• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Bicyclic Graph with the Minimum Distance Laplacian Spectral Radius

    2020-03-07 02:01:56FANDandanNIUAihongWANGGuoping
    工程數(shù)學學報 2020年1期

    FAN Dan-dan, NIU Ai-hong, WANG Guo-ping,

    (1- College of Mathematical and Physical Sciences, Xinjiang Agricultural University, Urumqi 830052;2- School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054)

    Abstract: The largest eigenvalue of the distance Laplacian matrix of a connected graph G is called the distance Laplacian spectral radius of the graph G.In this paper we obtain a sharp lower bound of distance Laplacian spectral radius,and then using the bound we determine the unique graph which has the minimum distance Laplacian spectral radius among all unicyclic graphs.Finally,by using the bound again as well as the characteristics polynomial of a distance Laplacian matrix, we characterize the unique graph with the minimum distance Laplacian spectral radius among all bicyclic graphs.

    Keywords: distance Laplacian spectral radius; unicyclic graph; bicyclic graph

    1 Introduction

    The distance spectral radius of a connected graph has been studied extensively.Bose et al[1]obtained the graph with the maximum distance spectral radius in the class of graphs without a pendant vertex.Yu et al[2,3]determined the graphs having maximum and minimum distance spectral radius among graphs with a given number of pendant vertices and among unicyclic graphs, respectively.Ili[4]determined the graph with the minimum distance spectral radius among the trees with given matching number.Nath and Paul[5]characterized the graphs with the minimum distance spectral radius among all connected bipartite graphs with a given matching number and a given vertex connectivity, respectively.Stevanoviand Ili[6]determined the graph with the maximum distance spectral radius among the trees with fixed maximum degree.

    Aouchiche and Hansen[7]introduced the distance Laplacian and distance signless Laplacian spectral of graphs, respectively.Xing and Zhou[8]gave the graphs with the minimum distance and distance signless Laplacian spectral radius among bicyclic graphs with fixed number of vertices.Xing et al[9]determined the graphs with the minimum distance signless Laplacian spectral radius among the trees,unicyclic graphs,bipartite graphs and the connected graphs with fixed pendant vertices and fixed connectivity, respectively.Aouchiche and Hansen[10]proved that the star Snattains the minimum distance Laplacian spectral radius among all trees of order n.Lin and Zhou[11]determined the graphs with the minimum distance Laplacian spectral radius among the connected graphs with fixed number of pendant vertices and the fixed connectivity, respectively.

    In this paper, we determine the graphs with minimum distance Laplacian spectral radius among unicyclic and bicyclic graphs, respectively.

    2 Main results

    If x = (x1,x2,··· ,xn)Tthen it can be viewed as a function defined on V(G) ={v1,v2,··· ,vn} which maps the vertex vito xi, i.e., x(vi)=xi.Thus we have

    which shows that LD(G) is positive semidefinite.

    Suppose that x is an eigenvector of LD(G) with respect to the eigenvalue μ.Then

    and we call x an eigenvector of G with respect to μ.Throughout the paper, we denote by ?(G) the distance Laplacian spectral radius of G.

    Let tracemax(G) be the maximum transmission of vertices of G.Then we have:

    Lemma 1[12]Let G be a connected graph.Then ?(G)>tracemax(G)+1.

    Suppose that G and H are two graphs.Then we write GH if G and H are isomorphic, and GH otherwise.

    Let Snbe the star on n vertices, andbe the unicyclic graph on n vertices obtained by joining two pendant vertices in Sn.Aouchiche and Hansen[13]conjectured thatattains the minimum distance Laplacian spectral radius among all unicyclic graphs.This has been verified by Tian et al[14].Here we again verify it by the direct computation which is more simple.

    Theorem 1Let G be a connected unicyclic graph on n ≥6 vertices.Then?(G) ≥=2n ? 1 with equality if and only if

    ProofBy a simple computation we can obtain=2n ? 1.

    So we next assume that G ∈ Ck,n?k.

