and solution alloys respectively; 3#, 4#, 5#, 6#and 7#are solution alloys aged at 600, 700, 750, 800 and 900 ℃, respectively)
圖4 不同狀態(tài)的CoCrWMo合金中?相所占比例
圖5所示為SLM成形態(tài)CoCrWMo合金的SEM形貌。從圖5(a)看出,合金試樣上表面的內(nèi)部熔道較平直,相鄰熔道搭接良好,無明顯孔洞及裂紋??蓮奈恢肁的放大圖中看到細小均勻的胞狀晶和垂直于熔道方向的柱狀晶。從試樣側(cè)表面位置B的放大圖中發(fā)現(xiàn)晶粒生長方向不一致,如圖5(d)箭頭所示。SLM成形工藝的熔化及冷卻速度快,因而形成大量晶核,并向各個方向生長形成胞狀晶,而部分胞狀晶受層與層之間溫度梯度的影響,沿與熔池呈一定夾角的方向散熱最快,長大成柱狀晶,所以晶粒生長呈現(xiàn)擇優(yōu)取向。另外SLM成形過程中存在非平衡的重熔和凝固現(xiàn)象,導致內(nèi)部組織生長方向不完全一致。
圖5 SLM成形態(tài)CoCrWMo合金的SEM形貌
(a) Top view; (b) The enlarge image of position A; (c) Side view; (d) The enlarge image of position B
圖6所示為固溶態(tài)和時效態(tài)CoCrWMo合金SEM形貌。從圖6(a)觀察到經(jīng)過固溶處理后的2#合金,熔道及胞狀晶與柱狀晶特征消失,出現(xiàn)具有不同取向、交叉疊加的晶間條紋?相馬氏體[22]和少量細小的白色顆粒。對白色顆粒進行EDS分析,結(jié)果如圖7所示,白色顆粒主要由Co,Cr,Mo,W和C組成,與鈷基體相比,這些顆粒中Co的含量更低,而Cr,Mo,W和C富集,根據(jù)文獻報道[23?24]及XRD分析,確定白色顆粒為M23C6(M=Cr,Mo,W)。
圖6 固溶態(tài)與時效態(tài)CoCrWMo合金的SEM形貌
(a) 2#; (b) 3#; (c) 4#; (d) 5#; (e) 6#; (f) 7#
圖7 CoCrWMo合金中析出物的SEM形貌(a)與EDS分析(b)
綜上所述,固溶時效處理會改變SLM成形CoCrWMo合金的顯微組織,隨時效溫度升高,基體中?相馬氏體的數(shù)量及M23C6含量均發(fā)生先增加后降低的變化,表明可通過適當提高時效溫度來促進SLM成形CoCrWMo合金中?相馬氏體的形成及碳化物的析出。
表2所列為不同狀態(tài)CoCrWMo合金的力學性能。由表2可知,固溶態(tài)和所有時效態(tài)合金的抗拉強度均高于SLM成形態(tài)合金;隨時效溫度升高,合金的抗拉強度和屈服強度均先升高后降低。合金經(jīng)過固溶處理后,抗拉強度變化較小,但伸長率增加約26.1%,這表明對SLM成形CoCrWMo合金進行適當?shù)墓倘芴幚恚娠@著改善塑性;時效態(tài)合金的抗拉強度高于固溶態(tài)合金,其中800 ℃時效后的合金(6#)顯微硬度(HV)及抗拉強度達到最高,分別為516.2和1 220.0 MPa,但時效溫度繼續(xù)升高到900 ℃時,硬度及抗拉強度均有所下降。
從圖6可知SLM成形態(tài)合金經(jīng)過固溶處理后,胞狀晶與柱狀晶消失,組織及化學成分趨于均勻,同時γ相占主導地位,而γ相的FCC結(jié)構(gòu)比?相的HCP結(jié)構(gòu)滑移系多,表現(xiàn)為延展性好,所以伸長率顯著 提高。
