• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultra-Low Power Pipeline Structure Exploiting Noncritical Stage with Circuit-Level Timing Speculation

    2013-11-26 10:48:08TaoLuoYaJuanHePingLuoYanMingHeandFengHu

    Tao Luo, Ya-Juan He, Ping Luo, Yan-Ming He, and Feng Hu

    1.Introduction

    With the development of electronic products, power,the first degree design constraint, is becoming more and more important[1],[2].With the increasing clock frequency,power aware computing becomes more and more crucial in the imbedded system design and system-on-chip (SoC)design.Dynamic voltage scaling (DVS) is an effective way to achieve large amount of power savings[3]-[7], for dynamic energy scales is quadratic with the supply voltage[8].In order to save energy as much as possible, it is significant to scale the supply voltage as low as possible.To achieve this goal, the traditional methods of adaptive design have used look-up tables[9],[10]or delay-chain[11]-[17].However,traditional DVS design is conservative because the voltage is chosen to ensure the processor operates correctly under the worst-case combined condition which is very rare[18].In order to ameliorate this situation and make use of the safe margin, several techniques, such as the Razor structure,have been put forward[19].However, the Razor structure is exclusively concerned with the critical stage and ignores the significant potential free slack time of the noncritical stages.

    In this paper, an ultra-low power pipeline structure is proposed.It combines the advantage of in-situ error detection and correction, namely the safety margin is cut off, and the advantage of using the free slack time of the noncritical stage.The main differences between the proposed pipeline structure and the traditional one are the stage register and the clock gating strategy.In order to detect and correct the timing error due to the decrease of the supply voltage, the stage register is equipped with a latch and some other accessories which allow the stage register to double lock the data.And the latch is high level enabled so the stage register can receive data during the high level of the clock.So even if the data fail to be ready at the rising edge of clock, namely the timing errors appear,the pipeline can still operate correctly without performance penalties.Besides, the time slack of the last stage can propagate to the next one, if the next stage is a noncritical stage which has extra time, then it can tolerate the time slack of the last stage, which allows the supply voltage to be scaled lower.

    The rest of the paper is organized as follows.In Section 2, the whole structure of this ultra-low power pipeline will be presented including the structure of stage register.In addition, the operating mechanism and tuning supply voltage according to the error condition would also be presented.Section 3 will show the simulation results of the whole pipeline.And the conclusion will be drawn in Section 4.

    2.Structure of Ultra-Low Power Pipeline

    The block diagram of the proposed ultra-low power pipeline structure is shown in Fig.1.

    As shown in Fig.1, the ultra-low power pipeline consists of five stages which is the class structure of the current pipeline.In order to control the critical paths precisely, the combinational blocks are replaced by delay chains which can well represent the delay of the critical path of each stage.The pipeline structure consists of five stages.The first one is the instruction fetch (IF), at which the processor fetches the instruction code from the instruction register.The second one is the instruction decode (ID), at which the instructions delivered from the IF stage is decoded.The third stage is execution (EX), at which the processor executes the instruction decoded by the ID stage, and the control signal from the ID stage can make arithmetic logic unit (ALU) do all kinds of action such as addition and subtraction.Then the processor stores data to memory or load data from memory at the fourth stage named the memory (MEM) stage.The last stage is the write back (WB) stage, at which the processor stores the result to the data register.According to the differences among these stages, each stage is replaced by different delay chains which have different delay time.In classic pipeline structure, the EX is the critical stage and the others are noncritical stages[19],[20].According to the design, the critical stage, namely the EX stage, has a delay of 4.45 ns with a period of 5 ns, the ID stage has a delay of 3.6 ns, and the other stages all have delays of 2.7 ns.The clock is gated by the err signal (see Fig.1) of the last stage register.This gating strategy working together with stage registers can fully exploit noncritical stages.

    Fig.1.Block diagram of the ultra-low power pipeline.

    Fig.2.Structure of stage register.

    2.1 Pipeline Error Detection/Correction

    As mentioned before, the pipeline achieves progressive energy saving by cutting off the safe margin and exploiting noncritical stages.Efficient timing error detection and correction are keys to reach this goal.The block diagram of the stage register is shown in Fig.2.It consists of a flip-flop,a latch, a XOR gate, and a multiplexer (MUX) module.

