• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Emphatic Convergence for Kurzweil Equations

    2020-03-07 02:01:54MAXueminZHANGLingLIBaolin

    MA Xue-min, ZHANG Ling, LI Bao-lin

    (1- Teaching Department of Science, Gansu University of Chinese Medicine, Dingxi, Gansu 743000;2- College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070)

    Abstract: In this paper, by using the theories of Kurzweil integral and bounded Φ-variation function.Emphatic convergence for Kurzweil equations and its application for a sequence of ordinary differential equations are discussed.The theorem of emphatic convergence for bounded Φ-variation solutions of Kurzweil equations is obtained.The result is continuation of continuous dependence of bounded Φ-variation solutions on parameters for Kurzweil equations and essential generalization of the emphatic convergence for bounded variation solutions of Kurzweil equations.

    Keywords: Kurzweil equations; emphatic convergence; bounded Φ-variation function

    1 Introduction

    Kurzweil equations were introduced in 1957 by Kurzweil.The theory of Kurzweil equations have been proved to be useful in dealing with the continuous dependence on parameter for differential equations, measure differential equations and systems with impulses, volterra integral equations and topological dynamics[1-8].For a detailed discussion of this equations, see [9–12].In [12], Li and Wu considered continuous dependence of bounded Φ-variation solutions on parameters for the following Kurzweil equations

    Throughout the paper, the following notations will be used.

    Assume that G = Bc× (a,b), Bc= {x ∈ Rn;||x|| < c}, c > 0.?∞ < a < b <+∞, F(x,t):G → Rnis an Rn-valued function defined.

    This paper is organized as follows: in next section, we show some basic definitions,key lemmas and theorem.In section 3, we get the theorem of emphatic convergence for bounded Φ-variation solutions of Kurzweil equations.In the final section, the application for a sequence of ordinary differential equations is discussed.

    2 Preliminaries

    In this section, we will show some basic definitions, key lemma and theorem.Let’s start with the definition of Kurzweil integral which plays a crucial pole in the theory of Kurzweil equations.

    Definition 1[4,10-12]A function U : [a,b]× [a,b]→ Rnis said to be Kurzweil integrable to A,A ∈ Rn, if for every ε > 0, there is a positive function δ(τ) such that for any division given by a=t0

    The Kurzweil integral has all the standard properties one normally expects for any kind of integrals, we refer to [4]and [10–12]for details.

    Definition 2[4,10-12]A function x:[α,β]→ Rnis called a solution of the Kurzweil equation

    on the interval [α,β]? R if (x(t),t)∈ G for all t ∈ [α,β]and if

    holds for every pairs s1,s2∈ [α,β].

    Throughout the paper, the following theory of bounded Φ-variation function and the class FΦ(G,h,ω) will be used:

    Let Φ(u)denote a continuous and increasing function defined for u ≥ 0 with Φ(0)=0,Φ(u)≥ u and satisfying the following conditions:

    (?2): There exist u0≥ 0 and a>0 such that Φ(2u)≤ aΦ(u) for u0≥ u>0;

    (c): Φ(u) is a convex function.

    We consider the function x : [a,b]→ Rn,x(t) is of bounded Φ-variation over [a,b]if for any partition π :a=t0

    VΦ(x;[a,b]) is called Φ-variation of x(t) over [a,b].We denote by BVΦthe class of all function x(t) of bounded Φ-variation with x(a) = 0, and bythe class of all function x(t) such that for a certain k >0 (depending on x), kx ∈ BVΦ.By Theorem 1.01 of[13],if Φ(u)satisfies(?2),then=BVΦ.By Theorem 3.25 of[13],the class BVΦwith norm ||x||Φ(see Definition 3 of[13])and the usual definitions of addition and scalar-multiplication of elements is a Banach space.

    Definition 3[10-12]A function F :G → Rnbelongs to the class FΦ(G,h,ω), if

    for all (x,t1),(x,t2)∈G and

    for all (x,t1),(x,t2),(y,t1),(y,t2)∈G.

    Lemma 1[12]Assume that F :G → Rnsatisfies the conditions(1),If x:[α,β]→Rn, [α,β]? (a,b), is such that (x(t),t) ∈ G for every t ∈ [α,β]and if the Kurzweil integral∫βα DF(x(τ),t) exists, then for every pairs s1,s2∈ [α,β]the inequality

    holds.