與3#合金相比,4#合金的強度及硬度都提高,但伸長率降低。根據(jù)XRD及SEM分析結(jié)果,隨時效溫度升高,?相馬氏體增加,而在生成?相馬氏體的同時會析出碳化物M23C6(M=Cr,Mo,W),所以M23C6含量隨之增加。片層狀的?相馬氏體強化相對位錯產(chǎn)生釘扎作用,從而提高合金的抗拉強度和硬度[20];另外,時效時析出的M23C6細小且分布均勻,阻礙位錯運動,對基體起第二相強化作用[26]。所以4#合金的強度及硬度高于3#的。由于較低溫度時效時碳化物M23C6析出較少,所以?相馬氏體對強度與硬度的提高發(fā)揮主要作用。
進一步提高時效溫度所得的5#,6#和7#合金,其?相馬氏體含量接近(如圖4所示),所以5#,6#和7#合金抗拉強度及硬度的變化受?相馬氏體的影響較小。從表2可知,隨時效溫度從750 ℃升高至900 ℃,合金的抗拉強度及顯微硬度都先升高后降低,這與M23C6的含量和尺寸有關(guān)。當時效溫度從750 ℃升至800 ℃時,M23C6析出物的含量明顯增加,第二相顆粒強化作用增強,所以合金的抗拉強度及顯微硬度提高,斷后伸長率降低。然而當時效溫度升高至900 ℃時,M23C6析出物發(fā)生溶解(如圖3所示),M23C6的第二相強化作用減弱,所以強度和硬度下降;另外在900 ℃長時間保溫后,M23C6長大成片狀,這種粗大碳化物對合金的塑性極為不利,表現(xiàn)為伸長率下降。
圖8所示為CoCrWMo合金的拉伸斷口SEM形貌。從圖8(a)看出SLM成形態(tài)合金的斷口主要由解理面、撕裂棱及部分韌窩組成,從放大圖中看出韌窩尺寸較小,在1 μm以下,屬于準解理斷裂。經(jīng)過1 200 ℃固溶后的2#合金和分別在600 ℃和700 ℃下時效處理后的3#和4#合金,伸長率相近,其斷口形貌類似,呈現(xiàn)明顯的韌性斷裂特征,均帶有長的撕裂棱及大量韌窩(見圖11(b),(c)和(d)),韌窩尺寸比成形態(tài)合金的大,在斷口形貌中占主導地位,合金表現(xiàn)出高的斷后伸長率。5#合金的斷口形貌主要為凹凸不平的解理臺階,是馬氏體層片被拉斷后的形貌,有部分韌窩,為準解理斷裂。6#和7#合金的斷口表面較平整,以光滑解理面為主,韌性較差,表現(xiàn)為典型的脆性斷裂,所以伸長率明顯降低。
表2 不同狀態(tài)的CoCrWMo合金的力學性能
圖8 CoCrWMo合金的拉伸斷口SEM形貌
(a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#; (g) 7#
1) SLM成形的CoCrWMo合金主要由γ(FCC)相及少量?(HCP)相組成,微觀組織為細小的胞狀晶和柱狀晶。
2) 對SLM成形的CoCrWMo合金進行固溶?時效處理,在時效過程中發(fā)生γ(FCC)→?(HCP)轉(zhuǎn)變,同時析出碳化物M23C6(M=Cr,Mo,W)。時效溫度升高會促進?相馬氏體轉(zhuǎn)變和碳化物析出,800 ℃時效后析出的碳化物數(shù)量最多,但在900 ℃時效時部分碳化物重新溶解。
3) SLM成形CoCrWMo合金的力學性能與顯微組織密切相關(guān),?(HCP)相及M23C6析出相的含量越高,顯微硬度及強度越高,伸長率則有所降低。合金經(jīng)1 200 ℃/1 h固溶+750 ℃/10 h時效熱處理后,綜合性能最優(yōu),抗拉強度和屈服強度分別為1 076 MPa和820.8 MPa,伸長率達10.5%。
[1] UPADHYAY D, PANCHAL M A, DUBEY R S, et al. Corrosion of alloys used in dentistry: A review[J]. Materials Science and Engineering A, 2006, 432(1/2): 1?11.
