• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Realization of a Novel Compact Electromagnetic Band-Gap Structure

    2013-11-26 10:47:54LiYeFangJianHuaZhangandFengGeHu

    Li-Ye Fang, Jian-Hua Zhang, and Feng-Ge Hu

    1.Introduction

    The electromagnetic band-gap (EBG) structure is a kind of artificial material composed of periodical metallic or dielectric cells[1], which has the particular characteristic of bandgap in suppressing the propagation of surface-wave and in-phase reflection coefficient[2].This unique feature makes it an excellent candidate in microwave circuit and antenna community, such as increasing the patch antenna gain and reducing the back radiation, suppressing the mutual coupling between antenna elements, and eliminating scan blindness in phased array antenna system[3]–[6].However, due to the constraint of its periodical structure and electric property, the EBG structure has the disadvantage of relatively large size, which restrains practical applications in integration with compact patch antenna array.Therefore, how to minimize the unit size of the EBG structure has become a hot issue in the research area of EBG.

    Many researchers make steps towards the miniaturization of EBG structure and the work of structure miniaturization has achieved practically by modifying the shape of the patch in recent years.For example, the interdigital structure[7]contributes to the miniaturization of EBG structure.The configuration of fork-like EBG structure has an extremely compact size, and its area is less than 40% of the conventional mushroom-like EBG(CML-EBG) structure[8].The period of the CSRR(complementary split ring resonator)-based EBG structure demonstrated in [9]presents a 28% size reduction.The period of the EBG lattice demonstrated in [10]is 3.86%and 7.3% of the two free space wavelengths, respectively.In addition, other methods like using edge-located vias are also effective[11],[12].

    In this paper, a novel EBG structure with both of the RSRs (reverse split rings) and IE (inserting interleaving edge) configurations has been proposed, achieving a 13.6%size reduction in the center frequency of the bandgap,compared with the CML-EBG structure.The RSRs and IE were integrated, respectively, into the CML-EBG structure to investigate their contribution to compactness.A 5×5 sample was constructed and measured.The measured data show a proper agreement with the simulated results.

    2.Structure Analysis and Design

    The CML-EBG consisting of metal patch cells and vias is shown in Fig.1 (a).The stopband property of this structure can be described as an equivalent parallel LC resonator.The equivalent capacitance C is introduced by the gap electric field between the edges of adjacent cells,and the equivalent inductance L is engendered by the current flowing from upper patches to ground plane through vias.Therefore, the bandgap frequency and bandwidth (BW)can be calculated as

    respectively, where the equivalent capacitance C is a gap structure, defined asthe periodic equivalent inductance L can be written as L=μ0h, w is the patch size, g is the distance between cells,εris the dielectric permittivity, h is the thickness of the substrate, d is the diameter of the via, and a is the size of the period.Thus, the bandgap frequency can be decreased by increasing the equivalent capacitance and inductance.

    Fig.1.Geometry of the EBG structure: (a) CML EBG and (b)proposed RSRs-IE based EBG.

    For the purpose of reducing the bandgap frequency without increasing the patch cell size, the RSRs and IE configuration are introduced in the patch of the CML-EBG to construct the RSRs-IE structure based EBG, as shown in Fig.1 (b).Comparing with the CML-EBG structure, the interleaving edge in the rectangle patch can be considered as interdigital capacitance, and the reverse split rings etched on the EBG structure are equivalent to additional inductance.Because of the extension of the current flowing path, which contributes to the increasing of equivalent inductance and capacitance, the RSRs-IE structure based EBG gains the feature of compactness.

    3.Results and Discussions

    The CML-EBG structure configuration has the chosen parameters as following: relative permittivity εr=2.65,substrate thickness h=1 mm, patch size w=6.2 mm, and distance between cells g=0.3 mm.In order to compare the RSRs-IE EBG structure with the CML-EBG structure, the width of the cell is w′=5.0mm, the length and the width of the IE cell are b=0.6 mm and c=0.4 mm, the parameters of the RSRs are w0=0.2 mm, w1=w2=0.2 mm, and r0=1.6 mm, other parameters are the same.The dispersion diagram method[13]is used to analyze the bandgap feature of the EBG structure.All the simulated results are calculated by Ansoft HFSS v10.