    Theorem 1[12]Assume that Fk: G → Rnbelongs to the class FΦ(G,hk,ω) for k =0,1,···,where hk:[a,b]→ R are nondecreasing and continuous when k =1,2,···,and the function h0: [a,b]→R is nondecreasing and continuous on [a,b].Assume further that

    for every a ≤ t1≤ t2≤ b.Suppose that

    for (x,t) ∈ G.Let xk: [α,β]→ Rn, k = 1,2,··· be a sequence of solutions of the Kurzweil equation

    on [α,β]? (a,b) such that

    Then x:[α,β]→ Rnis a continuous function of bounded Φ-variation on [α,β], and it is a solution of the Kurzweil equation

    on the interval [α,β].

    3 Main results

    In this section, for our purposes we will give some hypotheses firstly.

    Assume that Fk: G → Rn, k = 1,2,··· .The sequence of functions Fk: G →Rn, k =1,2,··· converges emphatically to F0for k → ∞ if the following are satisfied:

    (i) There exist an increasing continuous function ω :[0,+∞)→ [0,+∞), ω(0)=0 and functions hk:[a,b]→ R, k =0,1,2,··· which are nondecreasing and continuous from the left, such that

    (ii)

    provided h0is continuous at the points t1and t2, a

    (iii)

    if (x,t)∈ G, t is a point of continuity of the function h0and F?:G → Rnis such that

    for t1,t2∈ (a,b) where h?: (a,b) → R is continuous at the points t1and t2, a < t1≤t2

    (iv) x+F0(x,t+)? F0(x,t)∈ Bcfor every x ∈ Bc, t ∈ (a,b).

    (v) If h0(t0+)>h0(t0), (x0,t0) ∈ G then for every ε>0 there is a δ >0 such that for each δ′∈ (0,δ)there is a k0∈ N with the following property: if y :[t0?δ′,t0+δ′]→Rnis a solution of the Kurzweil equation

    on [t0? δ′,t0+ δ′], k >k0and ||y(t0? δ′)? x0|| ≤ δ then

    In the following, we consider the theorem of emphatic convergence for bounded Φ-variation solutions of Kurzweil equations and its proof.

    Theorem 2Let hk: (a,b) → Rn, k = 0,1,2,··· be nondecreasing functions continuous from the left.Let d ∈ (a,b) be such that h0(t+)=h0(t) for td.Assume further that Fk∈ FΦ(G,hk,ω), k = 0,1,2,··· , and that the sequence (Fk) converges emphatically to F0for k → ∞.

    Let xk:[α,β]→ Rnbe solutions of

    on an interval [α,β]? (a,b), k =1,2,···, such that

    on the interval [α,β].

    ProofBy Lemma 1, we have

    for s1,s2∈ [α,β]and (ii) from hypotheses gives for k → ∞ the inequality

    for s1,s2∈ [α,β], s1,s2d.This yields the existence of the onesided limitsx(d) and= x(d+).Therefore x : [α,β]→ Rnis of bounded Φ-variation on[α,β].

    Assume that α ≤ s1< d < s2≤ β.By (iii) in hypotheses and by Theorem 1 we obtain that for any ?>0 the limit function x is a solution of the Kurzweil equation

    on the intervals [α,d ? ?]and [d+ ?,β].Therefore for any ? >0 with ? ≤ min(s2?d,d ?s1), we have

    because evidently

    by the hypothesis (iii).

    For a given ε>0 there is a δ1>0 such that

    for every ρ ∈ (0,δ1).Assume that δ ∈ (0,δ1) corresponding to ε by requirement (v)from hypotheses.From the existence of the limit=x(d),we obtain that there is a ? ∈ (0,δ) such that

    and by (2) there is a k1∈N, k1>k0such that

    for k >k1.Hence for k >k1, we have

    Using (v) from hypotheses we obtain

    By the proposition of Kurzweil integral we obtain

    and because

    we obtain by (5) the inequality

    because we also have ? < δ1.

    Hence for every k >k1, k ∈N, we get

    By (2) there exists k2∈N, k2>k1such that

    whenever k >k1and therefore

    since ε>0 was given arbitrarily.

    Using (3),(4) and (6), we finally obtain

    The case when α ≤ s1=d

    The remaining cases of possible positions of s1, s2in the interval [α,β]are covered directly by Theorem 1 and we obtain that (7) holds for every s1,s2∈ [α,β], which proves the theorem.

    4 Application for a sequence of ordinary differential equations

    This section is devoted to the application to the emphatic convergence of Kurzweil equations in a sequence of ordinary differential equations.

