• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Correcting Image Distortion for Adaptive Cruise Control

    2013-11-26 10:48:04YingChenGongjunYanDandaRawatAwnyAlnusairandBhedBista

    Ying Chen, Gongjun Yan, Danda B.Rawat, Awny Alnusair, and Bhed B.Bista

    1.Introduction

    In recent years, people have witnessed the emergence of adaptive cruise control in intelligent vehicles.Many adaptive cruise control systems adopt radar to detect other vehicles, pedestrian, or obstacles.In fact, there is few research focusing on lower-price camera-based adaptive cruise control systems.Comparing with radar-based cruise control systems, a camera-based adaptive control system has several advantages, such as lane departure warning,intelligent heading control, and traffic sign recognition.

    However, lower-price camera-based adaptive cruise controls systems have great challenges as well.One of the great challenges lies in the fact that the quality of lower-price camera is normally not ready to provide high quality adaptive cruise control which has extreme importance to driver’s life in a certain condition.The images of the lower-price camera are often distorted or blurred.To improve the quality of the adaptive cruise control system, we have to correct image distortion by an economical and efficient method.

    This paper presents a new method for camera image distortion correction by using optical flow techniques,which are normally applied in motion estimation and video compression research.As the optical flow techniques have a limited delay of processing time, they fit vehicular networks which are the delay-limited environment[1].We are the first to adopt optical flow techniques in image distortion correction.Two classic optical flow methods are introduced and the experiment shows that the Lucas-Kanade method has better errors control than the Horn-Schunck for our sinusoidal test signals.A simple test pattern pair is used to verify the optical flow method in three ways:

    · A pair of synthetic test images, including linear distortion-translation, rotation zoom distortion and nonlinear distortion-barrel distortion.

    · A pair of test images with independent Gaussian noise.

    · A pair of photographs that capture the ideal test images.

    2.Related Work

    For traffic monitoring applications, Trajkovic[2]presented an interactive approach to calibrate a pan-tilt-zoom camera by assuming that the camera height is known.Bas and Crisman[3]used the height and tilt of the measured camera and the road edges in an image.But Lai and Yung[4]presented an algorithm to extract complete multi-lane information by utilizing prominent orientation and length features of lane markings and curb structures to discriminate against other minor features.Fung et al.[5]proposed a method using the geometry properties of road lane makings.With the help of the known length and width of road lane markings, He and Yung[6]fixed the problem of ill-conditioned vanishing points.In an automatic approach,Schoepflin and Dailey[7]dynamically calibrated pan-tiltzoom (PTZ) cameras using lane activity maps to find the center of lanes and estimate the vanishing point of lines perpendicular to the road using dynamic images by detecting the bottom edges of the vehicles.Song and Tai[8]estimated the vanishing point by assuming the camera height and lane width are known in advance with using edge detection to find the lane markings in the static background image.To lower-price cameras, the most commonly encountered geometry distortions are radically symmetric.Currently, two kinds of software correction methods exist: correcting distortions by warping the image with a reverse distortion, which is an approximation the inverse distortion dominated by the low-order version of Brown’s distortion model in [9]; and an alternative method that iteratively computes the undistorted pixel position in[10].Both methods are complicated and have a very heavy burden on computational consumption.Furthermore, the image correction process of both methods also varies for each lens and its adjustable focus and zoom settings.In this paper, a new distortion correction method which is straightforward and independent of camera parameters is proposed.If the distortion value on the whole image is known, it is able to estimate the position change of each pixel and move this pixel to the ideal position.By subtracting the magnitude that each pixel shifts from the distortion position, the desired position of a pixel is estimated.This desired position is then converted to x, y coordinates which represent the desired position of a pixel in the image.If this process is applied to every pixel of the image, the result is a set of non-uniformly spaced points.These points are associated with the appropriate pixel values, so the corrected image can be interpolated.

    The most commonly encountered geometry distortions are radically symmetric, and arise from the symmetry of photographic lenses.The radial distortion is usually described as either barrel or pincushion distortion, depicted in Fig.1.Most camera lenses will introduce some distortion,which could only be corrected optically with other lenses before the emergence of digital cameras.But for digital cameras, any lens distortion can be corrected with in-camera image processing software[11].

    Since the optical flow methods are capable of calculating the motion between two frames which are taken at time t and t+δt at every voxel position, we use them in this paper for calculating the displacement between distortion image and ideal image.Sequences of ordered images are used in the estimation of motion as either instantaneous image velocities or discrete image displacement[12], so the desired (ideal) image and the distortion image are treated as two sequential images at different times with the same scene in this paper.And the texture mapping method is used to warp the new image with the result of optical flow.