    The simulated dispersion diagram of the CML-EBG and RSRs-IE based EBG are shown in Fig.2 (a) and Fig.2(b), respectively.Only two modes are plotted to cut down the calculation time.As is shown, a complete bandgap between 6.5 GHz and 11.4 GHz is clearly observed for the CML-EBG, with a bandwidth of 27.4%, at the center frequency of 8.95 GHz.As to the RSRs-IE based EBG, the bandgap is from 3.9 GHz to 9.3 GHz, with a bandwidth of 41% at the center frequency of 6.6 GHz.Compared with the CML-EBG, the bandwidth of the RSRs-IE based EBG structure increases, however, the center bandgap occurs at a much lower frequency, thus, the RSRs-IE based EBG obtains compactness in size accompany with a broad bandwidth.

    Fig.2.Dispersion diagram for the EBG structure: (a) CML EBG and (b) proposed RSRs-IE based EBG.

    Table 1: Bandgap feature of different IE lengths

    From the previous analysis, we could come to the conclusion that the RSRs and IE configurations play a significant role in the performance of the CML-EBG structure.To study the effect of structure and dimension of the RSRs and IE, two simulation cases have been carried out.

    3.1 Case 1

    The model of CML-EBG integrating with different interleaving edge is established and the dimensions of the IE and patch agree with those in the previous part.Fig.3 depicts the bandgap frequency of the IE-based EBG:6.2 GHz to 7.8 GHz (a bandwidth of 11.4% at 7 GHz).Note that the IE configuration inserting in the EBG makes a decline of 1.95 GHz at the center frequency with a drop of 16% in the bandwidth.Furthermore, the IE-based EBG with different IE lengths was simulated.It is observed in Table 1 that the center bandgap frequency tends to decrease with the increase of IE length b, moreover, the bandwidth gains an effective improvement when length b becomes smaller.

    Fig.3.Dispersion diagram for the IE-based EBG structure.

    Fig.4.Dispersion diagram for the RSR-based EBG structure.

    Table 2: Bandgap feature of different RSRS radius

    Fig.5.Figures of the constructed RSRs-IE EBG.

    3.2 Case 2

    Model of CML-EBG etched RSRs was built.The parameters of the RSRs and patch are the same as previous.Learning from Fig.4, RSRs-based EBG shows a bandgap of 3.5 GHz to 8.8 GHz (a bandwidth of 43% at 6.15 GHz).Note that the RSRs etched on the EBG bring about a decrease of 2.8 GHz at the center frequency, with an enlargement of 15.6% in the bandwidth.As shown in Table 2, when the radius of the inner ring increases, the middle bandgap frequency moves to the lower ends, while the bandwidth drops slowly.

    Fig.6.Measured results: (a) mushroom-like EBG and (b)proposed EBG.

    To further validate the bandgap performance of the RSRs-IE based EBG structure, a 5×5 lattice of the Mushroom-like EBG and the presented EBG structure were fabricated on printed circuit boards (PCBs) and measured by Agilent N5230 vector network analyzer, as shown in Fig.5.

    The suspended microstrip method[14],[15]was applied to verify the bandgap property of the novel EBG in which a 50 Ω microstrip line was placed above upper substrate(εr=2.65, h=0.5 mm) and soldered with SMA connectors to measure the S-parameters.As a strong coupling measurement method, the bandgap is defined in the range with S21below –10 dB.The measured results are depicted in Fig.6:the bandgap is from 4.1 GHz to 6.7 GHz.Though it is narrower than the simulated result (Fig.2(b)), it is much lower than that of the CML-EBG (7.6 GHz to 11.8 GHz) as measured.

    The measured results agree well with the simulated results, however, there is some error between them.The discrepancy is probably due to the following three reasons:1) ideal infinite periodic cells used in simulations, 2)manufacturing tolerances, and 3) interference from the surrounding environment.

