• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecularly imprinted polymers combination with deep eutectic solvents for solid-phase extraction of caffeic acid from hawthorn

    2015-08-03 09:26:34LIGuizhenTANGWeiyangCAOWeiminWANGQianZHUTao
    色譜 2015年8期

    LI Guizhen,TANG Weiyang,CAO Weimin,WANG Qian,ZHU Tao*

    (1.Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion,School of Chemistry and Chemical Engineering,Tianjin University of Technology,Tianjin 300384,China;2.Shijiazhuang Yiling Pharmaceutical Co.,Ltd.,Shijiazhuang 050035,China)

    Hawthorn,a member of the Rosaceae family,has been used as food and medicine around the world[1-4].Hawthorn is known as a valuable medicinal plant which contains a large number of biological active substances (flavonoids [5],chlorogenic acid[6],caffeic acid (Fig.1)[7],and so on).Caffeic acid,as one of the ingredients of hawthorn,has been widely investigatedbecause of biological and pharmacological activities,such as antidiabetic[8],antioxidants[9,10],anti-inflammatory [11-13],and so on.Caffeic acid was extracted with many different methods,such as sonication/ethanol extraction[14,15],capillary zone electrophoresis [16],and so on.Because of the complexity of the plant extracts,asimpleand effectivepretreatment process is necessary to isolate and concentrate the caffeic acid before analysis[17].Until now,the pretreatment methods mainly include solidphase extraction (SPE)[18,19],dispersive liquid-liquid microextraction[20],solid-phase microextraction[21],and hollow fiber-based liquidliquid-liquid microextraction [22,23].Among these methods,SPE is the most widely applied pretreatment technique because of its high recovery,reproducibility,and simple operation,low cost and so on[24,25].

    Fig.1 Chemical structure of caffeic acid

    Molecularly imprinted polymers(MIPs)exhibiting high selectivity and affinity to the target molecule (template),are attracting a fast growing research[26-29].The special binding sites of MIPs are formed by the self-assembly of the template with functional group and the monomer in a co-polymerization process.So MIPs can selectively rebind the template in the presence of other closely related structures[30-34].Because of its features of high selectivity,low cost for preparation and workability under different conditions,SPE involving MIPs have been proved to be successful applications[35-39].Furthermore,elution solutions in the MIPs-SPE procedures are important in the elution capability[40].Deep eutectic solvents (DESs)are green designer solvents composed of quaternary ammonium salts,hydrogen donors and show some good properties,such as low volatility,low toxicity,low cost,and high biodegradability[41-43].DESs have attracted considerable attentions in the area of synthesis,electrochemistry,materials,biochemistry and separation [44-49] in recent years.DES with addition of methanol can have significant benefits in terms of a decrease in viscosity,stronger basicity and lower cost for extracting the target compounds[50].

    In this work,MIPs with caffeic acid as template molecule and non-imprinted polymers (NIPs)were prepared,and they were characterized using field emission scanning electron microscopy(FESEM)and adsorption capacity test.MIPs,NIPs and C18were used for rapid purification of caffeic acid from hawthorn using SPE.To optimize the MIPs-SPE procedures,methanol was mixed with the two kinds of DESs (glycerol-based DESs,urea-based DESs)in different ratios (0.5∶1,1∶1,2∶1,3∶1,4∶1,5∶1,v/v),and they were used as elution solutions in the MIPs-SPE procedures.

    1 Experimental

    1.1 Reagents and material

    Hawthorn was bought from a market in Tianjin,China.Caffeic acid was bought from Jinsui Bio-Technology Co.,Ltd.(Shanghai,China).Choline chloride (ChCl)was bought from Guangfu Chemical Reagent Co.,Ltd.(Tianjin,China).Glycerol and urea were bought from Beichen Chemical Reagent Co.,Ltd.(Tianjin,China).Ethylene glycoldimethacrylate (EDMA)was bought from Hengshan Sci-Tech Co.,Ltd (Tianjin,China).2-Methylpropionitrile(AIBN)was bought from Bodi Chemical Industry Co.,Ltd.(Tianjin,China).Acrylamide(AM)was bought from Guangfu Chemical Research Institute(Tianjin,China).Acetic acid was bought from Zhiyuan Chemical Reagent Co.,Ltd.(Tianjin,China).Methanol was bought from Jinke Chemical Research Institute (Tianjin,China).Empty SPE cartridges(with gaskets)were bought from Agilent Technologies Inc.(Tianjin,China).C18cartridges(with 200 mg packed materials)were bought from Agilent Technologies Inc.(Tianjin,China).All the other solvents used in the experiment were HPLC or analytical grade,and all the samples were filtered before injection into the HPLC system.