    Fig.1.Description for different types of lens distortion: (a) none distortion, (b) barrel, and (c) pincushion.

    3.Image Correction with Optical Flow Technology

    In this paper, the image correction procedure using the optical flow method is described in Fig.2.

    In the flowchart, the first input image is named InputImage1 which is the current frame image in optical flow method, and the second input image is named InputImage2 which is the previous frame image in the optical flow method.The result of the optical flow method is the position change from the previous frame image to the current frame image.Then InputImage2 and the values of position change are put into the warping function, and the output of the warping function is the new image.The error is found by comparing the new image and Inputimage1.If the error equals to zero, the new image is the same image with InputImage1.

    3.1 Optical Flow Techniques

    The optical flow method is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and the scene[13],[14].Those optical flow methods, which are based on local Taylor series approximation of the image signal,estimate the motion of two frames of the image which are taken at times t and t + δt.

    where Vxand Vyare x and y components of velocity or optical flow; Ⅰ (x, y, t) denotes the image brightness at the point(x, y) in the image at time t; ?Ⅰ/?x, ?Ⅰ/?y, and ?Ⅰ/?t are derivatives of image at x direction, y direction, and t direction, respectively.Equation (1) cannot be solved since there are two unknown parameters.In order to get the second constraint, another set of optical flow equations are needed.

    Fig.2.Diagram of image correction with optical flow.

    Because we do not confirm the feasibility of optical flow methods in image distortion correction, the two different classical optical flow methods are employed to implement the image distortion correction in this paper.Vxand Vyare solved based on different assumptions.The precision of each method are checked by different image inputs in Section 4.

    3.2 Lucas-Kanade Method

    The Lucas-Kanade method is a widely used differential method for optical flow estimation that introduces additional conditions for estimating the actual flow.Assuming the flow (Vx, Vy) is a constant in the local neighborhood, a small window of size n×n (n>1) is defined around the central pixel (x, y).These pixels in the window are numbered by 1, 2,…, m, where m=n2.With these conditions,(1) is represented in the matrix form as

    where xiand yiare the coordinate values for pixels in the window, and i=1, 2,…, m.

    To solve those equations, the least squares method is applied:

    The above least squares solution gives the same attention to all n pixels i in the window.

    In practice, a weighted window is usually added to prominence the central pixel ρ of the window.The weighting function is

    where wiis usually a Gaussian function of the distance between i and ρ.

    3.3 Horn-Schunck Method

    The Horn-Schunck algorithm introduces an equation that relates the change in image brightness at a point to the motion of the brightness pattern[15].It assumes smoothness in the flow in the whole image.The equation is given for two-dimensional image as

    where Ⅰx, Ⅰy, and Ⅰtare the derivatives of the image intensity values with x, y and time dimensions, respectively; α is the weight coefficient.

    By solving the Euler-Lagrange equations, (5) can be simplified as

    where L is the integrand of the energy expression:

    here the Laplace operator Δ equals to ?2/?x2+?2/?y2, anda weighted average of u calculated in a neighborhood around the pixel at the location (x, y).

    With these notations, the above equation system may be written as

    Once the neighbors have been updated, (8) for each point in the image must be recalculated since the solution depends on the neighboring values of the flow field.According to Gauss-Seidel method[16], the following iterative scheme is derived:

    4.Test Image

    In order to compare the result images reconstructed by the Lucas-Kanade and the Horn-schunck methods, a pair of synthetic test images is generated as inputs of the these two methods.Only the grayscale digital image is used for reducing the effect of color distortion.And the sine wave signal is employed to generate these grayscale images,because sine wave has high gradients almost everywhere in the whole image and low spatial frequency means has no effects from blur and lens resolution.Besides, photographed images are also taken as input to compare two optical flow methods in real image distortion correction.

    We use LCD screen[17]to display the original image and capture the LCD screen as source photography in the camera image case.Comparing with traditional checkerboard patterns, our test pattern showed on the screen is stable, corrected and less manual interventions.

    Ten pairs of camera images are generated for testing.The object scene used in image capturing is also a sine wave image.For example, according to the original image in Section 3.1, the original object scene (Fig.3 (a)) of source photograph (Fig.3 (b)) is generated from (9) with parameters A = B = 2p/10, C = D = 0.