    As shown in Fig.2, the main flip-flop is augmented with a latch which is controlled by the clock, and the latch is high level enabled.The operating voltage is constrained such that the worst-case delay is guaranteed to meet the setup time of the latch.When the high level of clock is coming, the flip-flop latches the data at the rising edge and the latch receives the data during the high level of the clock.The data latched by them respectively are then compared.If they are different, it indicates that there is a timing error in the flip-flop, and the correct value latched in the latch is used to correct the timing error to ensure the data delivered to the next stage is correct.Utilizing the value in the latch directly to the next stage is an effective way to use the extra time of the noncritical stage to ameliorate the critical stage.The time slack of the last stage can propagate to the next stage, if the next stage is a noncritical stage which has extra time, then it can tolerate the time slack of the last stage,which allows the supply voltage to be scaled lower.According to this mechanism, the system operates correctly as long as the MEM stage register does not generate a valid error signal.And once the MEM stage register generates a valid error signal, the pipeline will be recovered by using global clock gating.

    The operation of a stage register is illustrated in Fig.3.In clock cycle1 and cycle2, the combination logic meets the setup time at the rising edge of the clock, and both the main flip-flop and the latch can latch the correct data.In this condition, the signal Error_h keeps low and the operation of the pipeline is normal.The condition of timing error appears in cycle3 as shown in Fig.3.The combinational logic exceeds the intended delay due to sub-critical voltage scaling.In this case, the main flip-flop fails to latch the data at the rising edge of the clock, but since the latch is high level enabled, the data is latched by the latch correctly in cycle4.As the data latched in the main flip-flop and the latch are different, the Error_h signal is set valid at the output of the comparator.Then, the MUX controlled by the Error_h signal chooses the output of latch as the output of the whole register.So the output of the register is correct.

    Fig.3.Operation of stage register.

    Fig.4.Critical stage borrow time from noncritical stage.

    2.2 Exploiting the Noncritical Stage

    Because the stage register is able to borrow time from the next stage, the pressure on critical stage is released by exploiting the next noncritical stage.Fig.4 shows the operation of a critical stage and the noncritical stage next to it.At the first and second rising edges of the clock signal,the critical stage and noncritical stage both satisfy the timing requirement and the Error_h signal remains low.The operation of pipeline is normal.At the third rising edge of the clock signal, the critical stage fails to satisfy the timing constraint namely that data4 does not arrive at the rising edge of the clock signal, and then the Error_h signal is set valid to indicate this timing error.However, since the error detection and correction mechanism which explained in Section 2.1 is applied, the correct data4 still delivers to the noncritical stage after the rising edge of the clock.

    2.3 Short Path Constraints and Duty Ratio of Clock

    The use of the high level enabling latch raises the possibility that a short path in the combinational logic will corrupt the data in the latch.Fig.5 shows the difference between the right path and the short path.

    Fig.5 shows how a short-path allows data launched at the start of a cycle to be latched into the latch, instead of the data being launched from the previous cycle.As we design,the latch should lock the data from the previous cycle as the main flip-flop does.However, if the delay of the stage is too short, the data will arrive at the latch before the lock window closes.As shown in Fig.5, the minimum-path constraint is equal to the sum of tdelayand the hold time tholdof the latch, which is typically a small value.The minimum path delay constraint can be expressed as

    where tdelayis the duration time of the high level of the clock and tholdis the hold time of the latch.

    Therefore, a minimum-path length constraint should be applied to the input of each register to avoid this corruption.These minimum-path constraints result in the addition of buffers to slow down the fast path and therefore introduce a certain overhead.However, the fast path of the pipeline stage is rare so the number of buffers is negligible, which makes the overhead negligible.

    Fig.5.Short path constraint.

    According to (1), the duty cycle of the clock determines how serious the minimum-path length constraint can be.A large duty ratio of a clock signal increases the severity of the short path constraint and therefore increases the power overhead due to the need for additional buffers.On the other hand, a small duty ratio of clock reduces the margin between the main flip-flop and the latch, and hence reduces the amount that the supply voltage can be dropped below the critical supply voltage.Thus the duty ratio represents a trade-off between the cost due to buffers added and the power saved by the dropped supply voltage.In this design,a duty ratio of 2/5 is adopted to balance the energy cost and saved.

    2.3 Supply Voltage Control Strategy

    The error condition of registers at each stage is the basis of how to adjust the supply voltage.There is no need to gate the clock when errors appear at IF, ID, and EX stages, because the errors at those stages will not affect the correctness of the pipeline.The errors that appear at the MEM stage really matter.If the error signal of the MEM stage is invalid, then it indicates the pipeline operates correctly and the voltage ought to be decreased, no matter whether other error signals valid or not.When the error signal of the MEM stage appears, it indicates the circuits are not meeting the clock period constraints and it is used in the clock gating to correct the output with right data, and the whole pipeline will be suspended for one cycle.The error signal is also used to indicate that the supply voltage should be increased.When the supply voltage increases, the delay of the combinational circuit will decrease at the same time, then the error signal will be set invalid to indicate that the pipeline operates correctly again.There are four errors index signals, which have different weights, for they indicate different stages of the pipeline.So a more complicated algorithm can be developed to generate the clock gating signal and to control the supply voltage.For simplicity, we take the simplest one, namely using the error signal of the MEM stage to control the supply voltage and clock gating.