    4.Conclusions

    A novel compact RSRs and IE embedded conventional mushroom-like EBG structure is studied and tested.The measure results confirm the location of the bandgap calculated by Ansoft HFSS.Compared with the conventional mushroom-like EBG structure, the combination of RSRs and IE results in decreasing the center frequency of the band-gap by 13.6%, therefore, the proposed RSRs-IE based EBG can be effectively applied in compact microstrip patch array.

    Acknowledgment

    The authors would like to thank Zhongyang Xingye Corporation and W.S.Zhan for fabrication of the prototypes.They also would like to thank Y.Huang for technical guidance in measurement.

    [1]D.Sievenpiper, L.J.Zhang, R.F.J.Broas, N.G.Alexopolous, and E.Yabiomovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,”IEEE Trans.on Microw.Theory Tech., vol.47, no.11, pp.2059–2074, 1999.

    [2]F.Yang and Y.Rahmat-Samii, Electromagnetic Band-Gap Structures in Antenna Engineering, Cambridge: Cambridge Univ.Press, 2008.

    [3]F.Yang and Y.Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures:A low mutual coupling design for array applications,” IEEE Trans.on Antenna Propag., vol.51, no.10, pp.2936–2946,2003.

    [4]Z.Iluz, R.Shavit, and R.Bauer, “Microstrip antenna phased array with electromagnetic bandgap substrate,” IEEE Trans.on Antenna Propag., vol.52, no.6, pp.1446–1453, 2004.

    [5]J.Liang and H.Y.D.Yang, “Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface,”IEEE Trans.on Antenna Propag., vol.55, no.6, pp.1691–1697, 2007.

    [6]M.Coulombe, S.F.Koodian, and C.Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans.on Antenna Propag., vol.58, no.4, pp.1076–1086, 2010.

    [7]Y.-Q.Fu, N.-C.Yuan, and G.-H.Zhang, “Compact high-impedance surfaces incorporated with interdigital structure,” Electron.Lett., vol.40, no.5, pp.310–311, 2004.

    [8]L.Yang, M.-Y.Fan, F.-L.Chen, J.-Z.She, and Z.-H.Feng,“A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits,” IEEE Trans.on Microw.Theory Tech., vol.53, no.1, pp.183–190, 2005.

    [9]L.Peng, C.-L.Ruan, and Z.-Q.Li, “A novel compact and polarization-dependent mushroom-type EBG structure using CSRR for dual/triple-band application,” IEEE Microw.Wireless Compon.Lett., vol.20, no.9, pp.489–491, 2010.

    [10]Y.Yao, X.Wang, and Z-H.Feng, “A novel dual-band compact electromagnetic bandgap (EBG) structure and its application in multiantennas,” in Proc.of IEEE Antennas and Propagation Society International Symposium, Albuquerque,2006, pp.1943–1946.

    [11]P.Jiang and K.Xie, “Design of novel compact electromagnetic bandgap structure with enhanced bandwidth,” J.Electron.Science Tech., vol.8, no.3, pp.262–266, Sep.2010.

    [12]E.Rajo-Iglesias, L.Inclan-Sanchez, J.L.Vazquez-Roy, and E.Garcia-Muoz, “Size reduction of mushroom-type EBG surfaces by using edge located vias,” IEEE Microw.Wireless.Compon.Lett., vol.17, no.9, pp.670–672, Sep.2007.

    [13]R.Remski, “Analysis of PBG surfaces using Ansoft HFSS,”Microwave Journal, vol.43, no.9, pp.190–198, Sep.2000.

    [14]M.-Y.Fan, R.Hu, Z.-H.Feng, X.-X.Zhang, and Q.Hao,“New method for 2D-EBG structures’ research,” J.Infrared Millim.Waves, vol.22, no.2, pp.127–131, Oct.2003.

    [15]Y.Ning, Z.-N.Chen, and Y.-Y.Wang, “A novel two-layer compact electromagnetic band-gap (EBG) structure and its applications in microwave circuits,” Science in China (Series E), vol.46, no.4, pp.439–447, 2003.