    Similarly, according to the shift image, the shift object scene (Fig.4 (a)) of destination photograph (Fig.4 (b)) is generated with parameters A = B = 2π/10, C = 0.3×2π/10, D= 0.

    Since the resolution of photograph is 640×480 pixels,the translation along y-axis is 0.3 pixel in object scenes will result in shifting 0.96 pixels along y-axis in photographs.

    Fig.3.Original camera image: (a) original object scene and (b)source photograph.

    Fig.4.Shift camera image: (a) shift object scene and (b)destination photograph.

    Table 1: Y dimension error of photographs

    Fig.5.Y dimension error curves of photographs in translation case.

    5.Experiments

    All experiments are conducted through our python implementation of the algorithm running on a PC workstation equipped with an AMD Athlon 64×2 dual core processor and 3 GB of RAM.The main time consumer in our experiments is a new image generating part.For a photograph with the resolution 640×480 pixels, new image warping spends around 15 seconds.The part of optical flow and error calculation takes less than 1 second.

    Five pairs of photographs were tested in experiments.The first input image in the Lucas-Kanade method and the Horn-Schunck method is the source photograph introduced in Section 4.The second input image is the destination photograph.

    In Table 1, dy with unit pixel means the translation between two input photographs.Column 3 gives the average error calculated by the result gotten from the Horn-Schunck method and Column 4 gives the average error with the Lucas-Kanade method.In general, the errors of the Lucas-Kanade method are smaller than the errors of the Horn-Schunck method.

    Fig.5 gives error curves with the Lucas-Kanade and the Horn-Schunck.Errors resulted from the Lucas-Kanade method are significantly less than errors resulted from the Horn-Schunck method.

    6.Conclusions

    In this paper, an image distortion correction algorithm has been presented to improve the quality of adaptive cruise control using lower-price cameras.The Lucas-Kanade method and the Horn-Schunck method were compared.The procedure of image distortion correction using optical flow method was tested by both synthetic test images and camera images.The experimental results show that image distortion correction using the Lucas-Kanade method achieves one hundred of one pixel error.

    Our work verified that the optical flow used in image distortion correction is feasible since errors are very small,nearly one hundreds of a pixel for test images.Although errors in photographs are slightly bigger than errors of synthetic test images, the analysis shows that the increase of error is due to the noised introduced by camera itself.

    [1]J.C.F.Li and S.Dey, “Outage minimisation in wireless relay networks with delay constraints and causal channel feedback,” Eur.Trans.Telecomm., vol.21, no.3, pp.251-265, 2010.

    [2]M.Trajkovic, “Interactive calibration of a PTZ camera for surveillance applications,” in Proc.of Asian Conf.on Computer Vision, Melbourne, 2002, pp.1-8.

    [3]E.K.Bas and J.D.Crisman, “An easy to install camera calibration for traffic monitoring,” in Proc.of ⅠEEE Conf.onⅠntelligent Transportation Symposium, Boston, 1997, pp.362-366.

    [4]A.H.S.Lai and N.H.C.Yung, “Lane detection by orientation and length discrimination,” ⅠEEE Trans.on Systems, Man, and Cybernetics, Part B, vol.30, no.4, pp.539-548, 2000.

    [5]G.S.K.Fung, N.H.C Yung, and G.K.H.Pang, “Camera calibration from road lane markings,” Optical Engineering,vol.2, no.10, pp.2967-2977, 2003.

    [6]X.C.He and N.H.C Yung, “New method for overcoming ill-conditioning in vanishing-point-based camera calibration,” Optical Engineering, vol.46, no.3, pp.1-12,2007.

    [7]T.N.Schoepflin and D.J.Dailey, “Dynamic camera calibration of road-side traffic management cameras for vehicle speed estimation,” ⅠEEE Trans.on Ⅰntelligent Transportation Systems, vol.4, no.2, pp.90-98, 2003.

    [8]K.-T.Song and J.-C.Tai, “Dynamic calibration of pan-tilt-zoom camerea for traffic monitoring,” ⅠEEE Trans.on Systems, Man, and Cybernetics Part B: Cybernetics, vol.36, no.5, pp.1091-1103, 2006.

    [9]D.C.Brown, “Decentering distortion of lenses,”Photogrammetric Engineering, vol.32, no.3, pp.444-462,1966.