[2] MISCHLER S, MUNOZ A I. Wear of CoCrMo alloys used in metal-on-metal hip joints: A tribocorrosion appraisal[J]. Wear, 2013, 297(1/2): 1081?1094.
[3] WATAHA J C. Alloys for prosthodontic restorations[J]. The Journal of Prosthetic Dentistry, 2002, 87(4): 351?363.
[4] LIAO Y, HOFFMAN E, WIMMER M, et al. CoCrMo metal-on- metal hip replacements[J]. Physical Chemistry Chemical Physics, 2013, 15(3): 746?756.
[5] LU Y, WU S, GAN Y, et al. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application[J]. Materials Science and Engineering C, 2015, 49: 517?525.
[6] KOUTSOUKIS T, ZINELIS S, ELIADES G, et al. Selective laser melting technique of Co-Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques[J]. Journal of Prosthodontics, 2015, 24(4): 303?312.
[7] QI H B, YAN Y N, LIN F, et al. Direct metal part forming of 316L stainless steel powder by electron beam selective melting[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, 220(11): 1845?1853.
[8] SCHLEIFENBAUM H, MEINERS W, WISSENBACH K, et al. Individualized production by means of high power Selective Laser Melting[J]. CIRP Journal of Manufacturing Science and Technology, 2010, 2(3): 161?169.
[9] ZHANG M, YANG Y, SONG C, et al. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2018, 750: 878? 886.
[10] LU Y, WU S, GAN Y, et al. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55: 179?190.
[11] KOIZUMI Y, SUZUKI S, YAMANAKA K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy[J]. Acta Materialia, 2013, 61(5): 1648?1661.
[12] MORI M, YAMANAKA K, MATSUMOTO H, et al. Evolution of cold-rolled microstructures of biomedical Co-Cr-Mo alloys with and without N doping[J]. Materials Science and Engineering A, 2010, 528(2): 614?621.
[13] TURRUBIATES-ESTRADA R, SALINAS-RODRIGUEZ A, LOPEZ H F. FCC to HCP transformation kinetics in a Co-27Cr-5Mo-0.23 C alloy[J]. Journal of Materials Science, 2011, 46(1): 254?262.
[14] KHAIMANEE P, CHOUNGTHONG P, UTHAISANGSUK V. Effects of isothermal aging on microstructure evolution, hardness and wear properties of wrought Co-Cr-Mo alloy[J]. Journal of Materials Engineering and Performance, 2017, 26(3): 955?968.
[15] GARCíA A D J S, MEDRANO A M, RODRíGUEZ A S. Formation of HCP martensite during the isothermal aging of an FCC Co-27Cr-5Mo-0.05C orthopedic implant alloy[J]. Metallurgical & Materials Transactions A, 1999, 30(5): 1177? 1184.
[16] LASHGARI H R, ZANGENEH S, HASANABADI F, et al. Microstructural evolution during isothermal aging and strain- induced transformation followed by isothermal aging in Co- Cr-Mo-C alloy: A comparative study[J]. Materials Science and Engineering A, 2010, 527(16/17): 4082?4091.
[17] SALDIVAR G, MANI M, SALINAS R. Effect of solution treatments on the FCC/HCP isothermal martensitic transformation in Co-27Cr-5Mo-0.05C aged at 800 ℃[J]. Scripta Materialia, 1999, 40(6): 717?722.
[18] MINETA S, NAMBA S, YONEDA T, et al. Carbide formation and dissolution in biomedical Co-Cr-Mo alloys with different carbon contents during solution treatment[J]. Metallurgical and Materials Transactions A, 2010, 41(8): 2129?2138.