    伦理电影大哥的女人| 一本一本综合久久| 日本av免费视频播放| 欧美激情国产日韩精品一区| 亚洲图色成人| 国产黄色视频一区二区在线观看| 久久影院123| 大片电影免费在线观看免费| 我的老师免费观看完整版| 日韩欧美一区视频在线观看 | 精品久久久噜噜| 国产成人aa在线观看| 久久久久人妻精品一区果冻| 日韩伦理黄色片| 欧美xxⅹ黑人| 免费看不卡的av| 亚洲成人一二三区av| 一级毛片我不卡| 国产亚洲最大av| 国产欧美日韩综合在线一区二区 | 亚洲av欧美aⅴ国产| 国产精品一区二区在线观看99| 亚洲中文av在线| 国产在线视频一区二区| 免费黄频网站在线观看国产| 国产淫片久久久久久久久| 国产男女内射视频| 精品午夜福利在线看| 亚洲伊人久久精品综合| 九九久久精品国产亚洲av麻豆| 九九在线视频观看精品| 麻豆成人av视频| 精品人妻熟女毛片av久久网站| 亚洲国产日韩一区二区| 熟女av电影| 丝袜在线中文字幕| 综合色丁香网| 18禁裸乳无遮挡动漫免费视频| 亚洲怡红院男人天堂| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美另类精品又又久久亚洲欧美| 女人精品久久久久毛片| 人人妻人人澡人人爽人人夜夜| 国产色婷婷99| 精品亚洲乱码少妇综合久久| 特大巨黑吊av在线直播| 如何舔出高潮| 蜜桃久久精品国产亚洲av| 91成人精品电影| 欧美丝袜亚洲另类| 99热6这里只有精品| 亚洲欧美清纯卡通| 日韩强制内射视频| av天堂久久9| 国产黄片视频在线免费观看| 国产成人免费无遮挡视频| 插阴视频在线观看视频| 高清不卡的av网站| 免费久久久久久久精品成人欧美视频 | 97超碰精品成人国产| 狠狠精品人妻久久久久久综合| 乱系列少妇在线播放| 六月丁香七月| 亚洲av电影在线观看一区二区三区| 国产一区亚洲一区在线观看| 视频区图区小说| 欧美精品一区二区免费开放| 91久久精品电影网| 亚洲成人av在线免费| 久久久久国产网址| 大香蕉久久网| 国产又色又爽无遮挡免| 内地一区二区视频在线| 99久久人妻综合| 亚洲精品第二区| 国产亚洲精品久久久com| 久久久久久久精品精品| 一级片'在线观看视频| 亚洲欧洲国产日韩| 最新的欧美精品一区二区| 亚洲av日韩在线播放| 黄色一级大片看看| 亚洲欧美日韩东京热| 免费大片黄手机在线观看| 成年人免费黄色播放视频 | 在现免费观看毛片| av在线播放精品| 婷婷色综合www| 亚洲精品国产av成人精品| 国内精品宾馆在线| 日日摸夜夜添夜夜爱| 国产精品三级大全| 国产亚洲午夜精品一区二区久久| 国产高清国产精品国产三级| 一区二区三区免费毛片| 久久人人爽av亚洲精品天堂| 日韩制服骚丝袜av| 又大又黄又爽视频免费| 哪个播放器可以免费观看大片| 国产精品偷伦视频观看了| 日韩伦理黄色片| 国产精品国产三级国产av玫瑰| 精华霜和精华液先用哪个| 看免费成人av毛片| 欧美激情国产日韩精品一区| 欧美激情国产日韩精品一区| 国产毛片在线视频| 亚洲av二区三区四区| 国产精品一区二区性色av| 久久99蜜桃精品久久| 十分钟在线观看高清视频www | 国产黄频视频在线观看| av播播在线观看一区| 欧美bdsm另类| 边亲边吃奶的免费视频| 交换朋友夫妻互换小说| 国产极品天堂在线| 又大又黄又爽视频免费| 国产精品免费大片| 丰满乱子伦码专区| 亚洲欧美成人综合另类久久久| 婷婷色麻豆天堂久久| 久久99精品国语久久久| 国产一区二区三区av在线| 日韩制服骚丝袜av| 欧美日韩视频精品一区| 亚洲美女黄色视频免费看| 亚洲真实伦在线观看| 亚洲真实伦在线观看| 2022亚洲国产成人精品| 伦理电影大哥的女人| 看十八女毛片水多多多| .