    1.2 Apparatus

    The chromatography system consisted of LC-10ATVP pump and SPD-10AVP UV-Vis detector(Shimadzu,Suzhou,China),with the injector(20-μL sample loop).The analysis was performed on an Optima Pak C18column(150 mm×4.6 mm,5 μm,RS tech Corporation,Daejeon,Korea).DF-101 heating magnetic agitator (Yuhua,Gongyi,China) and a Soxhlet extractor(Hengshan,Tianjin,China)were used for preparation of MIPs.Distilled water(18.2 MΩ·cm)was filtered with a vacuum pump (Yukang,Shanghai,China)and a filter before use.

    1.3 Preparation of DESs

    The glycerol-based DESs were formed by choline chloride (ChCl)-glycerol (1/2,n/n)in a conical flask,heating to 80℃ with constant stirring for 2 h until a homogeneous liquid formed.The urea-based DESs were prepared with choline chloride-urea (1/2,n/n)in the same procedure.

    1.4 Preparation of imprinted polymers

    Template molecule (caffeic acid,0.180 6 g)and AM functional monomers (0.280 4 g)were added to a clean,dry round bottom flask containing a magnetic stirring bar,and then dissolved in appropriate 4.0 mL methanol-water (90/10,v/v)solvents.The solution was ultrasonicated for 30 min and sparged with nitrogen for 5 min to remove oxygen.EDMA (3.79 mL)and AIBN (0.04 g)were then added into the solution,and they were kept in oil bath at 60℃ for 48 h.The synthesis diagram of MIPs is shown in Fig.2.After polymerization,polymers were ground into particles and sieved.A total of 200 mg MIP polymer was ground and washed with methanol-acetic acid(90/10,v/v)to remove the templates,porogenic solvents and other compounds.Finally,the obtained particles were purified with deionized water and methanol for 2 h by Soxhlet extraction,and dried at 60℃ under vacuum for 48 h.The NIPs(without template molecule)were prepared in the same procedure.

    Fig.2 Synthesis diagram of MIPs

    1.5 Characterization of MIPs and NIPs

    The morphological microstructures of the dried MIPs and NIPs particles were observed by FESEM (MERLIN Compact,ZEISS,Germany).

    1.6 Rebinding experiment

    For static adsorption experiment,20.0 mg each of MIPs and NIPs particles was mixed with 2.0 mL of caffeic acid solutions of mass concentrations of 5.0-200.0 mg/L in centrifuge tubes.After shaking for 10 h,the mixtures were centrifuged,and the upper solutions were determined to calculate the adsorption capacities.

    For dynamic adsorption experiment,2.0 mL of 50.0 mg/L caffeic acid aqueous solution was mixed with 20.0 mg each of MIPs and NIPs in 10 mL of centrifuge tubes,and they were shaken for 60-450 min.After centrifuging the mixture,the upper solution in each tube was determined to calculate the adsorption capacities.

    1.7 Preparation of standard solutions and chromatographic separation

    The standard caffeic acid was dissolved in methanol to give a mass concentration of 1 000.00 mg/L.For method development, a series of standard solutions containing caffeic acid were prepared at five mass concentration levels over the range of 5.00-100.00 mg/L.The standard curve of caffeic acid was linear by assaying five data points and each sample was determined for three times.

    The analysis was performed on an HPLC system with a C18column,and the mobile phase was methanol-water-acetic acid (18/82/0.5,v/v/v).The flow rate was 0.8 mL/min,and the chromatogram was monitored at a wavelength of 330 nm.