    Case 1k =3.Suppose that G is isomorphic to the graph H1which is shown in Figure 1,where 1 ≤ n1≤ n2, n3=0 or 1 ≤ n1≤ n2≤ n3.Note that n=n1+n2+n3+3.In this case we can choose a pendant vertex v, and by a simple computation we obtain that traceG(v)=(2n ? 2)+(n2+n3? 1) ≥ 2n ? 2.

    Figure 1: The graphs H1 and H2

    Case 2k =4 or 5.Suppose that k =4.If G is isomorphic to the graph H2which is shown in Figure 1,then since n ≥ 6,we easily obtain that traceG(u′)=3n?8 ≥ 2n?2,and otherwise we can choose a pendant vertex v′such that

    Therefore,tracemax(G)≥ 2n?2.When k =5 we can similarly prove that tracemax(G)≥2n ?2.

    Case 36 ≤ k ≤ n?1.We denote bythe graph of Ck,n?kwhere Ckcontains only one attached vertex.It is easy to know that if `v and u′′are respectively pendant vertices of G andthenNote that

    if k is even, and otherwise

    Therefore, tracemax(G)>2n ?2.

    Case 4GCn.Then tracemax(Cn)=if n is even,and otherwise tracemax(Cn)Thus, tracemax(Cn) ≥ 2n ? 2 if n ≥ 7.

    By a simple computation we can obtain that ?(C6) = 13 and so by Lemma 1 we know the result is true.

    Connected graphs in which the number of edges equals the number of vertices plus one are called bicyclic graphs.Define a b-graph to be a graph consisting either of two vertex-disjoint cycles C1and C2and a path P joining them having only its end-verticesandin common with the cycles, or two cycles C1and C2with exactly one vertexin common.The former is called b1-graph and the latter b2-graph.Define a θ-graph to be a graph consisting of two given vertices u0and v0joined by three paths P1, P2and P3with any two of these paths having only the given vertices in common.Obviously,a bicyclic graph is a b-graph or a θ-graph with trees attached.

    Denote by θ1(n1,n2,n3)the θ-graph where the path Piis of length ni+1(i=1,2,3)and n3≥ n2≥ n1.Φ(G,t) = det(tIn? LD(G)) is called the distance Laplacian characteristic polynomial of graph G.

    Lemma 2Let G be a connected bicyclic graph on 6 vertices.Then ?(G) ≥?(θ1(1,1,2)) with equality if and only if Gθ1(1,1,2).

    ProofAll bicyclic graphs on 6 vertices are shown in Figure 2.By a simple computation we can obtain that traceGi(w)≥ 10,and so by Lemma 1,we know ?(Gi)>11 for 1 ≤ i ≤ 11.By direct calculation, we have

    from which we have

    Note that Φ(G17,12) = ?720 < 0, and so ?(G17) > 12.We see G14θ1(1,1,2), and so the result is true.

    Figure 2: All bicyclic graphs on 6 vertices

    Lemma 3Suppose n ≥7.Then we have:

    (i) tracemax(G)≥if G is a b-graph on n vertices;

    (ii) tracemax(G) ≥ 2n ? 2 if G is a θ-graph on n vertices but

    (iii) tracemax(G) ≥ 2n ? 2 if G is a bicyclic graph with pendant vertices but

    Proof(i) Let H3and H4be shown in Figure 3, where w is the vertex which is farthest fromin Ca+1.We easily verify that

    and so traceH3(w)≥traceH4(w).

    Figure 3: The graphs H3 and H4

    Suppose without loss of generality that a+1 ≤ n ? a.Then we haveNow we distinguish two cases to discuss.

    Case 1.1If n is odd, thenThus

    if a is odd, and otherwise traceH4(w)=

    Case 1.2If n is even, thenThus

    if a is odd, and otherwise traceH4(w)=

    These show that (i) is true.

    if n ≥8.This shows that (ii) is true.

    (iii) Suppose that G is b1-graph with trees attached.If w is a pendant vertex of G, then there must be two vertices u1and u2such that dwu1≥ 3 and dwu2≥ 3, from which we can obtain that

    So we assume G is a b2-graph with trees attached.