    3.Simulation Result

    To prove the validity and robustness of this novel pipeline structure which exploits noncritical stage and uses the timing error detection and correction approach, the structure is designed and simulated.The only difference between the ultra-low power pipeline structure and regular pipeline structure is the stage register, but the stage register does not affect the delay of the circuit as well as the supply voltage, so the ultra-low power pipeline can show all the characteristics of the regular pipeline.Therefore, the critical comparisons are given among the ultra-low pipeline with different supply voltages.The pipeline is implemented in a 0.13 μm digital-analog mixed signal standard CMOS(complementary metal-oxide-semiconductor transistor)process, which is expected to operate at 200 MHz and the ratio cycle of clock is 2/5.Fig.6 shows the relation of the power and supply voltage.

    As shown in the Fig.6, the power cost of the design reduces when the supply voltage decreases.From the simulation result, when the supply voltage scales at 1.08 V,the first error occurs at the critical stage, namely the EX stage.This situation represents the traditional adaptive voltage scaling (AVS) with a safety margin.When the supply voltage scales at 0.97 V, the ID stage first fails to meet the clock constraint, and when the supply voltage scales at 0.95 V, the err signal is first to be set valid to indicate that the supply voltage should increase to avoid the corruption of the whole pipeline because of the over scaling.The key voltage point and the corresponding power and error condition are shown in Table 1.

    Fig.6.Relation of power and supply voltage.

    Table 1: Key voltage point

    According to Table 1, a large amount of energy can be saved by this structure.Compared with the fixed voltage case, 50% of the energy can be saved, and compared with the traditional adaptive voltage scaling design, 37.8% of the energy can be saved.

    4.Conclusions

    In this paper, an ultra-low power pipeline structure has been proposed.The key advantage of this pipeline structure over the traditional voltage scaling technologies is that it makes use of the stage registers, which are negligible compared with the whole microprocessor system, the power consumption of the overhead logic is negligible compared with the reduction of power consumption of the whole pipeline.

    Acknowledgment

    The authors would like to thank IPGoal Microelectronics(Sichuan) Co., Ltd for its support.

    [1]A.Wang, S.Naffziger, Adaptive Techniques for Dynamic Process Optimization, New York: Springer, 2008, pp.1-10.

    [2]Y.-Q.Huo, Q.-C.Shao, and Z.Huai, “Adaptive power and bit allocation in multicarrier systems,” Journal of Electronic Science and Technology of China, vol.5, no.1, pp.13-17,2007.

    [3]T.Pering, T.Burd, and R.Brodersen,“The simulation and evaluation of dynamic voltage scaling algorithms,” in Proc.of 1998 Int.Symposium on Low Power Electronics and Design, Monterey, 1998, pp.76-81.

    [4]T.Liu and S.Lu, “Performance improvement with circuit-level speculation,” in Proc.of the 33rd Annual Int.Symposium on Microarchitecture, Monterey, 2000, pp.348-355.

    [5]H.W.Lee, K.H.Kim, Y.K.Choi, J.H.Sohn, N.K.Park, K.W.Kim, C.Kim, Y.J.Choi, and B.T.Chung, “A 1.6V 1.4 Gbp/s/pin consumer DRAM with self-dynamic voltage scaling technique in 44 nm CMOS technology,” IEEE Journal of Solid-State Circuits, vol.47, no.1, pp.131-140,Jan.2012.

    [6]M.Elgebaly and M.Sachdev, “Variation-aware adaptive voltage scaling system,” IEEE Trans.on Very Large Scale Intergration Systems, vol.15, no.5, pp.560-570, May 2007.

    [7]A.Gupta, R.Chauhan, V.Menezes, V.Narang, and H.M.Roopashree, “A robust level-shifter design for adaptive voltage scaling,” in Proc.of the 21st Int.Conf.on VLSI Design, Hyderabad, 2008, pp.383-388.

    [8]T.Mudge, “Power: A first class design constraint,”Computer, vol.34, no.4, pp.52-57, Apr.2001.

    [9]J.Tschanz, N.S.Kim, S.Dighe, J.Howard, G.Ruhl, S.Vangal, S.Narendra, Y.Hoskote, H.Wilson, C.Lam, M.Shuman, C.Tokunaga, D.Somasekhar, S.Tang, D.Finan, T.Karnik, N.Borkar, N.Kurd, and V.De, “Adaptive frequency and biasing techniques for tolerance to dynamic temperature-voltage variations and aging,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf.,San Francisco, 2007, pp.292-293,

    [10]B.Stackhouse, B.Cherkauer, M.Gowan, P.Gronowski, and C.Lyles, “A 65nm 2-billion-transistor quad-core Itanium?? processor,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf., San Francisco, 2008,pp.92-93.