    [10]J.Heikkila and O.Silven, “A four-step camera calibration procedure with implicit image correction,” in Proc.of 1997ⅠEEE Computer Society Conf.on Computer Vision and Pattern Recognition, San Juan, 1997, pp.1106-1112.

    [11]E.M.Mikhail, J.S.Bethel, and J.C.McGlone, Ⅰntroduction to Modern Photogrammetry, New York: Willey, 2001.

    [12]S.S.Beauchemin and L.J.Barron, The Computation of Optical Flow.New York: ACM, 1995.

    [13]A.Burton and J.Radford, Thinking in Perspective: Critical Essays in the Study of Thought Processes, London: Methuen,1978.

    [14]D.H.Harren and R.E.Strelow, Electronic Spatial Sensing for the Blind: Contributions from Perception, Berlin:Springer, 1985.

    [15]B.K.P Horn and B.G.Schunck, “Determining optical flow,” Artificial Ⅰntelligence, vol.17, no.1-3, pp.185-203,1981.

    [16]R.W.Hamming, Numerical Methods for Scientists and Engineers, New York: McGraw-Hill, 1962.

    [17]F.Yannick, H.Chris, and B.Philippe, “Screen-Camera Calibration using Gray Codes,” presented at Sixth Canadian Conference on Computer and Robot Vision, Kelowna, 2009.