    Theorem 3Let G=Rn×[?1,1], assume that

    where φk: [?1,1]→ R, k = 1,2,··· is a sequence of Lebesgue integrable functions which is defined as follows φk(t) ≥ 0, t ∈ [?1,1], and the sequence of functions Φk:[?1,1]→ R given by

    for k =1,2,···, let αk∈ [?1,0], βk∈ [0,1], where αk< βkandLet Φk:[?1,1]→ [0,1]be continuous on [?1,1], increasing on [αk,βk]and such that

    Let the function g :Rn→Rnbe given such that

    for x,y ∈Rn.

    If f :G → Rnsatisfies the Carathodory conditions and

    for [t1,t2]? [?1,1], where r is a Lebesgue integrable function in [?1,1], hk:[?1,1]→R is nondecreasing and continuous from the left.

    Define

    Then the ordinary differential equation (8) converges emphatically to

    where v(·,x) is the uniquely determined solution of

    on [0,1]with v(0,x)=x.H(t)=0 for t ≤0, H(t)=1 for t>0.

    ProofBy the assumption of Φk, we have

    By Proposition 5.11 (see [4]), there is h : [?1,1]→ R is nondecreasing and continuous, ω : [0,+∞) → [0,+∞) is increasing continuous function such that F(x,t) ∈F(G,h,ω).It can be further proved that F ∈ FΦ(G,h,ω) by the definition of Φ for[t1,t2]? [?1,1].By Theorem 5.14 (see [4]) the ordinary differential equation (8) is equivalent to the Kurzweil equation

    For (x,t)∈G, define

    for t1,t2∈ [?1,1],connecting with the definition of Φ,we obtain Fk(x,t)∈ FΦ(G,hk,?),because

    The next we prove that there is a function F0(x,t)=F(x,t)+(v(1,x)?x)H(t) to which the sequence Fk(x,t) converges emphatically for k → ∞.

    Since the function h is continuous at 0,by the definition of Φ,for every η >0 there exists δ >0 such that

    and of course also Φ(h(β)? h(α))< η for every interval [α,β]? [?δ,δ].Let δ′∈ (0,δ)be given and let k0∈ N be such that for k >k0, we have [αk,βk]? [?δ′,δ′].

    Assume that for x0∈ Rnis given and that y : [?δ′,δ′]→ Rnis a solution of the Kurzweil equation

    such that ||y(?δ′)? x0|| < δ.Then by the definition of a solution we have

    for every r ∈ [?δ′,δ′].Since Φk(t) = 0 for t ≤ αk, we use the notation of the Stieltjes integral in the second integral.

    For the restriction Φk:[αk,βk]→ [0,1]let us denote by:[0,1]→ [αk,βk]the inverse function to Φk.The functionis continuous and increasing on [0,1].If now s ∈ [0,1]then(s)∈ [αk,βk]? [?δ′,δ′]and we have

    Applying the Substitution Theorem of Kurzweil integral to the last integral, we obtain

    since v(s,x0) is a solution of (10) on [0,1], we have

    for every s ∈[0,1].(13) and (14) yield further

    and therefore

    for all s ∈[0,1].Consequently, taking into account (9) and (11), we obtain

    Using the Gronwall Lemma (see [4]for example), we obtain from the last inequality the estimate

    and for s=1 also

    Further, we have

    because Φk(t)=1 for t ≥ βk, and consequently, by (11)

    For a given ε > 0 the values of η > 0 and δ > 0 can be taken so small that(δ+ η)(1+eL) < ε and we can easily conclude that for every ε > 0 there is a δ > 0 such that if δ′∈ (0,δ) and k > k0then for every solution y : [?δ′,δ′]→ Rnof (12) on the interval [?δ′,δ′]such that ||y(?δ′)? x0||≤ δ the inequality

    holds.

    For (x,t)∈G, define

    Then

    It is easy to see that (iv) from hypotheses holds and using the definition of F0we can write (15) in the form

    and the results presented above show that(v)from hypotheses is fulfilled.The remaining parts of hypotheses are easy to check with

    for (x,t)∈G and finally it can be concluded that the functions Fkconverges emphatically to F0for k → ∞.Therefore the continuous dependence result given in Theorem 2 can be used in this situation.