    1.8 SPE by MIPs,NIPs and C18

    Hawthorn was washed by water,dried in an oven at 50℃,and ground into powder.A portion of 0.5 mg hawthorn powder was added into 5.0 mL ethanol,and the mixture was ultrasonicated for 30 min.After centrifugation,the extract was filtered and collected as a stock sample solution.The corresponding MIPs and NIPs (200.0 mg)were packed in empty SPE cartridges,and two gaskets were put at both ends to avoid the loss of adsorbent.After each SPE cartridge was preconditioned sequentially by methanol(1.0 mL)and deionized water(3.0 mL),1.0 mL of the extract solution was loaded on the cartridge,followed by deionized water(1.0 mL)as the washing solution and methanol(2.0 mL)as the elution solution.The effluents at every step were collected by a 1.0 mL syringe,which was connected to the bottom of SPE cartridge to ensure a suitable and constant flow rate.The obtained effluents were transferred to reagent bottles for further HPLC analysis.

    1.9 DESs for optimization of MIPs-SPE procedure

    Methanol was mixed with two kinds of DESs(glycerol-based DESs,urea-based DESs)in different ratios (0.5∶1,1∶1,2∶1,3∶1,4∶1,5∶1,v/v),and they were used as elution solutions (2.0 mL)in the MIPs-SPE procedures.

    2 Results and discussion

    2.1 Morphological characteristics of imprinted polymers

    FE-SEM has successfully been used to observe the morphologies of the MIPs and NIPs (Fig.3),which were important parameters used to evaluate polymerization stability and reproducibility.According to the figure,there were no significant difference between the MIPs and NIPs.Moreover,many macropores and flow-through channels were inlaid in the network skeletons of these polymers.Additionally,the shapes of the two polymers were analogously globular with diameters ranging from 1 μm to 4 μm,which indicated their fine macropores structure and suitability as SPE adsorbents.

    Fig.3 FE-SEM images of the (a)MIPs and (b)NIPs

    2.2 Adsorption characteristics of the imprinted polymers

    The adsorption equilibrium showed the mass transfer rate of polymers.To evaluate the binding property of the polymers(MIPs and NIPs),static adsorption and dynamic adsorption experiments were performed at room temperature.The results of the static absorption and dynamic adsorption are shown in Fig.4.Fig.4a shows that caffeic acid adsorption increased with an increase in initial concentration,and the adsorption capacities gradually tended to be saturated when the caffeic acid mass concentration was more than 150.0 mg/L.Fig.4b showed that the adsorptions of MIPs and NIPs increased slightly but tended to balance at approximately 390-450 min.The results of dynamic equilibrium adsorption showed that the adsorptions of both MIPs and NIPs were the greatest at nearly 390 min,which indicatedthat the interaction time of aggregation and adhesion of NIPs was similar to that of MIPs.Compared with NIPs,MIPs revealed higher adsorption capacity owing to its specific imprinted recognition.

    Fig.4 Adsorption capacity of MIPs and NIPs to caffeic acid (n=3)

    2.3 Optimization of the chromatographic conditions

    The chromatographic conditions were optimized in order to improve the separation efficiency.The chromatograms of the standard caffeic acid samples (50 mg/L)with different volume percentages of acetic acid in the mobile phase are shown in Fig.5.The methanol-water-acetic acid (18/82/0.5,v/v/v)system was tested as the solution to simplify the operation,and the volume percentages of acetic acid in the mobile phase were changed from 0.1% to 0.5%.At last,the optimum mobile phases were methanol-water-acetic acid (18/82/0.5,v/v/v)at a flow rate of 0.8 mL/min.

    2.4 Method validation

    Fig.5 Chromatograms of the standard caffeic acid samples(50 mg/L)with different volume percentages of acetic acid in the mobile phase

    The peak areas(Y)of the caffeic acid were measured and plotted against its mass concentrations (X)after HPLC analysis.The standard curve of caffeic acid was linear over the range of 5.00-100.00 mg/L by assaying seven data points and the two quality control samples in triplicate on three separate occasions,and the regression equations were Y=38 696.53X-47 002.27(R2=0.999 9,n=5).