    丁香六月天网| 成年女人毛片免费观看观看9 | 国产精品成人在线| 90打野战视频偷拍视频| 国产精品麻豆人妻色哟哟久久| 亚洲专区国产一区二区| 日韩免费高清中文字幕av| 国产成人免费无遮挡视频| 欧美大码av| av网站在线播放免费| 国产国语露脸激情在线看| 大型av网站在线播放| 亚洲国产日韩一区二区| 欧美在线黄色| 婷婷色av中文字幕| 搡老熟女国产l中国老女人| 成人18禁高潮啪啪吃奶动态图| 成年女人毛片免费观看观看9 | 免费在线观看日本一区| 一级片'在线观看视频| 国产黄频视频在线观看| 免费女性裸体啪啪无遮挡网站| 中文字幕人妻丝袜一区二区| 亚洲精品久久成人aⅴ小说| 涩涩av久久男人的天堂| 亚洲精品国产区一区二| 欧美精品亚洲一区二区| 日日摸夜夜添夜夜添小说| 国产激情久久老熟女| 国产av又大| 人成视频在线观看免费观看| 女人久久www免费人成看片| 欧美精品高潮呻吟av久久| 18禁观看日本| 美女视频免费永久观看网站| 女性被躁到高潮视频| 精品国产乱子伦一区二区三区 | 欧美精品高潮呻吟av久久| 国产日韩欧美在线精品| 日韩制服丝袜自拍偷拍| 日韩 亚洲 欧美在线| 国产免费一区二区三区四区乱码| 亚洲欧美日韩高清在线视频 | 欧美成狂野欧美在线观看| 欧美日韩亚洲综合一区二区三区_| 宅男免费午夜| 搡老岳熟女国产| 亚洲精品国产av蜜桃| 老司机在亚洲福利影院| 咕卡用的链子| 久久国产亚洲av麻豆专区| 国产人伦9x9x在线观看| 操美女的视频在线观看| 欧美日韩福利视频一区二区| 麻豆av在线久日| 国产伦人伦偷精品视频| 90打野战视频偷拍视频| 捣出白浆h1v1| 99re6热这里在线精品视频| 亚洲国产毛片av蜜桃av| 午夜视频精品福利| 色老头精品视频在线观看| 一本久久精品| xxxhd国产人妻xxx| 极品人妻少妇av视频| 国产精品 国内视频| 视频区欧美日本亚洲| h视频一区二区三区| 国产在线一区二区三区精| 性色av一级| a 毛片基地| 女人爽到高潮嗷嗷叫在线视频| 久久热在线av| 欧美大码av| 国产高清国产精品国产三级| 国产人伦9x9x在线观看| 国产高清国产精品国产三级| 精品第一国产精品| 亚洲精品国产色婷婷电影| 91麻豆av在线| 午夜激情久久久久久久| 精品欧美一区二区三区在线| 2018国产大陆天天弄谢| 亚洲精品国产一区二区精华液| 日韩中文字幕视频在线看片| 亚洲第一欧美日韩一区二区三区 | 黄色视频不卡| 成人av一区二区三区在线看 | 满18在线观看网站| 亚洲av日韩精品久久久久久密| 午夜福利免费观看在线| 丝袜美腿诱惑在线| 丝袜美腿诱惑在线| 国产男女超爽视频在线观看| 国产三级黄色录像| 亚洲人成77777在线视频| 亚洲av电影在线进入| 最近中文字幕2019免费版| 香蕉丝袜av| 黄频高清免费视频| 99国产精品一区二区蜜桃av | 曰老女人黄片| 国产精品久久久久成人av| 热99国产精品久久久久久7| 亚洲中文日韩欧美视频| 国产成+人综合+亚洲专区| 美国免费a级毛片| 国产免费一区二区三区四区乱码| 男男h啪啪无遮挡| 窝窝影院91人妻| 午夜福利视频精品| 免费在线观看日本一区| 99国产精品99久久久久| 精品国产国语对白av| 搡老熟女国产l中国老女人| 欧美 亚洲 国产 日韩一| 欧美 亚洲 国产 日韩一| 两性午夜刺激爽爽歪歪视频在线观看 | 人人澡人人妻人| 人人澡人人妻人| 免费在线观看视频国产中文字幕亚洲 | 一区二区三区激情视频| 久热爱精品视频在线9| 午夜两性在线视频| 激情视频va一区二区三区| 热re99久久精品国产66热6| 欧美日韩亚洲高清精品| 日本五十路高清| 狠狠精品人妻久久久久久综合| 少妇精品久久久久久久| 一区二区日韩欧美中文字幕| 国产主播在线观看一区二区| 考比视频在线观看| a级片在线免费高清观看视频| avwww免费| 午夜免费观看性视频| 久久精品国产亚洲av香蕉五月 | 两人在一起打扑克的视频| 女人精品久久久久毛片| 亚洲精品乱久久久久久| 久久久精品94久久精品| 天堂8中文在线网| 久久99热这里只频精品6学生| 国产1区2区3区精品| 亚洲色图综合在线观看| 亚洲av片天天在线观看| 国产精品熟女久久久久浪| 一级黄色大片毛片| 久久久精品区二区三区| 狠狠精品人妻久久久久久综合| 天天影视国产精品| 少妇被粗大的猛进出69影院| 男女床上黄色一级片免费看| 一个人免费在线观看的高清视频 | 夜夜夜夜夜久久久久| 91麻豆av在线| 精品国内亚洲2022精品成人 | 久久精品国产亚洲av香蕉五月 | 国精品久久久久久国模美| 久久精品国产综合久久久| av不卡在线播放| 亚洲专区国产一区二区| 嫩草影视91久久| 久久精品aⅴ一区二区三区四区| 精品少妇黑人巨大在线播放| 欧美xxⅹ黑人| 欧美亚洲 丝袜 人妻 在线| 日韩有码中文字幕| 午夜成年电影在线免费观看| 看免费av毛片| 国产在视频线精品| 国产精品99久久99久久久不卡| 亚洲精品国产av蜜桃| 久久狼人影院| 久久精品人人爽人人爽视色| 日韩人妻精品一区2区三区| 最黄视频免费看| 男女之事视频高清在线观看| 丝袜人妻中文字幕| 色播在线永久视频| av电影中文网址| 秋霞在线观看毛片| 日本91视频免费播放| 欧美黄色片欧美黄色片| 黑丝袜美女国产一区| 亚洲黑人精品在线| 成年美女黄网站色视频大全免费| 宅男免费午夜| 日韩一区二区三区影片| 成人国产av品久久久| 男女国产视频网站| 国产av又大| 99香蕉大伊视频| 欧美黄色淫秽网站| 亚洲欧洲日产国产| 9191精品国产免费久久| 国产精品一区二区精品视频观看| 亚洲国产欧美日韩在线播放| 亚洲欧美色中文字幕在线| 欧美变态另类bdsm刘玥| 女性生殖器流出的白浆| 日韩人妻精品一区2区三区| 亚洲免费av在线视频| 久久久久久久久免费视频了| 一区二区三区乱码不卡18| 999精品在线视频| 日韩电影二区| 国产一区二区激情短视频 | 亚洲国产欧美网| 久久人人爽人人片av| 91成人精品电影| 亚洲av美国av| 日本a在线网址| 国产成人一区二区三区免费视频网站| 亚洲国产中文字幕在线视频| 久久综合国产亚洲精品| 男男h啪啪无遮挡| 天堂俺去俺来也www色官网| 91成人精品电影| 宅男免费午夜| 99国产综合亚洲精品| 欧美日韩成人在线一区二区| 国产极品粉嫩免费观看在线| 法律面前人人平等表现在哪些方面 | 欧美人与性动交α欧美软件| 蜜桃国产av成人99| 久久国产精品男人的天堂亚洲| 老汉色av国产亚洲站长工具| 免费观看av网站的网址| a在线观看视频网站| 久久久久视频综合| 国产1区2区3区精品| 一区二区三区激情视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品人妻熟女毛片av久久网站| 国产伦人伦偷精品视频| 一区在线观看完整版| 亚洲国产欧美在线一区| 99久久99久久久精品蜜桃| 99热全是精品| 国产深夜福利视频在线观看| 欧美老熟妇乱子伦牲交| 国内毛片毛片毛片毛片毛片| 99热国产这里只有精品6| 男女高潮啪啪啪动态图| 我要看黄色一级片免费的| 老汉色∧v一级毛片| 在线观看人妻少妇| 欧美激情极品国产一区二区三区| 国产精品 国内视频| 性少妇av在线| 精品少妇内射三级| 亚洲中文字幕日韩| 欧美黑人精品巨大| 纵有疾风起免费观看全集完整版| 国产麻豆69| 久久久久久久久免费视频了| 亚洲国产精品成人久久小说| 97在线人人人人妻| 老汉色av国产亚洲站长工具| 亚洲激情五月婷婷啪啪| 国产成人欧美在线观看 | 精品乱码久久久久久99久播| 免费观看av网站的网址| 精品国产乱码久久久久久小说| 亚洲国产精品一区三区| 成年人午夜在线观看视频| 精品人妻一区二区三区麻豆| 91麻豆精品激情在线观看国产 | 久久精品国产亚洲av高清一级| 99久久国产精品久久久| 亚洲精品国产色婷婷电影| 亚洲欧美清纯卡通| 老熟女久久久| 国产在线一区二区三区精| 亚洲视频免费观看视频| 国产精品国产av在线观看| 日韩视频一区二区在线观看| 中文字幕人妻熟女乱码| 我的亚洲天堂| 国产精品1区2区在线观看. | 亚洲七黄色美女视频| 精品久久久久久电影网| 亚洲 欧美一区二区三区| 啦啦啦啦在线视频资源| 少妇粗大呻吟视频| 国产精品久久久人人做人人爽| 国产av精品麻豆| 亚洲熟女精品中文字幕| 国产精品 欧美亚洲| 国产成人av激情在线播放| 亚洲专区字幕在线| 国产精品久久久久久精品古装| av在线老鸭窝| 久久精品人人爽人人爽视色| 男女无遮挡免费网站观看| 国产成人精品在线电影| 午夜精品久久久久久毛片777| 黄色a级毛片大全视频| 一边摸一边做爽爽视频免费| 一区二区日韩欧美中文字幕| 日韩视频一区二区在线观看| 日韩有码中文字幕| 啦啦啦在线免费观看视频4| 每晚都被弄得嗷嗷叫到高潮| 美女中出高潮动态图| 成年美女黄网站色视频大全免费| 日韩制服骚丝袜av| 日日摸夜夜添夜夜添小说| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 黄色视频,在线免费观看| 人人妻人人澡人人看| 精品一区在线观看国产| 欧美日韩精品网址| 波多野结衣av一区二区av| 亚洲av成人不卡在线观看播放网 | 别揉我奶头~嗯~啊~动态视频 | 欧美精品高潮呻吟av久久| 亚洲av美国av| 视频在线观看一区二区三区| 夫妻午夜视频| 欧美精品亚洲一区二区| 国产在线观看jvid| 日韩欧美免费精品| 两人在一起打扑克的视频| av国产精品久久久久影院| 亚洲欧美精品综合一区二区三区| www.