国产精品久久| 人妻 亚洲 视频| a级片在线免费高清观看视频| 欧美一级a爱片免费观看看| 纯流量卡能插随身wifi吗| 国产69精品久久久久777片| 99热全是精品| 狂野欧美白嫩少妇大欣赏| 午夜福利,免费看| 午夜影院在线不卡| 精品亚洲乱码少妇综合久久| 在线观看免费视频网站a站| 欧美+日韩+精品| 精品一品国产午夜福利视频| 国产亚洲av片在线观看秒播厂| 国产精品蜜桃在线观看| 亚洲美女搞黄在线观看| 人妻 亚洲 视频| 久久久久久久久久久免费av| 国产成人精品无人区| 精品酒店卫生间| 久久亚洲国产成人精品v| 在线精品无人区一区二区三| 亚洲欧美精品自产自拍| 国产熟女午夜一区二区三区 | 久久精品熟女亚洲av麻豆精品| 午夜影院在线不卡| 成人午夜精彩视频在线观看| 大香蕉久久网| 日韩人妻高清精品专区| 如日韩欧美国产精品一区二区三区 | 国产精品国产三级国产av玫瑰| 99热网站在线观看| 亚洲自偷自拍三级| 有码 亚洲区| 亚洲欧美日韩卡通动漫| 夜夜骑夜夜射夜夜干| 黄色视频在线播放观看不卡| 成年av动漫网址| 国产日韩欧美亚洲二区| 久久久国产欧美日韩av| 国产精品99久久久久久久久| 亚洲欧美日韩东京热| 国产精品一区二区三区四区免费观看| 精品熟女少妇av免费看| 午夜av观看不卡| 亚洲精品乱久久久久久| 国产高清国产精品国产三级| 一级二级三级毛片免费看| 国产国拍精品亚洲av在线观看| 2018国产大陆天天弄谢| 一区二区av电影网| 成人国产av品久久久| 国产精品99久久久久久久久| 免费大片黄手机在线观看| 熟女电影av网| 男女边摸边吃奶| 亚洲熟女精品中文字幕| 日韩精品有码人妻一区| 亚洲国产欧美在线一区| 在线观看美女被高潮喷水网站| 日韩 亚洲 欧美在线| 丝袜脚勾引网站| 久久久久国产精品人妻一区二区| 三级国产精品片| 亚洲成人一二三区av| 超碰97精品在线观看| 久久精品国产亚洲av天美| 高清在线视频一区二区三区| av在线老鸭窝| 人妻 亚洲 视频| 内射极品少妇av片p| 最近中文字幕2019免费版| 免费av不卡在线播放| 欧美日韩一区二区视频在线观看视频在线| 久久99精品国语久久久| 免费久久久久久久精品成人欧美视频 | 久久99一区二区三区| 这个男人来自地球电影免费观看 | 欧美 亚洲 国产 日韩一| 97精品久久久久久久久久精品| 在线观看人妻少妇| 国产精品99久久久久久久久| 熟女电影av网| 久久免费观看电影| 国产成人精品久久久久久| 久久久亚洲精品成人影院| 少妇被粗大猛烈的视频| 国产成人免费观看mmmm| 国产精品女同一区二区软件| 中文乱码字字幕精品一区二区三区| 色视频在线一区二区三区| 国产精品三级大全| 丰满迷人的少妇在线观看| 99九九在线精品视频 | 日韩电影二区| 夫妻性生交免费视频一级片| 日本午夜av视频| 综合色丁香网| 99久国产av精品国产电影| 国产视频内射| 欧美日韩在线观看h| 国产欧美另类精品又又久久亚洲欧美| 亚洲情色 制服丝袜| 高清不卡的av网站| 午夜激情福利司机影院| videos熟女内射| 国产黄片美女视频| 看非洲黑人一级黄片| 国产欧美另类精品又又久久亚洲欧美| 亚洲av成人精品一二三区| 99久久中文字幕三级久久日本| 99九九线精品视频在线观看视频| 免费黄色在线免费观看| 一级毛片aaaaaa免费看小| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区黑人 | 交换朋友夫妻互换小说| 精品久久久久久久久亚洲| 亚洲欧洲日产国产| 18禁在线无遮挡免费观看视频| 最近2019中文字幕mv第一页| 亚洲精品国产av蜜桃| 新久久久久国产一级毛片| 欧美激情国产日韩精品一区| av网站免费在线观看视频| 欧美bdsm另类| 极品人妻少妇av视频| 91久久精品国产一区二区三区| 久久午夜福利片| 久久久久久久国产电影| 欧美一级a爱片免费观看看| 日韩一区二区视频免费看| 岛国毛片在线播放| 久久久久久久久久久久大奶| 免费播放大片免费观看视频在线观看| 2018国产大陆天天弄谢| 啦啦啦视频在线资源免费观看| 亚洲国产色片| 纯流量卡能插随身wifi吗| 久久这里有精品视频免费| 黄色日韩在线| 一区二区三区精品91| 亚洲精品色激情综合| 啦啦啦中文免费视频观看日本| 国内精品宾馆在线| 亚洲av不卡在线观看| 亚洲丝袜综合中文字幕| 色94色欧美一区二区| 汤姆久久久久久久影院中文字幕| 日日撸夜夜添| 精品卡一卡二卡四卡免费| 日本黄色片子视频| 日韩在线高清观看一区二区三区| 色94色欧美一区二区| 女人久久www免费人成看片| 欧美日本中文国产一区发布| 五月开心婷婷网| 黄片无遮挡物在线观看| 久久午夜综合久久蜜桃| 51国产日韩欧美| 秋霞伦理黄片| 亚洲av欧美aⅴ国产| 久久久久久久久大av| 久久久久久久精品精品| 中文字幕亚洲精品专区| 国产在线视频一区二区| 亚洲天堂av无毛| 免费观看无遮挡的男女| 久久精品国产a三级三级三级| a级片在线免费高清观看视频| .国产精品久久| 午夜福利在线观看免费完整高清在| 观看av在线不卡| 国产男人的电影天堂91| 2021少妇久久久久久久久久久| 国产色爽女视频免费观看| 国产精品一区二区在线观看99| 日韩伦理黄色片| 欧美性感艳星| 成年人午夜在线观看视频| 国产在线一区二区三区精| 日韩,欧美,国产一区二区三区| 视频区图区小说| 精品少妇久久久久久888优播| 极品教师在线视频| h日本视频在线播放| 少妇人妻久久综合中文| 亚洲精品国产av成人精品| 涩涩av久久男人的天堂| 97超碰精品成人国产| 亚洲一区二区三区欧美精品| 欧美另类一区| 国产亚洲精品久久久com| av黄色大香蕉| 大陆偷拍与自拍| 国产欧美另类精品又又久久亚洲欧美| 热99国产精品久久久久久7| 精品一区二区三卡| 纵有疾风起免费观看全集完整版| 精品一区二区免费观看| 大片电影免费在线观看免费| 亚洲色图综合在线观看| 三级国产精品片| 岛国毛片在线播放| 五月伊人婷婷丁香| 丰满少妇做爰视频| 国产色爽女视频免费观看| 国产成人freesex在线| 亚洲精品久久久久久婷婷小说| 欧美少妇被猛烈插入视频| 五月天丁香电影| 国产成人精品一,二区| 免费观看av网站的网址| 日本wwww免费看| 99九九在线精品视频 | 国产女主播在线喷水免费视频网站| xxx大片免费视频| 午夜日本视频在线| 99久久精品热视频| 91久久精品国产一区二区成人| 天堂俺去俺来也www色官网| 国产伦精品一区二区三区四那| 成人毛片60女人毛片免费| 黑人高潮一二区| 美女福利国产在线| 成年av动漫网址| 五月开心婷婷网| 欧美日韩精品成人综合77777| 亚洲情色 制服丝袜| 国产精品国产三级国产专区5o| 免费看不卡的av| 日韩一本色道免费dvd| 18禁裸乳无遮挡动漫免费视频| 亚洲四区av| 亚洲丝袜综合中文字幕| 久久热精品热| 一区二区三区四区激情视频| 简卡轻食公司| 久热这里只有精品99| 欧美日韩综合久久久久久| 