    [11]A.Drake, R.Senger, H.Deogun, G.Carpenter, S.Ghiasi, T.Ngyugen, N.James, and M.Floyd, “A distributed critical-path timing monitor for a 65nm high-performance microprocessor,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf., San Francisco, 2007, pp.398-399.

    [12]T.D.Burd, T.A.Pering, A.J.Stratakos, and R.W.Brodersen, “A dynamic voltage scaled microprocessor system,” IEEE Journal of Solid-State Circuits, vol.35, no.11, pp.1571-1580, 2000.

    [13]M.Nakai, S.Akui, K.Seno, T.Meguro, T.Seki, T.Kondo,A.Hashiguchi, H.Kawahara, K.Kumano, and M.Shimura,“Dynamic voltage and frequency management for a low power embedded micro-processor,” IEEE Journal of Solid-State Circuits, vol.40, no.1, pp.28-35, Jan.2005.

    [14]K.J.Nowka, G.D.Carpenter, E.W.MacDonald, H.C.Ngo,B.C.Brock, K.I.Ishii, T.Y.Nguyen, and J.L.Burns, “A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling,” IEEE Journal of Solid-State Circuits, vol.37, no.11, pp.1441-1447, Nov.2002.

    [15]S.Dhar, D.Maksimovic, and B.Kranzen, “Closed-loop adaptive voltage scaling controller for standard-cell ASICs,”in Proc.of 2002 Int.Symposium on Low Power Electronics and Design, Piscataway, 2002, pp.103-107.

    [16]A.K.Uht, “Uniprocessor performance enhancement through adaptive clock frequency control,” IEEE Trans.On Computers, vol.54, no.2, pp.132-140, 2005.

    [17]M.Miller, K.Janik, and S.L.Lu, “Non-stalling counterflow microarchitecture,” in Proc.of the 4th Int.Symposium on High Performance Computer Architecture, Las Vegas, 1988,pp.334-341.

    [18]S.Das, D.Roberts, S.Lee, S.Pant, D.Blaauw, T.Austin, K.Flautner, and T.Mudge, “A self-tuning DVS processor using delay-error detection and correction,” IEEE Journal of Solid-State Circuits, vol.41, no.4, pp.792-804, 2006.

    [19]D.Ernst, N.S.Kim, S.Das, S.Pant, T.Pham, R.Rao, C.Ziesler, D.Blaauw, T.Austin, T.Mudge, and K.Flautner,“Razor: A low-power pipeline based on circuit-level timing speculation,” in Proc.of the 36th Annual IEEE/ACM Int.Symposium on Microarchitecture, doi: 10.1109/MICRO.2003.1253179.

    [20]D.Blaauw, S.Kalaiselvan, K.Lai, W.-H.Ma, S.Pant, C.Tokunaga, S.Das, and D.Bull, “Razor II: In situ error detection and correction for PVT and SER tolerance,” in Digest of Technical Papers of IEEE Int.Solid-State Circuits Conf., San Francisco, doi: 10.1109/ISSCC.2008.4523226.