    Denote by Bm1,m2the set of the bicyclic graphs on n vertices which are b2-graphs with trees attached,where Ciis of length mi(i=1,2).Let Cm1,m2consist of the graphs of Bm1,m2which are b2-graphs with edges attached.

    Let G ∈ Bm1,m2Cm1,m2.Suppose that Tu?is a tree attached at u?∈ Ciand that w?∈ Tu?is one of the pendant vertices which is farthest from u?.Then

    So we next assume that G ∈Cm1,m2.If m1> 3 and m2> 3 then we can choose a pendant vertex w such that

    So we can assume without loss of generality that G ∈Cm1,3.Next we distinguish three cases to discuss.

    Case 2.1m1=3.Suppose that G is isomorphic to the graph H5which is shown in Figure 4, where n1≥1.

    Figure 4: The graphs H5 and H6

    Note that n ≥7.Therefore, if nj= 0(j = 2,3,4,5) then we obtain traceG() =2n ?1, and otherwise

    Case 2.2m1=4 or 5.Suppose that m1=4.If G is isomorphic to the graph H6which is shown in Figure 4 then we easily obtain that traceG(w′) = 3n ? 8 > 2n ? 2,and otherwise we can choose a pendant vertex w′′such that

    Therefore,tracemax(G)>2n?2.When m1=5,we can similarly prove that tracemax(G)>2n ?2.

    Case 2.3m1≥ 6.We denote bythe graph of Cm1,3in which only the vertexis attached by edges.It is easy to know that ifand v′′are respectively pendant vertices of G andthenNote that

    if m1is even, and otherwise

    Therefore, tracemax(G)>2n ?2.

    Denote by P(n1,n2,n3) the set of the bicyclic graphs on n vertices which are θgraphs with trees attached, where Piis of length ni+1(i = 1,2,3).Let(n1,n2,n3)consist of the graphs of P(n1,n2,n3) which are Pni+2with edges attached.

    Let G ∈ P(n1,n2,n3)(n1,n2,n3).Suppose that Tv?is a tree attached at v?∈Pni+2and that∈Tv?is one of the pendant vertices which is farthest from v?.Then dv?≥2 and so

    If n3≥n2≥n1≥1 then we can choose a pendant vertexand find another one vertex z such that≥3.Thus

    If n3≥n2≥2 and n1= 0, then we can also choose a pendant vertexand find two vertices u1and u2such that≥3(i=1,2).Thus

    Case 3.1n3= 1.Suppose G is isomorphic to the graph H7which is shown in Figure 5.

    Figure 5: The graphs H7 and H8

    If s2= s4= 0, then sincewe have s1≥1 and s3≥1.Suppose thatv1is a pendant edge.Then

    If s20 andis a pendant edge then

    Therefore, tracemax(G) ≥ 2n ? 2.If s40, we can similarly prove that tracemax(G) ≥2n ?2.

    Case 3.2n3=2 or 3.Suppose that n3=2.Note that n ≥7.If G is isomorphic to the graph H8which is shown in Figure 5, then we easily obtain that traceG() =3n?9 ≥2n?2,and otherwise we can choose a pendant vertexsuch that traceG()>2n ? 2.Therefore, tracemax(G) ≥ 2n ? 2.When n3= 3, we can similarly prove that tracemax(G)>2n ?2.

    Denote by θ(n1,n2,n3) the graph of(n1,n2,n3) in which only the vertex u0is attached by edges.

    Case 3.3n3≥4.It is easy to know that ifandare respectively pendant vertices of G and θ(0,1,n3) then traceG()≥traceθ(0,1,n3)().Note that

    if n3is even, and otherwise

    Therefore, tracemax(G)>2n ?2.