自偷自拍.com| 亚洲精品美女久久久久99蜜臀| 亚洲人成电影免费在线| 丰满迷人的少妇在线观看| av不卡在线播放| 丁香六月天网| 久久久国产精品麻豆| 中文欧美无线码| 搡老乐熟女国产| 国产精品一区二区精品视频观看| 一个人免费看片子| 肉色欧美久久久久久久蜜桃| 三级毛片av免费| xxxhd国产人妻xxx| 在线亚洲精品国产二区图片欧美| 男女床上黄色一级片免费看| 1024视频免费在线观看| 久久久国产一区二区| 可以免费在线观看a视频的电影网站| 久久ye,这里只有精品| 一级a爱视频在线免费观看| 色视频在线一区二区三区| a 毛片基地| 波多野结衣av一区二区av| 香蕉丝袜av| 两人在一起打扑克的视频| 啦啦啦视频在线资源免费观看| 国产欧美日韩一区二区三区在线| 亚洲精品美女久久av网站| 男人操女人黄网站| 91老司机精品| 欧美精品亚洲一区二区| 热99久久久久精品小说推荐| 视频在线观看一区二区三区| 久久久国产一区二区| 丰满少妇做爰视频| 极品少妇高潮喷水抽搐| 俄罗斯特黄特色一大片| 亚洲精品乱久久久久久| 搡老熟女国产l中国老女人| 在线亚洲精品国产二区图片欧美| 国产一区二区激情短视频 | 丰满人妻熟妇乱又伦精品不卡| 在线十欧美十亚洲十日本专区| 日本欧美视频一区| 亚洲欧美一区二区三区黑人| av网站在线播放免费| 热99re8久久精品国产| 精品国产乱子伦一区二区三区 | 美女大奶头黄色视频| tocl精华| 欧美大码av| 在线十欧美十亚洲十日本专区| 亚洲 国产 在线| 久久精品人人爽人人爽视色| 日韩一卡2卡3卡4卡2021年| 高清欧美精品videossex| 日韩 欧美 亚洲 中文字幕| 纵有疾风起免费观看全集完整版| 久久ye,这里只有精品| 老汉色∧v一级毛片| 亚洲av日韩精品久久久久久密| 亚洲成国产人片在线观看| 老司机深夜福利视频在线观看 | 18禁裸乳无遮挡动漫免费视频| 亚洲av欧美aⅴ国产| 久久久国产一区二区| 亚洲精品一卡2卡三卡4卡5卡 | a级毛片在线看网站| 91老司机精品| 精品人妻一区二区三区麻豆| 亚洲黑人精品在线| 色视频在线一区二区三区| 女人高潮潮喷娇喘18禁视频| 免费观看av网站的网址| 欧美另类一区| 欧美成人午夜精品| 美女高潮到喷水免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 又紧又爽又黄一区二区| 国产91精品成人一区二区三区 | 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看 | 亚洲免费av在线视频| 超碰成人久久| 亚洲成人国产一区在线观看| 美女主播在线视频| 超碰成人久久| 黄片小视频在线播放| 男人操女人黄网站| 亚洲专区字幕在线| 亚洲第一青青草原| 免费观看a级毛片全部| 久久 成人 亚洲| 国产日韩欧美在线精品| 久久精品亚洲av国产电影网| 99久久99久久久精品蜜桃| 两个人免费观看高清视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品美女久久av网站| 一本—道久久a久久精品蜜桃钙片| 欧美国产精品va在线观看不卡| 国产av一区二区精品久久| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 中文字幕制服av| 高清黄色对白视频在线免费看| 一级毛片电影观看| 成年av动漫网址| 人成视频在线观看免费观看| 久久久久久久精品精品| 久久久国产欧美日韩av| 亚洲五月婷婷丁香| 久久精品亚洲熟妇少妇任你| 亚洲国产精品999| 亚洲伊人久久精品综合| 免费日韩欧美在线观看| 欧美精品亚洲一区二区| 午夜免费鲁丝| 啦啦啦免费观看视频1| 久9热在线精品视频| 两性午夜刺激爽爽歪歪视频在线观看 | 免费观看人在逋| www.