    亚洲欧美成人综合另类久久久 | 国产精品国产三级国产av玫瑰| 亚洲无线在线观看| 国产精华一区二区三区| 亚洲人成网站高清观看| 国产高清不卡午夜福利| 91麻豆精品激情在线观看国产| 国产精品女同一区二区软件| 日韩 亚洲 欧美在线| 99热这里只有精品一区| 白带黄色成豆腐渣| 中文字幕av成人在线电影| 国产av不卡久久| 国产成人a∨麻豆精品| 久久久国产成人精品二区| 亚洲人成网站在线观看播放| 久久欧美精品欧美久久欧美| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人久久小说 | 亚洲av五月六月丁香网| 国产一区二区在线观看日韩| 免费人成视频x8x8入口观看| 久久精品国产99精品国产亚洲性色| 天堂av国产一区二区熟女人妻| 亚洲中文字幕日韩| 亚洲av美国av| 一区二区三区免费毛片| 国产av一区在线观看免费| 看十八女毛片水多多多| 一区福利在线观看| 国产成年人精品一区二区| 国模一区二区三区四区视频| 国产高清三级在线| 麻豆久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 少妇猛男粗大的猛烈进出视频 | 天天一区二区日本电影三级| 一级a爱片免费观看的视频| 听说在线观看完整版免费高清| 成人av在线播放网站| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 国产蜜桃级精品一区二区三区| 日日摸夜夜添夜夜爱| 91精品国产九色| av在线亚洲专区| 午夜福利在线在线| 激情 狠狠 欧美| 非洲黑人性xxxx精品又粗又长| 99精品在免费线老司机午夜| 国产三级中文精品| 观看美女的网站| 国产精品一二三区在线看| 小蜜桃在线观看免费完整版高清| 99国产极品粉嫩在线观看| 91久久精品国产一区二区三区| 人妻少妇偷人精品九色| 成人永久免费在线观看视频| 国产精品无大码| 欧美日韩国产亚洲二区| 日本五十路高清| 露出奶头的视频| 韩国av在线不卡| 在线国产一区二区在线| 成人三级黄色视频| 天天躁日日操中文字幕| 国内久久婷婷六月综合欲色啪| h日本视频在线播放| 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| 久久精品国产亚洲av天美| 国产精品1区2区在线观看.| 久久久成人免费电影| 亚洲精品影视一区二区三区av| 成年av动漫网址| 成人永久免费在线观看视频| 成人毛片a级毛片在线播放| 亚洲精品一区av在线观看| 男人舔女人下体高潮全视频| 免费看美女性在线毛片视频| 最新在线观看一区二区三区| 高清毛片免费看| 亚洲,欧美,日韩| 成人av一区二区三区在线看| 色噜噜av男人的天堂激情| 国产私拍福利视频在线观看| 91久久精品国产一区二区三区| 老司机影院成人| 亚洲国产精品久久男人天堂| 精品少妇黑人巨大在线播放 | 国内精品宾馆在线| 国产老妇伦熟女老妇高清| 女性被躁到高潮视频| 97精品久久久久久久久久精品| 乱系列少妇在线播放| 国产色爽女视频免费观看| 久久精品国产鲁丝片午夜精品| 日日摸夜夜添夜夜添av毛片| 国产永久视频网站| 各种免费的搞黄视频| 男女国产视频网站| 亚洲av成人精品一二三区| 国产一区亚洲一区在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产av成人精品| 欧美 日韩 精品 国产| 国产精品麻豆人妻色哟哟久久| 一级毛片aaaaaa免费看小| 亚洲欧美成人精品一区二区| 久久国产精品大桥未久av | 97精品久久久久久久久久精品| 久久久久久人妻| 精品一品国产午夜福利视频| 欧美高清成人免费视频www| 国产毛片在线视频| 色网站视频免费| 国产精品国产三级专区第一集| 国产精品国产三级国产av玫瑰| 丰满少妇做爰视频| 亚洲国产成人一精品久久久| 久久久精品免费免费高清| 国产黄片美女视频| 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版| 日本午夜av视频| 国产亚洲91精品色在线| 啦啦啦视频在线资源免费观看| 最近的中文字幕免费完整| 国产在线一区二区三区精| 国产又色又爽无遮挡免| 高清午夜精品一区二区三区| 久久久午夜欧美精品| 国产一区二区在线观看av| 黑人猛操日本美女一级片| 最后的刺客免费高清国语| 特大巨黑吊av在线直播| 免费看不卡的av| 在线看a的网站| 视频区图区小说| 一本久久精品| 97超碰精品成人国产| 国产精品无大码| 91精品国产国语对白视频| 97在线人人人人妻| 久久免费观看电影| 亚洲高清免费不卡视频| 久久久精品免费免费高清| 深夜a级毛片| 卡戴珊不雅视频在线播放| 日日啪夜夜爽| 22中文网久久字幕| 国产成人免费无遮挡视频| 国产高清三级在线| 国产精品福利在线免费观看| 亚洲欧美清纯卡通| 一个人看视频在线观看www免费| 精品一区二区免费观看| 亚洲精品成人av观看孕妇| www.av在线官网国产| www.