    The right hand sides of this sequence of Kurzweil equations emphatically converge to the function

    Let us define a function x:[?1,1]→ Rnas follows:

    Let u:[?1,0]→ Rnbe a unique(for increasing values of t)solution of the ordinary differential equation

    on [?1,0].Let v(t,u(0)) be the unique (for increasing values of t) solution of (10)defined on[0,1]such that v(0,u(0))=u(0).Let further ω :[0,1]→ Rnbe a unique(for increasing values of t) solution of (16) on the interval [0,1]for which ω(0)=v(1,u(0)).Let us set

    Then x:[?1,1]→ Rnis a solution of the Kurzweil equation

    by Theorem 5.20 (see [4]).It can be further shown that if yk→ x(?1) for k → ∞ then for sufficiently large k ∈ N there exists a solution xk: [?1,1]→ Rnof (8) on [?1,1]and

    This convergence phenomenon express the fact that the dynamics of the system(8) in a small neighbourhood of 0 is emphatically forced by the large term g(x)φk(t)which influences the system in a short time in the same way as the term g(x) does in a time interval the length of which is close to the integral of φk, i.e.close to 1.

    Remark:If the function Φ(u) defined in section 2 satisfies

    then by Theorem 1.15 of [13], BVΦ[a,b]=BV[a,b], where BV[a,b]represents the class of all functions of bounded variation in usual sense on [a,b].Therefore, in this case,the result of Theorem 2 is equivalent to the result in [4].

    Notice that if

    by Theorem 1.15 of [13], we have

    For example Φ(u)=up(1

    Therefore, Theorem 2 is essential generalization of the result in [4].