    According to Table 1,the precision and accuracy of this method were expressed by performing five replicate analyses for the quality control samples at three different concentrations of caffeic acid on the same day and on consecutive days.The intra-and inter-day relative standard deviations(RSDs)of the proposed method were not more than 5.92%and 5.52%,respectively.

    Table 1 Intra-day and inter-day accuracies of caffeic acid by HPLC (n=5)

    2.5 Extraction of caffeic acid from hawthorn

    MIPs,NIPs,and C18were used for rapid purification of caffeic acid from hawthorn with SPE and the chromatograms are shown in Fig.6.With this established method,the extract yields for caffeic acid were 3.46 μg /g,1.01 μg /g and 1.17 μg/g, respectively. This indicated thatSPE process with the MIPs played an important role in this experiment,and the MIPs had good selectivityfor the caffeic acid.These results were conductive to the quantitative analysis of caffeic acid.

    Fig.6 Extraction chromatograms of caffeic acid in hawthorn samples with MIPs,NIPs,and C18SPE cartridge

    2.6 DES for optimization of MIPs-SPE procedures

    Methanol was mixed with two kinds of DESs(glycerol-based DESs,urea-based DESs)in different ratios (0.5∶1,1∶1,2∶1,3∶1,4∶1,5∶1,v/v),and they were used as elution solutions (2.0 mL)in the MIPs-SPE procedures.Elution capabilitiesofmethanol/glycerol-based DESs and methanol/urea-based DESs in the MIPs-SPE procedures are shown in Fig.7.As the decrease of addition ratio of the two kinds of DESs into methanol,the recoveries increased at first and then decreased. Methanol/glycerol-based DESsobtained better elution capability than methanol/urea-based DESs and pure methanol(72.18% )in the MIPs-SPE procedures,and methanol/glycerol-based DESs (3∶1,v/v)had the best elution capability with the recovery of 82.32%.

    The type of DESs is important for the elution capabilities in the MIPs-SPE procedures due to the following effects:diffusion,solubility,viscosity,surface tension,polarity and physicochemical interactions.The DESs with the addition of methanol have significant benefits in terms of a decrease in viscosity,and a lower viscosity solvent is preferred due to the better penetration of pores in the sample matrix.However,an excessive concentration of methanol can decrease the inter-

    Fig.7 Elution capabilities of methanol/glycerol-based DESs and methanol/urea-based DESs in the MIPs-SPE procedures (n =3)

    actions between the DESs and caffeic acid,and increase the polarity of the mixture.The examined viscosities of glycerol-based DESs were greater than the examined viscosities of urea-based DESs,so the elution capabilities of glycerol-based DESs were better than those of urea-based DESs.

    The target compounds were adsorbed on the sample matrix by physical adsorption and chemical interactions,such as van der Waals forces,hydrogen bonding,dipole moment and electrostatic interactions.According to the similar dissolve mutually theory,the target compounds can be dissolved easily by solvents with similar polarities,and the order of polarity of the DESs was glycerol-based DESs>urea-based DESs.In addition to the above mentioned factors,the effect of the positioning of the glycerol groups should be considered.The target compound caffeic acid can be considered as a type of hydrogen-bond donor(HBD).Therefore,the glycerol-based HBDs and caffeic acid interact competitively with a chloride anion.If one molecule of glycerol-based HBD has sufficient space between the hydrogen bond donor groups,it can combine the chloride anion so much that only one molecule can complex around it.Another consideration is that excess branches of glycerol-based HBD also resulted in considerable steric hindrance that prevented the interactions between the flavonoids and chloride anions.Therefore,suitable glycerol-based HBD should have proper space between the HBD groups and fewer branches.As a result,glycerol-based DESsshowed better elution capability than urea-based DESs and methanol in the MIPs-SPE procedures.