[19] BALAGNA C, SPRIANO S, FAGA M G. Characterization of Co-Cr-Mo alloys after a thermal treatment for high wear resistance[J]. Materials Science and Engineering C, 2012, 32(7): 1868?1877.
[20] BARUCCA G, SANTECCHIA E, MAJNI G, et al. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering[J]. Materials Science and Engineering C, 2015, 48(3): 263?269.
[21] SAGE M, GUILLAUD C. Méthode d’analyse quantitative des variétés allotropiques du cobalt par les rayons X[J]. Revue de Metallurgie, 1950, 47(2): 139?145.
[22] HASSANI F Z, KETABCHI M, BRUSCHI S, et al. Effects of carbide precipitation on the microstructural and tribological properties of Co-Cr-Mo-C medical implants after thermal treatment[J]. Journal of Materials Science, 2016, 51(9): 4495? 4508.
[23] GARCíA A D J S, MEDRANO A M, RODRíGUEZ A S. Formation of HCP martensite during the isothermal aging of an FCC Co-27Cr-5Mo-0.05C orthopedic implant alloy[J]. Metallurgical & Materials Transactions A, 1999, 30(5): 1177? 1184.
[24] RAMIREZ L E, CASTRO M, MéNDEZ M, et al. Precipitation path of secondary phases during solidification of the Co-25.5% Cr-5.5%Mo-0.26% C alloy[J]. Scripta materialia, 2002, 47(12): 811?816.
[25] KILNER T, PILLIAR R M, WEATHERLY G C, et al. Phase identification and incipient melting in a cast Co-Cr surgical implant alloy[J]. Journal of Biomedical Materials Research, 1982, 16(1): 63-79.
[26] MONTERO-OCAMPO C , LOPEZ H , TALAVERA M . Effect of alloy preheating on the mechanical properties of as-cast Co-Cr-Mo-C alloys[J]. Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science), 1999, 30(3): 611?620.
Effect of solution-aging treatment on the microstructure and properties of selective laser melted CoCrWMo alloys
BAN Le1, HUANG Jiahao2, MAO Weidong3, WU Yuanbiao1, XIAO Zhiyu1
(1. National Engineering Research of Net-Sharp Forming for Metallic Material, South China University of Technology, Guangzhou 510640, China; 2. Guangzhou Zoltrix HIP Material Co. Ltd, Guangzhou 511458, China; 3. Foshan Nanhai Zhongnan Machinery Co. Ltd, Foshan 528247, China)
The selective laser melted (SLM) CoCrWMo alloys were solution treated at 1 200 ℃ for 1 h, and then aged at 600, 700, 750, 800 and 900 ℃ for 10 h respectively. The effects of solution-aging treatment on the microstructure and properties of the alloy were studied. The results show that the SLM CoCrWMo alloy is composed of FCC γ phase and HCP ε phase martensite. The transformation from γ phase (FCC phase) to ε phase (HCP phase) occurs during solution- aging treatment. The content of ε phase martensite increases with increasing the aging temperature,M23C6(M=Cr,Mo,W) precipitated at the same time.In the alloy aged at 750 ℃, the proportion of ε phase is 77%, indicating that aging treatment can promote the transformation of FCC→HCP martensite. The microhardness of all aged alloys is significantly higher than that of solid solution alloys. The strength of the alloy aged at 750 ℃ is improved while the elongation is taken into account, the tensile strength and yield strength are 1 076 MPa and 820.8 MPa respectively, and the elongation reaches 10.5%.
CoCrWMo alloys; solution-aging treatment; selective laser melting; microstructure; mechanical properties
TG166.7;TF124
A
1673-0224(2020)01-27-08
國家自然科學基金重大儀器項目(51627805);廣東省自然科學基金團隊項目(2015A030312003);廣東省科技項目(2014B010129003,2017B090901025)
2019?10?22;
2019?11?25
肖志瑜,教授,博士。電話:13922266121;E-mail: zhyxiao@scut.edu.cn
(編輯 湯金芝)