    看免费av毛片| 人妻一区二区av| 亚洲国产日韩一区二区| 成人黄色视频免费在线看| 蜜桃国产av成人99| 9191精品国产免费久久| 18禁黄网站禁片午夜丰满| 免费在线观看影片大全网站| 亚洲国产精品一区二区三区在线| 免费日韩欧美在线观看| 视频在线观看一区二区三区| 777米奇影视久久| 老司机亚洲免费影院| 久久久久视频综合| 又紧又爽又黄一区二区| 宅男免费午夜| 亚洲精品国产一区二区精华液| 中文欧美无线码| 国产一区二区激情短视频 | 欧美变态另类bdsm刘玥| 啦啦啦中文免费视频观看日本| 69av精品久久久久久 | 国产精品久久久人人做人人爽| 美女中出高潮动态图| 亚洲视频免费观看视频| 黄频高清免费视频| 99热国产这里只有精品6| 精品欧美一区二区三区在线| 窝窝影院91人妻| 两性午夜刺激爽爽歪歪视频在线观看 | 69精品国产乱码久久久| 欧美黄色淫秽网站| 亚洲国产中文字幕在线视频| 亚洲专区字幕在线| 国产无遮挡羞羞视频在线观看| 日韩制服丝袜自拍偷拍| 亚洲成人国产一区在线观看| 黄频高清免费视频| 十八禁人妻一区二区| 国产一区二区三区av在线| 久久久久国内视频| 这个男人来自地球电影免费观看| 久久久久国产一级毛片高清牌| 青春草亚洲视频在线观看| 午夜日韩欧美国产| 另类精品久久| 两个人免费观看高清视频| 国产一区二区激情短视频 | 欧美激情久久久久久爽电影 | av免费在线观看网站| 动漫黄色视频在线观看| 欧美 日韩 精品 国产| 久久久久久人人人人人| 成人av一区二区三区在线看 | 一区二区三区乱码不卡18| 国产免费一区二区三区四区乱码| 色精品久久人妻99蜜桃| 十八禁网站网址无遮挡| 国产高清视频在线播放一区 | 亚洲熟女毛片儿| 91字幕亚洲| h视频一区二区三区| 亚洲精品粉嫩美女一区| 欧美亚洲 丝袜 人妻 在线| 国产一区二区在线观看av| 高清在线国产一区| 久久精品亚洲熟妇少妇任你| 嫩草影视91久久| 亚洲精品久久成人aⅴ小说| 一二三四社区在线视频社区8| 日韩视频一区二区在线观看| 18禁裸乳无遮挡动漫免费视频| 国产男女内射视频| 色视频在线一区二区三区| 欧美人与性动交α欧美软件| 欧美精品啪啪一区二区三区 | 久久人人97超碰香蕉20202| 久久精品熟女亚洲av麻豆精品| 岛国毛片在线播放| 视频在线观看一区二区三区| 国产精品欧美亚洲77777| 色视频在线一区二区三区| 99国产精品一区二区三区| 亚洲精品成人av观看孕妇| videos熟女内射| 1024香蕉在线观看| 岛国毛片在线播放| 大型av网站在线播放| 老司机午夜十八禁免费视频| 精品国产乱子伦一区二区三区 | 91麻豆精品激情在线观看国产 | 99精品久久久久人妻精品| 亚洲精品国产一区二区精华液| 日本av手机在线免费观看| 精品久久久精品久久久| 悠悠久久av| 精品人妻1区二区| 国产精品一区二区在线观看99| 在线观看免费日韩欧美大片| 丰满人妻熟妇乱又伦精品不卡| 日韩免费高清中文字幕av| 亚洲精品国产区一区二| 精品一区二区三卡| 亚洲av电影在线进入| 香蕉国产在线看| 国产激情久久老熟女| 亚洲av片天天在线观看| 黄色 视频免费看| h视频一区二区三区| 免费观看人在逋| 久9热在线精品视频| 国产精品欧美亚洲77777| 丰满人妻熟妇乱又伦精品不卡| 99九九在线精品视频| 欧美人与性动交α欧美软件| 国产亚洲一区二区精品| 国产免费现黄频在线看| 黄片大片在线免费观看| 国产男人的电影天堂91| 国产精品久久久久成人av| 久久人人97超碰香蕉20202| 新久久久久国产一级毛片| 亚洲男人天堂网一区| 纵有疾风起免费观看全集完整版| 中文字幕色久视频| 一本大道久久a久久精品| 国产亚洲一区二区精品| 少妇被粗大的猛进出69影院| 伊人亚洲综合成人网| 国产区一区二久久| 在线观看舔阴道视频| 飞空精品影院首页| 国产一区二区三区综合在线观看| 亚洲色图 男人天堂 中文字幕| 青春草亚洲视频在线观看| 丝袜脚勾引网站| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| 国产精品亚洲av一区麻豆| 久久久久久久久免费视频了| 99久久人妻综合| 99精品欧美一区二区三区四区| 日韩人妻精品一区2区三区| 亚洲成国产人片在线观看| 亚洲精品av麻豆狂野| 妹子高潮喷水视频| 热99久久久久精品小说推荐| 亚洲国产精品一区二区三区在线| 亚洲精品国产一区二区精华液| 我要看黄色一级片免费的| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲高清精品| 亚洲男人天堂网一区| 亚洲欧美成人综合另类久久久| 