    Theorem 2Suppose that G is a bicyclic graph on n ≥6 vertices.Then we have:

    (i) If n=6, then ?(G) ≥ θ1(1,1,2) with equality if and only if Gθ1(1,1,2);

    ProofBy a simple computation we know

    美女福利国产在线| 国产成人午夜福利电影在线观看| 精品卡一卡二卡四卡免费| 亚洲国产欧美网| 亚洲综合精品二区| 久久97久久精品| 亚洲欧美日韩另类电影网站| 婷婷成人精品国产| 成人黄色视频免费在线看| av免费观看日本| 欧美日韩亚洲国产一区二区在线观看 | 99热网站在线观看| 黄色怎么调成土黄色| 无限看片的www在线观看| 国产黄色视频一区二区在线观看| 天天躁夜夜躁狠狠躁躁| 久久久久久久国产电影| 成年动漫av网址| 黄片小视频在线播放| 一级爰片在线观看| 日韩一区二区三区影片| 国产成人欧美在线观看 | 亚洲av成人不卡在线观看播放网 | 又粗又硬又长又爽又黄的视频| 亚洲国产中文字幕在线视频| 久久久久久久久免费视频了| 色视频在线一区二区三区| 久久人人爽av亚洲精品天堂| 久久人人爽av亚洲精品天堂| 又黄又粗又硬又大视频| 午夜日韩欧美国产| 9色porny在线观看| 男人爽女人下面视频在线观看| 在现免费观看毛片| 9热在线视频观看99| 激情视频va一区二区三区| 亚洲国产成人一精品久久久| 无遮挡黄片免费观看| 黄片小视频在线播放| 国产不卡av网站在线观看| 在线精品无人区一区二区三| 国产av码专区亚洲av| av.在线天堂| 亚洲七黄色美女视频| 亚洲精品视频女| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区在线观看av| 美女主播在线视频| 丝袜人妻中文字幕| 日本av免费视频播放| 国产熟女午夜一区二区三区| 美女主播在线视频| 亚洲精品乱久久久久久| 91精品国产国语对白视频| 97人妻天天添夜夜摸| 欧美成人精品欧美一级黄| 亚洲国产成人一精品久久久| av线在线观看网站| 午夜精品国产一区二区电影| 午夜福利视频在线观看免费| 免费在线观看完整版高清| 成年人免费黄色播放视频| 国产女主播在线喷水免费视频网站| 欧美日韩视频精品一区| 欧美日韩成人在线一区二区| 亚洲熟女精品中文字幕| 亚洲伊人久久精品综合| 在线观看三级黄色| 日本av手机在线免费观看| 久久韩国三级中文字幕| 国产精品一区二区精品视频观看| 日韩一区二区三区影片| 一区二区三区激情视频| av电影中文网址| 亚洲欧美精品综合一区二区三区| 亚洲欧美激情在线| 久久久久久人妻| 99久久人妻综合| 国产xxxxx性猛交| 99久久人妻综合| 亚洲,欧美精品.| 国产成人精品久久二区二区91 | 99热网站在线观看| 色视频在线一区二区三区| 超碰成人久久| 亚洲五月色婷婷综合| 韩国高清视频一区二区三区| 九九爱精品视频在线观看| 午夜免费观看性视频| 宅男免费午夜| 国产精品一区二区在线观看99| 亚洲av国产av综合av卡| 亚洲一级一片aⅴ在线观看| 午夜福利视频精品| 亚洲精品日本国产第一区| 色婷婷久久久亚洲欧美| 2021少妇久久久久久久久久久| 欧美日韩亚洲高清精品| 亚洲精华国产精华液的使用体验| 叶爱在线成人免费视频播放| 黄片无遮挡物在线观看| 夫妻午夜视频| 国产av国产精品国产| 男人爽女人下面视频在线观看| 亚洲熟女毛片儿| 精品一区二区三卡| 五月开心婷婷网| 美女主播在线视频| 男女国产视频网站| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区久久| 欧美乱码精品一区二区三区| 妹子高潮喷水视频| 