    3 Conclusions

    In this work,MIPs and NIPs were prepared in the same procedure,and the FE-SEM and adsorption capacity test were used to evaluate the characteristics of the polymers.The polymers were applied to the rapid purification of caffeic acid from hawthorn.With this established method,the extract yields of caffeic acid from hawthorn with the proposed MIPs,NIPs and C18SPE were 3.46,1.01 and 1.17 μg/g,respectively.To optimize the MIPs-SPE procedures,methanol was mixed with the two kinds of DESs(glycerol-based DESs,urea-based DESs)in different ratios (0.5∶1,1∶1,2∶1,3∶1,4∶1,5∶1,v/v)and they were used as elution solutions.The results showed that MIPs were potential SPE materials,and methanol/glycerol-based DESs (3∶1,v/v)had the best elution capability with the recovery of 82.32%.

    [1] Chang W T,Dao J,Shao Z H.Am J Chin Med,2005,33(1):1

    [2] Rigelsky J M,Sweet B V.Am J Health Syst Pharm,2002,59(5):417

    [3] Jurikova T,Sochor J,Rop O,et al.Molecules,2012,17(12):14490

    [4] Eaton L J,Kinkade S.J Fam Pract,2003,52(10):753

    [5] Fu J H,Zheng Y Q,Li P,et al.Chinese Journal of Integrative Medicine,2013,19(8):582

    [6] Geng C H,Lin M,Wang W Y,et al.Chinese Journal of Analytical Chemistry,2008,63(1):75

    [7] Gundogdu M,Ozrenk K,Ercisli S,et al.Biol Res,2014,47:21

    [8] Celik S,Erdogan S,Tuzcu M.Pharmacol Res,2009,60(4):270

    [9] Maurya D K,Devasagayam T P A.Food Chem Toxicol,2010,48(12):3369

    [10] Rajendra Prasad N,Karthikeyan A,Karthikeyan S,et al.Mol Cell Biochem,2011,349(1/2):11

    [11] Miles E A,Zoubouli P,Calder P C,et al.Nutrition,2005,21(3):389

    [12] Bose J S,Gangan V,Jain S K,et al.Clin Immuno,2009,29:90

    [13] Michaluart P,Masferrer J L,Carothers A M,et al.Cancer Res,1999,59:2347

    [14] Xing Y,Peng H Y,Zhang M X,et al.J Zhejiang Univ-Sci B:Biomed & Biotechnol,2012,13:487

    [15] Iranshahi M,Amanzadeh Y.Chem Nat Comp,2008,44(2):190

    [16] Zhao Y K,Cao Q E,Liu H T,et al.Chromatographia,2000,51:483

    [17] Zhang L,Lu Y Y,Jiang Y.West China Journal of Pharmaceutical Sciences,2013,28:92

    [18] Yan H,Wang F,Han D,et al.Analyst,2012,137:2884

    [19] Yan H Y,Wang F,Wang H,et al.J Chromatogr A,2012,1256:1

    [20] Gupta V,Kumar M,Brahmbhatt H,et al.Plant Physiol Bioch,2011,49:1259

    [21] Zhang Y,Li Y W,Hu Y L,et al.J Chromatogr A,2010,1217:7337

    [22] Wu L,Hu B.J Chromatogr A,2009,1216:7657

    [23] Wu Q,Wu D P,Duan C F,et al.J Chromatogr A,2012,1265:17

    [24] Yang J J,Li Y,Wang J C,ea al.Chinese Journal of Chromatography,2015,33(5):468

    [25] Jung S Y,Park J S,Chang M S,et al.Food Sci Biotechnol,2013,22:241

    [26] Chen L X,Liu Y X,He X W,et al.Chinese Journal of Chromatography,2015,33(5):481

    [27] Yue C Y,Ding G S,Tang A.Chinese Journal of Chromatography,2013,31(1):10

    [28] Zhang K G,Hu Y L,Hu Y F,et al Chinese Journal of Chromatography,2012,30(12):1220