天堂8中文在线网| 侵犯人妻中文字幕一二三四区| 啦啦啦免费观看视频1| 精品国产乱码久久久久久男人| 国产国语露脸激情在线看| 淫妇啪啪啪对白视频 | 日韩电影二区| 高清黄色对白视频在线免费看| 日韩大片免费观看网站| 高清欧美精品videossex| 不卡一级毛片| www.av在线官网国产| 操出白浆在线播放| 大片免费播放器 马上看| 欧美 日韩 精品 国产| 91精品三级在线观看| 欧美在线一区亚洲| 亚洲精品日韩在线中文字幕| 日本a在线网址| 欧美激情高清一区二区三区| 日本黄色日本黄色录像| 日韩精品免费视频一区二区三区| 亚洲精品国产区一区二| 90打野战视频偷拍视频| 少妇人妻久久综合中文| 亚洲欧美清纯卡通| 天天影视国产精品| 美女主播在线视频| 日日爽夜夜爽网站| 精品亚洲乱码少妇综合久久| 中文字幕人妻丝袜制服| 色综合欧美亚洲国产小说| 建设人人有责人人尽责人人享有的| 欧美变态另类bdsm刘玥| 亚洲精品久久久久久婷婷小说| 制服人妻中文乱码| 不卡av一区二区三区| 极品少妇高潮喷水抽搐| 亚洲九九香蕉| bbb黄色大片| 青青草视频在线视频观看| 老熟妇仑乱视频hdxx| 捣出白浆h1v1| 中文字幕人妻熟女乱码| 日日摸夜夜添夜夜添小说| 丝袜在线中文字幕| 人人妻人人澡人人爽人人夜夜| 中文字幕人妻熟女乱码| 国产精品久久久久成人av| 国产又爽黄色视频| 国产成人影院久久av| 操出白浆在线播放| 日日爽夜夜爽网站| 男人舔女人的私密视频| 一个人免费在线观看的高清视频 | 久久久国产一区二区| 免费日韩欧美在线观看| kizo精华| 一区在线观看完整版| av在线播放精品| 三上悠亚av全集在线观看| 日本精品一区二区三区蜜桃| 91国产中文字幕| 欧美国产精品一级二级三级| 久久国产精品影院| 99re6热这里在线精品视频| 欧美精品一区二区免费开放| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线| 少妇裸体淫交视频免费看高清 | 亚洲第一青青草原| 国产成人欧美在线观看 | 夜夜骑夜夜射夜夜干| 欧美激情 高清一区二区三区| 老司机午夜十八禁免费视频| 飞空精品影院首页| 日韩大码丰满熟妇| 亚洲欧美清纯卡通| 久久女婷五月综合色啪小说| 50天的宝宝边吃奶边哭怎么回事| 热99久久久久精品小说推荐| 欧美另类亚洲清纯唯美| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出抽搐动态| 动漫黄色视频在线观看| 男女边摸边吃奶| 午夜日韩欧美国产| 欧美激情极品国产一区二区三区| 黑人欧美特级aaaaaa片| 日韩电影二区| 久久久久视频综合| av线在线观看网站| 伊人亚洲综合成人网| 国产高清国产精品国产三级| 国产精品国产三级国产专区5o| 又紧又爽又黄一区二区| 亚洲精品在线美女| 国产精品香港三级国产av潘金莲| 亚洲中文av在线| 欧美在线一区亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 国产男女超爽视频在线观看| 女人精品久久久久毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 性少妇av在线| 两性午夜刺激爽爽歪歪视频在线观看 | 五月天丁香电影| 考比视频在线观看| 叶爱在线成人免费视频播放| 亚洲人成电影免费在线| 国产亚洲av高清不卡| 91精品三级在线观看| 国产国语露脸激情在线看| 亚洲精品国产av成人精品| 日韩视频在线欧美| 最黄视频免费看| 啦啦啦视频在线资源免费观看| 狠狠精品人妻久久久久久综合| 最近最新中文字幕大全免费视频| 国产成人av激情在线播放| 伊人久久大香线蕉亚洲五| 肉色欧美久久久久久久蜜桃| 国产亚洲欧美精品永久| 老司机靠b影院| 国产精品自产拍在线观看55亚洲 | 丰满饥渴人妻一区二区三| kizo精华| 成人黄色视频免费在线看| 淫妇啪啪啪对白视频 | 久久人妻福利社区极品人妻图片| 老司机福利观看| 久久人人爽人人片av| 日本精品一区二区三区蜜桃| 首页视频小说图片口味搜索| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 日本精品一区二区三区蜜桃| tocl精华| 国产高清videossex| 国产免费一区二区三区四区乱码| 精品一区二区三卡| 久久香蕉激情| 一区二区三区乱码不卡18| 在线观看免费视频网站a站| 免费高清在线观看视频在线观看| 丝袜美足系列| h视频一区二区三区| 精品福利永久在线观看| 欧美大码av| 不卡一级毛片| 狠狠狠狠99中文字幕| 大码成人一级视频| 不卡av一区二区三区| 