一区二区日韩欧美中文字幕| 美女高潮到喷水免费观看| 国产av码专区亚洲av| 51午夜福利影视在线观看| 制服丝袜香蕉在线| 国产福利在线免费观看视频| 亚洲精品久久久久久婷婷小说| 欧美日韩一级在线毛片| av网站在线播放免费| 一级毛片我不卡| 熟妇人妻不卡中文字幕| 午夜福利视频在线观看免费| 国产亚洲精品第一综合不卡| 国产又色又爽无遮挡免| 人体艺术视频欧美日本| 一级毛片黄色毛片免费观看视频| 成人毛片60女人毛片免费| 欧美日韩一级在线毛片| 国产高清国产精品国产三级| 又黄又粗又硬又大视频| 在线亚洲精品国产二区图片欧美| 青春草视频在线免费观看| 大陆偷拍与自拍| 亚洲激情五月婷婷啪啪| 丝袜美足系列| 亚洲人成网站在线观看播放| 在线观看免费午夜福利视频| 一区二区三区乱码不卡18| 久久精品久久久久久噜噜老黄| 午夜老司机福利片| 最近2019中文字幕mv第一页| 国产一卡二卡三卡精品 | av电影中文网址| 亚洲精品久久成人aⅴ小说| 欧美亚洲 丝袜 人妻 在线| 久久午夜综合久久蜜桃| 久久久久久久大尺度免费视频| 夫妻性生交免费视频一级片| √禁漫天堂资源中文www| 亚洲av综合色区一区| 亚洲av电影在线进入| 在线观看三级黄色| 久久久久久久国产电影| 久久免费观看电影| 王馨瑶露胸无遮挡在线观看| 国产又爽黄色视频| av免费观看日本| 咕卡用的链子| 亚洲男人天堂网一区| 亚洲国产av新网站| 老司机影院成人| 熟女av电影| 国产欧美日韩综合在线一区二区| 免费日韩欧美在线观看| 亚洲精品美女久久av网站| 中国三级夫妇交换| 国产亚洲一区二区精品| 成年美女黄网站色视频大全免费| 国产精品一区二区在线不卡| 国产在线一区二区三区精| 亚洲精品aⅴ在线观看| 国产一区二区 视频在线| 亚洲精品国产av蜜桃| 在线看a的网站| 黑人欧美特级aaaaaa片| 涩涩av久久男人的天堂| 一区二区三区精品91| 国产成人a∨麻豆精品| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 天天影视国产精品| 青草久久国产| 国产精品嫩草影院av在线观看| kizo精华| 大码成人一级视频| 国产日韩欧美视频二区| 午夜福利在线免费观看网站| 爱豆传媒免费全集在线观看| 99久久99久久久精品蜜桃| 丝袜人妻中文字幕| 国产精品一区二区在线观看99| 51午夜福利影视在线观看| 国产精品成人在线| 精品第一国产精品| 国产亚洲av高清不卡| 美女午夜性视频免费| 欧美激情高清一区二区三区 | 老司机在亚洲福利影院| 亚洲少妇的诱惑av| 国产成人精品在线电影| 欧美人与性动交α欧美精品济南到| 国产亚洲欧美精品永久| 又黄又粗又硬又大视频| 九九爱精品视频在线观看| 亚洲中文av在线| 少妇被粗大猛烈的视频| 啦啦啦视频在线资源免费观看| 精品国产超薄肉色丝袜足j| 日韩电影二区| 永久免费av网站大全| 爱豆传媒免费全集在线观看| 欧美人与性动交α欧美软件| 高清在线视频一区二区三区| 黄色一级大片看看| 高清av免费在线| 999久久久国产精品视频| 国产女主播在线喷水免费视频网站| 国产av国产精品国产| 亚洲精品一区蜜桃| 免费女性裸体啪啪无遮挡网站| 欧美中文综合在线视频| 一边摸一边做爽爽视频免费| 国产一区二区激情短视频 | 亚洲精品美女久久久久99蜜臀 | 国产男女内射视频| 精品国产超薄肉色丝袜足j| 国产精品.