色视频.com| 色婷婷久久久亚洲欧美| 尾随美女入室| 黑人高潮一二区| 午夜激情福利司机影院| 国产高清不卡午夜福利| 欧美性感艳星| 极品少妇高潮喷水抽搐| 欧美日韩在线观看h| 亚洲婷婷狠狠爱综合网| 免费看不卡的av| 国产 一区精品| 一级毛片久久久久久久久女| 一本久久精品| 如日韩欧美国产精品一区二区三区 | 成人亚洲精品一区在线观看| av免费观看日本| 夫妻午夜视频| 日本欧美国产在线视频| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av涩爱| 日韩一区二区三区影片| 黑人巨大精品欧美一区二区蜜桃 | av在线播放精品| 热re99久久国产66热| 国产91av在线免费观看| 五月开心婷婷网| 草草在线视频免费看| 美女福利国产在线| 三上悠亚av全集在线观看 | 啦啦啦在线观看免费高清www| 丰满少妇做爰视频| 亚洲图色成人| 久久久久国产网址| 午夜av观看不卡| 人人澡人人妻人| 色视频www国产| 亚洲国产日韩一区二区| 亚洲国产av新网站| 日日爽夜夜爽网站| 亚洲精品国产av蜜桃| 日韩,欧美,国产一区二区三区| 日本与韩国留学比较| 国产高清国产精品国产三级| 日韩 亚洲 欧美在线| a级一级毛片免费在线观看| 大话2 男鬼变身卡| 国产欧美另类精品又又久久亚洲欧美| 国产免费一区二区三区四区乱码| 热re99久久精品国产66热6| 尾随美女入室| 亚洲精品自拍成人| 爱豆传媒免费全集在线观看| 一本大道久久a久久精品| 一个人免费看片子| 久久久久久久久久成人| 一级,二级,三级黄色视频| 九色成人免费人妻av| 亚洲精品国产av成人精品| 亚洲人成网站在线播| 国产伦理片在线播放av一区| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美在线一区| 一区二区三区乱码不卡18| 丁香六月天网| 色94色欧美一区二区| 精品久久久久久电影网| 国产免费一区二区三区四区乱码| 免费黄网站久久成人精品| 久久久欧美国产精品| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 老司机影院成人| 中文字幕久久专区| 国产免费福利视频在线观看| 五月玫瑰六月丁香| 乱系列少妇在线播放| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 日韩中文字幕视频在线看片| 免费观看的影片在线观看| 在线观看一区二区三区激情| 成人毛片60女人毛片免费| 欧美国产精品一级二级三级 | av福利片在线观看| 国产伦精品一区二区三区视频9| 高清不卡的av网站| 丝袜在线中文字幕| 精品少妇黑人巨大在线播放| 亚洲图色成人| 午夜免费观看性视频| .国产精品久久| 人人妻人人澡人人看| 国产在视频线精品| 免费少妇av软件| 波野结衣二区三区在线| 欧美精品一区二区大全| 成年人免费黄色播放视频 | 精品久久久久久久久av| 精品一区二区三区视频在线| 亚洲三级黄色毛片| 高清黄色对白视频在线免费看 | 人妻 亚洲 视频| 亚洲精品日韩在线中文字幕| 成人影院久久| 丝袜在线中文字幕| 看十八女毛片水多多多| 久久久久久伊人网av| 国产精品熟女久久久久浪| 少妇的逼水好多| av网站免费在线观看视频| 午夜激情久久久久久久| 国产美女午夜福利| 80岁老熟妇乱子伦牲交| 91久久精品电影网| 欧美bdsm另类| 99九九线精品视频在线观看视频| 一本大道久久a久久精品| 大又大粗又爽又黄少妇毛片口| 两个人的视频大全免费| 激情五月婷婷亚洲| 久久人人爽人人片av| 亚洲久久久国产精品| 日韩精品有码人妻一区| 婷婷色综合www| h视频一区二区三区| 亚洲一区二区三区欧美精品| 少妇裸体淫交视频免费看高清| 嘟嘟电影网在线观看| 亚洲av二区三区四区| 777米奇影视久久| 少妇人妻精品综合一区二区| 国产毛片在线视频| 国产极品粉嫩免费观看在线 | 午夜久久久在线观看| 国产片特级美女逼逼视频| 国产在线男女| 深夜a级毛片| 国产黄片视频在线免费观看| 国产日韩欧美亚洲二区| 在线看a的网站| 偷拍熟女少妇极品色| 狂野欧美激情性bbbbbb| 在线播放无遮挡| 午夜av观看不卡| 丰满少妇做爰视频| 