视频区欧美日本亚洲| 两性夫妻黄色片| 97人妻天天添夜夜摸| 老司机影院毛片| 成年女人毛片免费观看观看9 | 天堂中文最新版在线下载| 亚洲avbb在线观看| 亚洲精品国产区一区二| 亚洲成人免费av在线播放| 免费看十八禁软件| 日日爽夜夜爽网站| 久久精品aⅴ一区二区三区四区| 国产色视频综合| 色播在线永久视频| 国产一卡二卡三卡精品| 精品一区二区三区四区五区乱码| 国产高清视频在线播放一区 | 高清在线国产一区| 亚洲av成人不卡在线观看播放网 | 首页视频小说图片口味搜索| 97精品久久久久久久久久精品| 亚洲国产精品999| 三级毛片av免费| 欧美精品啪啪一区二区三区 | 国产伦人伦偷精品视频| 男女高潮啪啪啪动态图| 久久精品国产a三级三级三级| 男女免费视频国产| 国产成人av激情在线播放| 国产精品久久久av美女十八| 亚洲激情五月婷婷啪啪| 下体分泌物呈黄色| 亚洲性夜色夜夜综合| 久久久精品94久久精品| 悠悠久久av| 天天操日日干夜夜撸| 搡老乐熟女国产| 精品人妻1区二区| 亚洲精品自拍成人| 男男h啪啪无遮挡| av欧美777| 人妻久久中文字幕网| 涩涩av久久男人的天堂| 国产一区二区在线观看av| 黑人操中国人逼视频| 狠狠精品人妻久久久久久综合| 黑丝袜美女国产一区| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 纵有疾风起免费观看全集完整版| 99国产精品99久久久久| 两个人免费观看高清视频| 亚洲欧美成人综合另类久久久| 777久久人妻少妇嫩草av网站| 无遮挡黄片免费观看| 国产精品成人在线| 曰老女人黄片| 成年人免费黄色播放视频| 欧美亚洲 丝袜 人妻 在线| 夜夜骑夜夜射夜夜干| 宅男免费午夜| 日韩中文字幕视频在线看片| 老汉色∧v一级毛片| 免费观看人在逋| 看免费av毛片| 午夜福利视频在线观看免费| 欧美日韩视频精品一区| 亚洲一区中文字幕在线| 成年人免费黄色播放视频| 熟女少妇亚洲综合色aaa.| 亚洲精品中文字幕在线视频| 欧美xxⅹ黑人| 日日爽夜夜爽网站| 深夜精品福利| 1024视频免费在线观看| 亚洲精品久久午夜乱码| 日韩 亚洲 欧美在线| 午夜福利影视在线免费观看| 在线亚洲精品国产二区图片欧美| 亚洲精品美女久久av网站| 国产成人一区二区三区免费视频网站| av国产精品久久久久影院| 日韩欧美国产一区二区入口| 最近中文字幕2019免费版| 男女下面插进去视频免费观看| 亚洲精品久久久久久婷婷小说| 久久久国产一区二区| 亚洲自偷自拍图片 自拍| 狠狠精品人妻久久久久久综合| 国产又色又爽无遮挡免| 亚洲精品日韩在线中文字幕| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品一区蜜桃| 麻豆国产av国片精品| 老司机影院成人| 久久精品人人爽人人爽视色| 色视频在线一区二区三区| 午夜影院在线不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁日日躁夜夜躁夜夜| 成在线人永久免费视频| 50天的宝宝边吃奶边哭怎么回事| 精品视频人人做人人爽| 操美女的视频在线观看| 国产欧美日韩一区二区三区在线| 国产精品偷伦视频观看了| 天天躁日日躁夜夜躁夜夜| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| 国产成人精品无人区| 精品卡一卡二卡四卡免费| 亚洲伊人色综图| 午夜福利在线观看吧| 精品国产国语对白av| 精品人妻熟女毛片av久久网站| 熟女少妇亚洲综合色aaa.| 十八禁高潮呻吟视频| 久久九九热精品免费| 悠悠久久av| 亚洲国产av新网站| 欧美中文综合在线视频| 18禁黄网站禁片午夜丰满| 在线观看www视频免费| 欧美激情极品国产一区二区三区| 一级毛片女人18水好多| 欧美老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 亚洲第一青青草原| 丰满人妻熟妇乱又伦精品不卡| 久久精品aⅴ一区二区三区四区| 免费不卡黄色视频| 在线亚洲精品国产二区图片欧美| 国产色视频综合| 日韩一区二区三区影片| 欧美人与性动交α欧美精品济南到| 一边摸一边做爽爽视频免费| 老司机影院毛片| 不卡av一区二区三区| 色精品久久人妻99蜜桃| 超碰97精品在线观看| 99热国产这里只有精品6| 亚洲精品一区蜜桃| 国产激情久久老熟女| 人妻 亚洲 视频| 久久久精品94久久精品| 一二三四社区在线视频社区8| 色播在线永久视频| 亚洲黑人精品在线| 欧美成人午夜精品| 亚洲欧美成人综合另类久久久| 亚洲欧美色中文字幕在线| 精品一区在线观看国产| 