久久久| 日韩不卡一区二区三区视频在线| 亚洲一区中文字幕在线| a级片在线免费高清观看视频| 亚洲天堂av无毛| 不卡av一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲精品自拍成人| 一区二区三区四区激情视频| 在线观看一区二区三区激情| 国产精品偷伦视频观看了| 美女福利国产在线| 日韩电影二区| 免费在线观看黄色视频的| 99久久99久久久精品蜜桃| 十八禁高潮呻吟视频| 人人妻人人澡人人爽人人夜夜| 亚洲熟女精品中文字幕| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 亚洲中文av在线| 亚洲av男天堂| 亚洲精品国产av成人精品| 国产xxxxx性猛交| 交换朋友夫妻互换小说| 啦啦啦在线观看免费高清www| 国产精品免费视频内射| 一区福利在线观看| 日韩大码丰满熟妇| 黄色怎么调成土黄色| 老熟女久久久| 叶爱在线成人免费视频播放| 亚洲美女视频黄频| 亚洲国产最新在线播放| 午夜免费观看性视频| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网 | 91精品国产国语对白视频| 国产不卡av网站在线观看| 日本色播在线视频| 国产精品久久久久成人av| 一级毛片我不卡| 一边摸一边抽搐一进一出视频| 久久亚洲国产成人精品v| 操出白浆在线播放| 久久久久网色| 亚洲视频免费观看视频| 大香蕉久久成人网| 男女边吃奶边做爰视频| 激情视频va一区二区三区| 久久女婷五月综合色啪小说| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网| 国产精品一区二区在线观看99| 国产高清国产精品国产三级| 国产深夜福利视频在线观看| 国产精品久久久久久人妻精品电影 | 亚洲久久久国产精品| 亚洲精品,欧美精品| 国产一区二区 视频在线| 久久久久久人妻| 香蕉丝袜av| 国产片内射在线| 国产无遮挡羞羞视频在线观看| 久久女婷五月综合色啪小说| 一级片'在线观看视频| 亚洲熟女毛片儿| 欧美黑人欧美精品刺激| 看非洲黑人一级黄片| 99久国产av精品国产电影| 亚洲精华国产精华液的使用体验| 久久这里只有精品19| 热99国产精品久久久久久7| 一区二区日韩欧美中文字幕| 只有这里有精品99| 啦啦啦在线免费观看视频4| 新久久久久国产一级毛片| 男女下面插进去视频免费观看| 成人漫画全彩无遮挡| 久久久久久久大尺度免费视频| 欧美日韩综合久久久久久| 又粗又硬又长又爽又黄的视频| 亚洲精品第二区| 在线精品无人区一区二区三| 国产精品秋霞免费鲁丝片| 日韩 亚洲 欧美在线| 中文字幕另类日韩欧美亚洲嫩草| 99久久99久久久精品蜜桃| 亚洲欧美成人精品一区二区| 啦啦啦在线观看免费高清www| 丁香六月天网| 日日撸夜夜添| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩一级在线毛片| 18禁观看日本| 久久精品久久久久久噜噜老黄| 亚洲精品国产区一区二| 男人操女人黄网站| 亚洲国产欧美日韩在线播放| 免费观看a级毛片全部| 黄色视频在线播放观看不卡| 国产福利在线免费观看视频| 中文乱码字字幕精品一区二区三区| 亚洲中文av在线| 久久青草综合色| 人人妻人人爽人人添夜夜欢视频| 久久久久精品国产欧美久久久 | 欧美日韩精品网址| 大话2 男鬼变身卡| a级毛片黄视频| 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 免费高清在线观看日韩| 一级毛片我不卡| 老司机影院毛片| 美女福利国产在线| 大陆偷拍与自拍| 99久久99久久久精品蜜桃| 色94色欧美一区二区| 中文字幕av电影在线播放| 日韩,欧美,国产一区二区三区| 久久热在线av| 欧美人与善性xxx| 亚洲国产精品一区三区| 欧美黄色片欧美黄色片| 欧美国产精品一级二级三级| 国产精品国产av在线观看| 美女扒开内裤让男人捅视频| 午夜福利乱码中文字幕| 激情五月婷婷亚洲| 免费在线观看完整版高清| 精品第一国产精品| 国产探花极品一区二区| 卡戴珊不雅视频在线播放| 伦理电影大哥的女人| 色视频在线一区二区三区| 