日韩人妻高清精品专区| 久久久精品94久久精品| 亚洲av综合色区一区| 国产精品一区二区在线观看99| 自拍欧美九色日韩亚洲蝌蚪91 | 国产在线男女| 欧美日韩精品成人综合77777| 久久国内精品自在自线图片| 亚洲精品一二三| 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 99re6热这里在线精品视频| 黄片无遮挡物在线观看| 一级片'在线观看视频| 麻豆乱淫一区二区| 一级毛片aaaaaa免费看小| 纵有疾风起免费观看全集完整版| 少妇丰满av| 亚洲欧美日韩卡通动漫| 久久精品久久久久久久性| 免费看光身美女| 一区二区av电影网| 日韩 亚洲 欧美在线| 国产精品一区二区三区四区免费观看| 亚洲精品色激情综合| 午夜激情福利司机影院| 男女无遮挡免费网站观看| 午夜福利网站1000一区二区三区| 国产视频首页在线观看| 极品教师在线视频| 国产成人精品久久久久久| 多毛熟女@视频| 色视频www国产| 成人亚洲欧美一区二区av| 久久人人爽人人爽人人片va| 婷婷色av中文字幕| 大陆偷拍与自拍| 黑人高潮一二区| 亚洲精品第二区| 少妇高潮的动态图| 午夜激情久久久久久久| 免费黄色在线免费观看| 久久av网站| 亚洲国产av新网站| 精品人妻熟女av久视频| 国产精品.久久久| 一级片'在线观看视频| 纯流量卡能插随身wifi吗| 午夜福利网站1000一区二区三区| 一级片'在线观看视频| 免费观看的影片在线观看| 亚洲国产毛片av蜜桃av| 自拍偷自拍亚洲精品老妇| 我要看黄色一级片免费的| 亚洲,欧美,日韩| 日韩三级伦理在线观看| 亚洲欧美日韩另类电影网站| 免费大片黄手机在线观看| av免费在线看不卡| 人妻人人澡人人爽人人| 80岁老熟妇乱子伦牲交| 午夜av观看不卡| 能在线免费看毛片的网站| 午夜免费观看性视频| 美女主播在线视频| 春色校园在线视频观看| 亚洲精品一二三| 少妇人妻久久综合中文| 午夜激情福利司机影院| 成人亚洲精品一区在线观看| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 久久国产精品大桥未久av | 亚洲精品第二区| 女性生殖器流出的白浆| 各种免费的搞黄视频| 在线免费观看不下载黄p国产| 精品人妻熟女毛片av久久网站| 精品一区二区免费观看| 水蜜桃什么品种好| 亚洲国产日韩一区二区| 免费不卡的大黄色大毛片视频在线观看| 久久精品夜色国产| 岛国毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 久久久久网色| 人人妻人人澡人人爽人人夜夜| 伦理电影免费视频| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 五月伊人婷婷丁香| 国产成人aa在线观看| 五月开心婷婷网| 狂野欧美激情性xxxx在线观看| 亚洲国产成人一精品久久久| 日本黄大片高清| 嫩草影院新地址| 久久狼人影院| 日韩制服骚丝袜av| 亚洲成人一二三区av| 久久久亚洲精品成人影院| 午夜91福利影院| 人妻制服诱惑在线中文字幕| 久久影院123| 一级毛片aaaaaa免费看小| 国内揄拍国产精品人妻在线| 乱系列少妇在线播放| 精品酒店卫生间| 亚洲欧洲精品一区二区精品久久久 | 少妇高潮的动态图| 黑人猛操日本美女一级片| 国产色爽女视频免费观看| 最黄视频免费看| 一级黄片播放器| 免费观看在线日韩| 日日爽夜夜爽网站| 91精品一卡2卡3卡4卡| 一级片'在线观看视频| 又爽又黄a免费视频| 