国产亚洲欧美在线一区二区| 色播在线永久视频| 男女之事视频高清在线观看| 一边摸一边做爽爽视频免费| 成人手机av| 日韩欧美国产一区二区入口| 国产男人的电影天堂91| 亚洲av美国av| 99久久综合免费| 欧美日韩亚洲综合一区二区三区_| 我要看黄色一级片免费的| 国产精品久久久久久人妻精品电影 | 在线观看免费日韩欧美大片| 国产精品影院久久| 国产成人啪精品午夜网站| 欧美激情 高清一区二区三区| 国产99久久九九免费精品| 美女脱内裤让男人舔精品视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久影院123| 黄色视频不卡| 高清欧美精品videossex| av超薄肉色丝袜交足视频| 黄色 视频免费看| 日韩大片免费观看网站| 亚洲成人国产一区在线观看| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av高清一级| 亚洲五月色婷婷综合| 别揉我奶头~嗯~啊~动态视频 | 国产精品欧美亚洲77777| 精品人妻熟女毛片av久久网站| 一区二区三区乱码不卡18| 色精品久久人妻99蜜桃| 亚洲 国产 在线| 国产亚洲欧美精品永久| 久久天堂一区二区三区四区| 色播在线永久视频| 午夜福利在线观看吧| 天天躁夜夜躁狠狠躁躁| 首页视频小说图片口味搜索| 亚洲,欧美精品.| 精品高清国产在线一区| 一级片免费观看大全| 丰满饥渴人妻一区二区三| 99热网站在线观看| av欧美777| 日日夜夜操网爽| 亚洲国产精品一区二区三区在线| 欧美亚洲日本最大视频资源| 在线av久久热| 1024香蕉在线观看| 大片免费播放器 马上看| 欧美在线一区亚洲| 999久久久国产精品视频| av网站在线播放免费| 久久av网站| 99九九在线精品视频| 视频在线观看一区二区三区| 亚洲精品一区蜜桃| 国产精品一区二区在线不卡| 亚洲av日韩精品久久久久久密| 五月天丁香电影| 国产熟女午夜一区二区三区| 国产精品久久久av美女十八| 精品少妇久久久久久888优播| 精品免费久久久久久久清纯 | 精品少妇一区二区三区视频日本电影| 久久精品久久久久久噜噜老黄| 巨乳人妻的诱惑在线观看| 9色porny在线观看| 成年美女黄网站色视频大全免费| 国产一级毛片在线| 亚洲第一欧美日韩一区二区三区 | 免费女性裸体啪啪无遮挡网站| 国产日韩欧美视频二区| 国产97色在线日韩免费| 高清视频免费观看一区二区| 欧美性长视频在线观看| 国产一区二区三区av在线| 国产精品久久久av美女十八| 久久99热这里只频精品6学生| 满18在线观看网站| 悠悠久久av| 高清av免费在线| 欧美日本中文国产一区发布| 下体分泌物呈黄色| 久久久精品国产亚洲av高清涩受| 久久天堂一区二区三区四区| 一本久久精品| 亚洲精华国产精华精| 日韩一区二区三区影片| 电影成人av| 99久久国产精品久久久| 亚洲国产成人一精品久久久| 少妇人妻久久综合中文| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看| 侵犯人妻中文字幕一二三四区| 日本av免费视频播放| 飞空精品影院首页| 99香蕉大伊视频| 国产精品影院久久| 国产男人的电影天堂91| 波多野结衣av一区二区av| 99久久精品国产亚洲精品| 精品亚洲乱码少妇综合久久| 日韩大片免费观看网站| 午夜福利视频在线观看免费| 亚洲国产欧美在线一区| 国产精品久久久人人做人人爽| 久久综合国产亚洲精品| 日本黄色日本黄色录像| 精品国产国语对白av| 狠狠狠狠99中文字幕| 亚洲专区国产一区二区| 香蕉国产在线看| 亚洲精品一区蜜桃| 老司机午夜福利在线观看视频 | 老司机影院成人| 亚洲一区二区三区欧美精品| 蜜桃国产av成人99| 日本vs欧美在线观看视频| 美女午夜性视频免费| 欧美精品av麻豆av| 久久久水蜜桃国产精品网| 精品国产国语对白av| 在线看a的网站| 亚洲精品成人av观看孕妇| 99精品久久久久人妻精品| 丁香六月天网| 国产精品欧美亚洲77777| 91成年电影在线观看| 国产视频一区二区在线看| 成人国产av品久久久| 叶爱在线成人免费视频播放| 欧美国产精品va在线观看不卡| 午夜福利在线观看吧| 中文字幕制服av| 国产精品 欧美亚洲| 国内毛片毛片毛片毛片毛片| 亚洲三区欧美一区| 国产一区二区在线观看av| 精品视频人人做人人爽| 在线观看免费高清a一片| 又大又爽又粗| 美女午夜性视频免费| 亚洲成人手机| 制服诱惑二区| 欧美变态另类bdsm刘玥| 免费在线观看视频国产中文字幕亚洲 | 丰满少妇做爰视频| 亚洲精品日韩在线中文字幕| 天天影视国产精品| 亚洲av片天天在线观看|