深夜精品福利| 国产99久久九九免费精品| 日韩,欧美,国产一区二区三区| 国产精品一区二区在线不卡| 国产一区有黄有色的免费视频| 美女高潮到喷水免费观看| 久久人人爽人人片av| 国产午夜精品一二区理论片| 日本一区二区免费在线视频| 男人爽女人下面视频在线观看| 成人免费观看视频高清| 免费av中文字幕在线| 人人妻,人人澡人人爽秒播 | 欧美黄色片欧美黄色片| 日韩中文字幕视频在线看片| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 国产成人啪精品午夜网站| 老司机靠b影院| 免费观看av网站的网址| 亚洲国产中文字幕在线视频| 大片免费播放器 马上看| 亚洲第一av免费看| 国产精品成人在线| 免费在线观看视频国产中文字幕亚洲 | 精品国产一区二区久久| 丝袜脚勾引网站| 欧美最新免费一区二区三区| 精品第一国产精品| 国产精品香港三级国产av潘金莲 | 久久久精品94久久精品| 涩涩av久久男人的天堂| 男人操女人黄网站| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜制服| 精品第一国产精品| 日韩视频在线欧美| 日本一区二区免费在线视频| 精品少妇一区二区三区视频日本电影 | 老汉色av国产亚洲站长工具| 国产成人啪精品午夜网站| 韩国精品一区二区三区| 丝袜人妻中文字幕| 国产精品熟女久久久久浪| 国产免费现黄频在线看| 大片电影免费在线观看免费| 久久久久久人妻| 老鸭窝网址在线观看| 99久久99久久久精品蜜桃| 亚洲,欧美,日韩| 1024香蕉在线观看| 久久久国产一区二区| 欧美97在线视频| 日本猛色少妇xxxxx猛交久久| 久久毛片免费看一区二区三区| 欧美精品av麻豆av| 中文字幕人妻丝袜一区二区 | 国产熟女欧美一区二区| 99久国产av精品国产电影| 国产女主播在线喷水免费视频网站| 亚洲欧美一区二区三区国产| 色婷婷久久久亚洲欧美| 日韩 欧美 亚洲 中文字幕| 亚洲一级一片aⅴ在线观看| 伊人久久国产一区二区| 少妇人妻 视频| 国产成人欧美| 在线观看免费日韩欧美大片| 老司机在亚洲福利影院| 欧美xxⅹ黑人| 午夜福利影视在线免费观看| 国产精品.久久久| 国产视频首页在线观看| 久久国产精品男人的天堂亚洲| 最新的欧美精品一区二区| 超碰成人久久| 国产在线视频一区二区| 国产高清国产精品国产三级| 亚洲少妇的诱惑av| 国产 一区精品| 色婷婷久久久亚洲欧美| 免费高清在线观看日韩| 免费观看性生交大片5| 久久久欧美国产精品| 桃花免费在线播放| 建设人人有责人人尽责人人享有的| 亚洲七黄色美女视频| 国产免费一区二区三区四区乱码| 欧美人与善性xxx| 伦理电影免费视频| 亚洲成av片中文字幕在线观看| 在线观看免费高清a一片| av.在线天堂| 国产精品免费视频内射| 在线观看免费午夜福利视频| 亚洲av成人不卡在线观看播放网 | 香蕉国产在线看| 无限看片的www在线观看| 岛国毛片在线播放| 国产日韩一区二区三区精品不卡| 涩涩av久久男人的天堂| 少妇被粗大猛烈的视频| 国产 精品1| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 无遮挡黄片免费观看| 国产 一区精品| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| av卡一久久| 亚洲,欧美精品.