日韩欧美 国产精品| 日本vs欧美在线观看视频 | 一级毛片黄色毛片免费观看视频| 成人国产av品久久久| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线 | 欧美高清成人免费视频www| 天天躁夜夜躁狠狠久久av| 自拍欧美九色日韩亚洲蝌蚪91 | 人人妻人人澡人人爽人人夜夜| 最新中文字幕久久久久| 久久99热这里只频精品6学生| 亚洲欧美日韩另类电影网站| 成年女人在线观看亚洲视频| 国产成人精品无人区| 国产精品人妻久久久影院| 最后的刺客免费高清国语| av在线老鸭窝| 亚洲第一区二区三区不卡| 视频区图区小说| 亚洲欧美清纯卡通| 精品亚洲成国产av| 国产精品一区二区性色av| 一边亲一边摸免费视频| 黄色视频在线播放观看不卡| 欧美一级a爱片免费观看看| 三级国产精品欧美在线观看| av又黄又爽大尺度在线免费看| 国内精品宾馆在线| 男女无遮挡免费网站观看| 男女边摸边吃奶| 成人18禁高潮啪啪吃奶动态图 | 交换朋友夫妻互换小说| 免费久久久久久久精品成人欧美视频 | 日韩精品有码人妻一区| 少妇猛男粗大的猛烈进出视频| 伊人久久国产一区二区| 国产白丝娇喘喷水9色精品| 亚洲欧洲国产日韩| 日韩欧美精品免费久久| 丝瓜视频免费看黄片| 精品熟女少妇av免费看| 色婷婷av一区二区三区视频| 人妻人人澡人人爽人人| 欧美一级a爱片免费观看看| 天天操日日干夜夜撸| 精品久久国产蜜桃| 国产成人aa在线观看| 日韩成人伦理影院| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区三区| 国产精品一二三区在线看| 人妻制服诱惑在线中文字幕| 日韩精品有码人妻一区| 国模一区二区三区四区视频| 欧美精品高潮呻吟av久久| 日产精品乱码卡一卡2卡三| 免费观看性生交大片5| 中文字幕人妻熟人妻熟丝袜美| 国产熟女欧美一区二区| 中国国产av一级| 高清在线视频一区二区三区| 日韩一本色道免费dvd| 啦啦啦视频在线资源免费观看| 精品一品国产午夜福利视频| 精华霜和精华液先用哪个| 免费观看的影片在线观看| 伦精品一区二区三区| 亚洲精品乱久久久久久| a级毛色黄片| 久久久国产精品麻豆| 亚洲内射少妇av| 午夜精品国产一区二区电影| .国产精品久久| 成人特级av手机在线观看| 女的被弄到高潮叫床怎么办| 纵有疾风起免费观看全集完整版| 久久久久久久精品精品| 亚洲国产精品国产精品| 亚洲精品亚洲一区二区| 卡戴珊不雅视频在线播放| 日韩视频在线欧美| 欧美亚洲 丝袜 人妻 在线| 91久久精品国产一区二区成人| 一级毛片aaaaaa免费看小| 深夜a级毛片| 热99国产精品久久久久久7| 尾随美女入室| 日韩一本色道免费dvd| videossex国产| 国产成人一区二区在线| 亚洲精品乱久久久久久| 国产精品蜜桃在线观看| 国产永久视频网站| 日日爽夜夜爽网站| av在线老鸭窝| av播播在线观看一区| 在线 av 中文字幕| 一个人看视频在线观看www免费| 一级片'在线观看视频| 国产爽快片一区二区三区| 男人舔奶头视频| 一区二区三区免费毛片| 亚洲欧美成人精品一区二区| 亚洲一级一片aⅴ在线观看| 99热6这里只有精品| 亚洲国产精品一区二区三区在线| 18禁在线播放成人免费| 美女中出高潮动态图| 日韩制服骚丝袜av| 国产黄片视频在线免费观看| 80岁老熟妇乱子伦牲交| 99热网站在线观看| 极品教师在线视频| 国产女主播在线喷水免费视频网站| 国产精品久久久久久av不卡| 欧美高清成人免费视频www| 街头女战士在线观看网站| 亚洲国产精品成人久久小说| 国产黄片美女视频| 国产精品女同一区二区软件| 黄色欧美视频在线观看| 欧美bdsm另类| 秋霞在线观看毛片| 欧美三级亚洲精品| 少妇裸体淫交视频免费看高清| 中文字幕av电影在线播放| 中文字幕人妻熟人妻熟丝袜美| 日本午夜av视频| 亚洲欧美日韩另类电影网站| 你懂的网址亚洲精品在线观看| av在线播放精品| 国产又色又爽无遮挡免| 精品午夜福利在线看| 九九爱精品视频在线观看| av播播在线观看一区| 亚洲天堂av无毛| 国产黄片视频在线免费观看| 一级爰片在线观看| 国产极品粉嫩免费观看在线 | 久久97久久精品| 中文字幕久久专区| www.色视频.com| 中文字幕亚洲精品专区| 国产精品国产三级专区第一集| 99久久精品国产国产毛片| 日本黄色日本黄色录像| 成人特级av手机在线观看| 精品99又大又爽又粗少妇毛片| 亚洲精品自拍成人| 久久国内精品自在自线图片| h日本视频在线播放| 久久青草综合色| 亚洲精品一二三| 久久久久久久久大av| 好男人视频免费观看在线| 蜜桃在线观看..