国产精品偷伦视频观看了| 国产精品久久久久成人av| 人妻制服诱惑在线中文字幕| 国产亚洲最大av| 日韩电影二区| 丰满人妻一区二区三区视频av| 欧美成人精品欧美一级黄| freevideosex欧美| 中文字幕精品免费在线观看视频 | 欧美少妇被猛烈插入视频| 观看免费一级毛片| 成人国产麻豆网| 婷婷色av中文字幕| 男女啪啪激烈高潮av片| 国产免费一区二区三区四区乱码| 国产精品不卡视频一区二区| 99热网站在线观看| 女的被弄到高潮叫床怎么办| 男女啪啪激烈高潮av片| 亚洲精品国产av成人精品| 国产欧美亚洲国产| 青春草亚洲视频在线观看| 成人综合一区亚洲| 亚洲怡红院男人天堂| 国产一级毛片在线| freevideosex欧美| 亚洲欧美中文字幕日韩二区| av天堂中文字幕网| 校园人妻丝袜中文字幕| 精品少妇黑人巨大在线播放| 欧美日韩视频高清一区二区三区二| 91精品一卡2卡3卡4卡| 少妇的逼好多水| 国产色爽女视频免费观看| 国产 一区精品| 国产亚洲一区二区精品| 日韩人妻高清精品专区| 亚洲精品日本国产第一区| 国产av码专区亚洲av| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片| 大码成人一级视频| 又爽又黄a免费视频| 欧美日韩精品成人综合77777| 一级黄片播放器| 两个人的视频大全免费| videossex国产| 国产在线免费精品| 国产综合精华液| 人人妻人人看人人澡| 啦啦啦在线观看免费高清www| 久久久久久久久久久丰满| 日本午夜av视频| 青春草国产在线视频| av网站免费在线观看视频| 国产在视频线精品| 国产精品一区二区三区四区免费观看| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看 | 国产精品伦人一区二区| 最新的欧美精品一区二区| 久久久久精品性色| 久久人妻熟女aⅴ| 一本久久精品| 大香蕉久久网| 国产高清有码在线观看视频| 91精品一卡2卡3卡4卡| 成人影院久久| 97超碰精品成人国产| 国产精品一区二区在线不卡| 人人妻人人看人人澡| 伦理电影免费视频| 欧美日韩亚洲高清精品| 免费观看av网站的网址| av在线播放精品| 午夜福利,免费看| 亚洲情色 制服丝袜| 成人综合一区亚洲| 美女主播在线视频| 丰满饥渴人妻一区二区三| 日韩av在线免费看完整版不卡| 国产精品久久久久久av不卡| kizo精华| 我要看日韩黄色一级片| 国产又色又爽无遮挡免| 国国产精品蜜臀av免费| a级一级毛片免费在线观看| 伦理电影免费视频| 欧美老熟妇乱子伦牲交| 观看美女的网站| av有码第一页| 精品国产国语对白av| 国产精品久久久久久久电影| 免费观看的影片在线观看| 精品国产一区二区三区久久久樱花| 午夜91福利影院| 99视频精品全部免费 在线| 成人无遮挡网站| 久久国产精品大桥未久av | 在线播放无遮挡| 久久综合国产亚洲精品| 不卡视频在线观看欧美| 国产免费视频播放在线视频| 日韩熟女老妇一区二区性免费视频| 毛片一级片免费看久久久久| 99精国产麻豆久久婷婷| 日本欧美国产在线视频| 国产成人精品无人区| 女性被躁到高潮视频| 国产女主播在线喷水免费视频网站| 人妻少妇偷人精品九色| 亚洲精品视频女| 性色av一级| av福利片在线| 九九爱精品视频在线观看| 成人国产麻豆网| 伊人久久国产一区二区| 亚洲av.av天堂| 欧美一级a爱片免费观看看| 国产精品免费大片| 日韩在线高清观看一区二区三区| 在线观看美女被高潮喷水网站| 久久久久国产网址|