| 国产99久久九九免费精品| 亚洲男人天堂网一区| 亚洲欧洲精品一区二区精品久久久 | 亚洲自偷自拍图片 自拍| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 亚洲精品国产区一区二| 免费观看av网站的网址| 国产在视频线精品| 国产免费现黄频在线看| 大片免费播放器 马上看| 一级爰片在线观看| 成人毛片60女人毛片免费| 在现免费观看毛片| 天天操日日干夜夜撸| 91精品伊人久久大香线蕉| 99国产综合亚洲精品| 欧美另类一区| 国产成人午夜福利电影在线观看| 欧美另类一区| 熟女av电影| 精品午夜福利在线看| 精品一品国产午夜福利视频| 久久久国产一区二区| 妹子高潮喷水视频| 亚洲天堂av无毛| 最近的中文字幕免费完整| 色精品久久人妻99蜜桃| 国产 精品1| 亚洲一区二区三区欧美精品| av女优亚洲男人天堂| 国产福利在线免费观看视频| 又黄又粗又硬又大视频| 欧美日韩一区二区视频在线观看视频在线| 久久国产亚洲av麻豆专区| 岛国毛片在线播放| 啦啦啦在线免费观看视频4| 欧美黄色片欧美黄色片| 久久久精品94久久精品| 精品人妻在线不人妻| √禁漫天堂资源中文www| kizo精华| 午夜免费鲁丝| 亚洲国产精品999| 日本av手机在线免费观看| 性高湖久久久久久久久免费观看| av卡一久久| 欧美日韩亚洲综合一区二区三区_| 91精品国产国语对白视频| 香蕉丝袜av| 又黄又粗又硬又大视频| 成年美女黄网站色视频大全免费| 九色亚洲精品在线播放| 只有这里有精品99| 亚洲精品中文字幕在线视频| bbb黄色大片| 国产一区有黄有色的免费视频| 欧美中文综合在线视频| 1024香蕉在线观看| 久久99热这里只频精品6学生| 色94色欧美一区二区| 又黄又粗又硬又大视频| av网站免费在线观看视频| 免费黄色在线免费观看| 亚洲精品,欧美精品| 久久久久久人人人人人| 日韩精品有码人妻一区| 天天影视国产精品| 国产男女内射视频| 午夜免费男女啪啪视频观看| 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| www.精华液| 久久亚洲国产成人精品v| 日本av手机在线免费观看| 亚洲av日韩精品久久久久久密 | 亚洲av中文av极速乱| 热re99久久精品国产66热6| 91国产中文字幕| 热re99久久精品国产66热6| 欧美人与性动交α欧美精品济南到| 久久久久久久大尺度免费视频| 国产欧美日韩综合在线一区二区| 女人高潮潮喷娇喘18禁视频| 操美女的视频在线观看| 日本91视频免费播放| 日韩一卡2卡3卡4卡2021年| 丁香六月天网| 一边亲一边摸免费视频| 亚洲人成网站在线观看播放| 人人澡人人妻人| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看 | 亚洲精品一区蜜桃| 国产一区二区在线观看av| 涩涩av久久男人的天堂| 一边亲一边摸免费视频| 久热这里只有精品99| 欧美久久黑人一区二区| 国产精品 欧美亚洲| 久久久精品免费免费高清| 高清av免费在线| 国产精品久久久人人做人人爽| 两个人看的免费小视频| 亚洲国产日韩一区二区| 亚洲婷婷狠狠爱综合网| 久久精品国产亚洲av高清一级| 狂野欧美激情性bbbbbb| 中文欧美无线码| 久久久久久人人人人人| 日日撸夜夜添| 亚洲精品久久成人aⅴ小说| 青春草亚洲视频在线观看| 欧美激情极品国产一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲av欧美aⅴ国产| 老汉色∧v一级毛片| 亚洲伊人久久精品综合| 秋霞伦理黄片| 亚洲 欧美一区二区三区| 欧美激情高清一区二区三区 | 婷婷色麻豆天堂久久| 999久久久国产精品视频| 在线观看三级黄色| 久久av网站| 日韩欧美精品免费久久| 日韩人妻精品一区2区三区| 国产精品久久久久久久久免| 成人国语在线视频| 国产又色又爽无遮挡免| 男男h啪啪无遮挡| 国产精品久久久久久人妻精品电影 | 一边摸一边做爽爽视频免费| 日韩伦理黄色片| 波多野结衣av一区二区av| 欧美另类一区| 亚洲中文av在线| 亚洲精品日本国产第一区|