| 亚洲综合色惰| 亚洲欧美中文字幕日韩二区| 亚洲经典国产精华液单| 少妇裸体淫交视频免费看高清| 精品一区二区三卡| 亚洲天堂av无毛| 在线观看www视频免费| 国产免费一级a男人的天堂| av国产久精品久网站免费入址| 看免费成人av毛片| 色视频在线一区二区三区| 国产精品不卡视频一区二区| 一边亲一边摸免费视频| 高清在线视频一区二区三区| 日韩伦理黄色片| 国产精品蜜桃在线观看| 免费高清在线观看视频在线观看| 久久久久精品性色| 九九在线视频观看精品| 久久国产亚洲av麻豆专区| 一个人看视频在线观看www免费| 亚洲欧洲精品一区二区精品久久久 | 夫妻性生交免费视频一级片| 国产高清有码在线观看视频| 人妻一区二区av| 狂野欧美激情性xxxx在线观看| 80岁老熟妇乱子伦牲交| 大片电影免费在线观看免费| 在线观看人妻少妇| 日韩制服骚丝袜av| 一级av片app| 亚洲一区二区三区欧美精品| 国产精品久久久久久精品电影小说| 成年美女黄网站色视频大全免费 | 丰满少妇做爰视频| 伊人久久精品亚洲午夜| 久久ye,这里只有精品| av线在线观看网站| 亚洲欧洲国产日韩| 亚洲av综合色区一区| 男人舔奶头视频| 99热全是精品| 亚洲av中文av极速乱| 亚洲四区av| 欧美区成人在线视频| 午夜91福利影院| 成人免费观看视频高清| 一二三四中文在线观看免费高清| 99国产精品免费福利视频| 免费大片18禁| 国产毛片在线视频| 国产精品女同一区二区软件| 赤兔流量卡办理| 多毛熟女@视频| 人人妻人人看人人澡| 国产亚洲欧美精品永久| av在线老鸭窝| 99久久中文字幕三级久久日本| 精品人妻一区二区三区麻豆| 美女国产视频在线观看| 老熟女久久久| 国产欧美日韩综合在线一区二区 | 精品人妻熟女毛片av久久网站| 亚洲欧洲精品一区二区精品久久久 | 国产免费福利视频在线观看| 国精品久久久久久国模美| a级片在线免费高清观看视频| 日韩大片免费观看网站| 黑人巨大精品欧美一区二区蜜桃 | 日本欧美视频一区| 桃花免费在线播放| 麻豆精品久久久久久蜜桃| 午夜福利网站1000一区二区三区| 精品少妇内射三级| 岛国毛片在线播放| 美女福利国产在线| 久久女婷五月综合色啪小说| 高清不卡的av网站| 女人久久www免费人成看片| 久久久久久久精品精品| 在线精品无人区一区二区三| 18禁在线播放成人免费| 伦精品一区二区三区| 99九九线精品视频在线观看视频| a级片在线免费高清观看视频| 偷拍熟女少妇极品色| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 国产欧美日韩精品一区二区| 国产精品三级大全| 少妇被粗大的猛进出69影院 | 中文字幕制服av| 草草在线视频免费看| 亚洲av在线观看美女高潮| 国产成人免费观看mmmm| 观看免费一级毛片| 久久人人爽人人爽人人片va| 午夜影院在线不卡| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲av片在线观看秒播厂| 在线观看三级黄色| 日韩一区二区视频免费看| 久久影院123| 久久鲁丝午夜福利片| 一区二区三区四区激情视频| 国产白丝娇喘喷水9色精品| videossex国产| 成人亚洲欧美一区二区av| 国产亚洲精品久久久com| 日本黄大片高清| 久久精品夜色国产| 国产精品成人在线| 欧美成人精品欧美一级黄| 成人国产麻豆网| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲最大av| 久久av网站| 亚洲欧美日韩卡通动漫| 老司机影院毛片| 一本一本综合久久| 久久久亚洲精品成人影院| 麻豆精品久久久久久蜜桃| 欧美日韩精品成人综合77777| 亚洲国产欧美日韩在线播放 | videos熟女内射| 啦啦啦在线观看免费高清www| 少妇被粗大的猛进出69影院 | 人人妻人人看人人澡| 免费大片18禁| 少妇高潮的动态图| 一本大道久久a久久精品| a级毛片在线看网站| 超碰97精品在线观看| 视频区图区小说| 中文字幕免费在线视频6| 免费播放大片免费观看视频在线观看| 高清在线视频一区二区三区| 国产男人的电影天堂91| 91精品一卡2卡3卡4卡| 中文字幕av电影在线播放| 中文字幕人妻丝袜制服| 精品一区二区三区视频在线| 国产午夜精品久久久久久一区二区三区| 国产91av在线免费观看| 亚州av有码| 久久毛片免费看一区二区三区| 免费观看性生交大片5| 插逼视频在线观看| 乱系列少妇在线播放| 国产真实伦视频高清在线观看| 18禁动态无遮挡网站| 18禁裸乳无遮挡动漫免费视频| 久久久欧美国产精品|