熟女人妻精品国产| 99国产极品粉嫩在线观看| 久久九九热精品免费| 五月天丁香电影| 亚洲av电影在线进入| 精品一区二区三区av网在线观看 | 亚洲欧美清纯卡通| 老熟女久久久| 亚洲人成电影观看| www日本在线高清视频| 黄片小视频在线播放| 中文字幕色久视频| 亚洲精品国产av蜜桃| 久久久久久久久久久久大奶| 一本综合久久免费| 亚洲精品美女久久久久99蜜臀| 免费av中文字幕在线| 国产成人系列免费观看| 国产精品秋霞免费鲁丝片| 国产日韩欧美视频二区| 51午夜福利影视在线观看| 久久青草综合色| 欧美午夜高清在线| 欧美一级毛片孕妇| 男人舔女人的私密视频| 久久天躁狠狠躁夜夜2o2o| 午夜日韩欧美国产| 欧美黑人欧美精品刺激| 法律面前人人平等表现在哪些方面 | 国产免费av片在线观看野外av| 国产97色在线日韩免费| 久久久久久久国产电影| 久久免费观看电影| 在线观看舔阴道视频| 亚洲精品国产精品久久久不卡| 免费久久久久久久精品成人欧美视频| 91成人精品电影| 日本一区二区免费在线视频| 一边摸一边做爽爽视频免费| 大型av网站在线播放| 色播在线永久视频| 亚洲精品粉嫩美女一区| 久久综合国产亚洲精品| 新久久久久国产一级毛片| 欧美精品一区二区大全| 99久久综合免费| 久久精品熟女亚洲av麻豆精品| 一级,二级,三级黄色视频| 人妻人人澡人人爽人人| 国产在线免费精品| 国产高清videossex| 日韩电影二区| 亚洲精品乱久久久久久| 嫩草影视91久久| 国产国语露脸激情在线看| 成人av一区二区三区在线看 | 99热全是精品| 中亚洲国语对白在线视频| 男人爽女人下面视频在线观看| 91av网站免费观看| 国产成人免费无遮挡视频| 性高湖久久久久久久久免费观看| 多毛熟女@视频| 一个人免费看片子| 国产一区二区在线观看av| 欧美 日韩 精品 国产| 男女边摸边吃奶| 欧美国产精品va在线观看不卡| 国产男女超爽视频在线观看| 日日爽夜夜爽网站| 亚洲,欧美精品.| 午夜久久久在线观看| av在线老鸭窝| e午夜精品久久久久久久| 在线亚洲精品国产二区图片欧美| 十八禁人妻一区二区| 777久久人妻少妇嫩草av网站| 久久人妻熟女aⅴ| 精品久久久精品久久久| 久久国产精品大桥未久av| 99久久综合免费| 啦啦啦 在线观看视频| 高潮久久久久久久久久久不卡| 欧美午夜高清在线| 制服人妻中文乱码| 久久毛片免费看一区二区三区| www.精华液| 欧美在线黄色| 精品欧美一区二区三区在线| 精品人妻1区二区| 国产成人一区二区三区免费视频网站| 午夜精品国产一区二区电影| 制服诱惑二区| 另类精品久久| 国产精品成人在线| 一区二区三区激情视频| 69av精品久久久久久 | 欧美人与性动交α欧美软件| 亚洲性夜色夜夜综合| 精品卡一卡二卡四卡免费| 成人免费观看视频高清| 啦啦啦在线免费观看视频4| 91精品三级在线观看| 人人澡人人妻人| 久久久久精品人妻al黑| 亚洲情色 制服丝袜| 亚洲av美国av| 成人18禁高潮啪啪吃奶动态图| 亚洲成人国产一区在线观看| 亚洲国产精品一区三区| kizo精华| 亚洲av电影在线观看一区二区三区| 久久天堂一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 一本一本久久a久久精品综合妖精| 黄片播放在线免费| 久久毛片免费看一区二区三区| 中文字幕最新亚洲高清| 国产av一区二区精品久久| svipshipincom国产片| 国产av一区二区精品久久| 欧美大码av| 在线精品无人区一区二区三| av国产精品久久久久影院| 国产在线免费精品| 精品少妇内射三级| 99精国产麻豆久久婷婷| 91精品伊人久久大香线蕉| www.av在线官网国产| 亚洲av电影在线观看一区二区三区| 老汉色∧v一级毛片| 国产亚洲精品久久久久5区| 国产激情久久老熟女| 国产亚洲一区二区精品| 中文字幕人妻丝袜一区二区| 夜夜夜夜夜久久久久| 99热全是精品| 天堂中文最新版在线下载| 久久青草综合色| av视频免费观看在线观看| 老司机福利观看| 午夜免费观看性视频| 欧美精品av麻豆av| 成年人免费黄色播放视频| 精品少妇内射三级| 在线看a的网站| 亚洲中文字幕日韩| 国产精品成人在线| 国产成人欧美| 操美女的视频在线观看| 国产日韩欧美在线精品| 777米奇影视久久| 国产免费av片在线观看野外av| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看| 热re99久久国产66热| 免费女性裸体啪啪无遮挡网站| 色老头精品视频在线观看| 免费人妻精品一区二区三区视频| 亚洲国产欧美日韩在线播放| 黄色片一级片一级黄色片| 无遮挡黄片免费观看| 亚洲欧洲日产国产| 亚洲久久久国产精品|