    [29] Wang C L,Ma F,Zheng H Y,et al.Fine Chemicals,2007,24(8):730

    [30] Zheng N,Li Y Z,Chang W B,et al.Anal Chim Acta,2002,452:277

    [31] Nicholls I A,Ramstrom O,Mosbach K.J Chromatogr A,1995,691:349

    [32] Zhou J,He X,Li Y.Anal Chim Acta,1999,394:353

    [33] Takeuchi T,Sunayama H. Encyclopedia of Polymeric Nanomaterials,2014,1:5

    [34] Owens P K,Karlsson L,Lutz E S M,et al.TrAC-Trends Anal Chem,1999,18:146

    [35] Zhu T,Yoon C H,Row K H.Chin J Chem,2011,29:1246

    [36] Blomgre A,Berggren C,Holmberg A,et al.J Chromatogr A,2002,975:157

    [37] Li J H,Wen Y Y,Chen L X.Chinese Journal of Chromatography,2013,31(3):181

    [38] Sun L,Du F Y,Ruan G H.Chinese Journal of Chromatography,2013,31(4):392

    [39] Jodlbauer J,Maier N M,Lindner W.J Chromatogr A,2002,945:45

    [40] Wang L H,Wang M Y,Yan H Y,et al.J Chromatogr A,2014,1368:37

    [41] Gupta S,Manohar C S.Struct Saf,2004,26:123

    [42] Lobo H R,Singh B S,Shankarling G S.Green Chem Lett Rev,2012,5:487

    [43] Maugeri Z,Domínguez de María P.RSC Adv,2012,2:421

    [44] Durand E,Lecomte J,Villeneuve P.Eur J Lipid Sci Technol,2013,115:379

    [45] Tang B,Row K H.Mon Chem,2013,144:1427

    [46] Qi L,Zhang J,Zhang Z Q.Chinese Journal of Chromatography,2013,31(3):249

    [47] Baldelli S.Acc Chem Res,2008,41:421

    [48] Bonhote P,Dias A P,Papageorgiou N,et al.Inorg Chem,1996,35(5):1168

    [49] Li J H,Shen Y F,Zhang Y J,et al.Chem Commun,2005,3:360

    [50] Bi W T,Tian M L,Row K H.J Chromatogr A,2012,1232:37

    av免费观看日本| 七月丁香在线播放| www.精华液| 欧美日韩视频高清一区二区三区二| 国产成人av激情在线播放| 国产1区2区3区精品| av在线播放精品| 欧美另类一区| 欧美另类一区| 国产精品女同一区二区软件| 国产一区二区 视频在线| 爱豆传媒免费全集在线观看| 久久这里只有精品19| 国产精品亚洲av一区麻豆 | 亚洲一区二区三区欧美精品| 亚洲天堂av无毛| 精品国产乱码久久久久久小说| 中文字幕最新亚洲高清| 国产精品免费视频内射| 日韩视频在线欧美| 久久久亚洲精品成人影院| 777米奇影视久久| 夜夜骑夜夜射夜夜干| 国产乱人偷精品视频| 大香蕉久久网| 极品人妻少妇av视频| 一区二区三区四区激情视频| 免费黄网站久久成人精品| 欧美日本中文国产一区发布| 日韩精品有码人妻一区| 国产免费视频播放在线视频| 97在线人人人人妻| 亚洲第一区二区三区不卡| 99热网站在线观看| 超碰成人久久| 欧美av亚洲av综合av国产av | 日日撸夜夜添| 热99国产精品久久久久久7| 午夜福利视频在线观看免费| 男女下面插进去视频免费观看| 亚洲精品乱久久久久久| 9热在线视频观看99| 亚洲三级黄色毛片| 国产黄色免费在线视频| 日韩成人av中文字幕在线观看| 久久精品久久久久久久性| 亚洲视频免费观看视频| 午夜av观看不卡| 国产精品女同一区二区软件| 飞空精品影院首页| 久久久久久久久久人人人人人人| 亚洲成国产人片在线观看| 人妻人人澡人人爽人人| 成年动漫av网址| 成人毛片60女人毛片免费| 国产男人的电影天堂91| 超碰成人久久| 蜜桃在线观看..| 这个男人来自地球电影免费观看 | 国产日韩欧美视频二区| 少妇被粗大的猛进出69影院| 男女边摸边吃奶| 国产亚洲午夜精品一区二区久久| 国产精品免费视频内射| 老汉色av国产亚洲站长工具| 日本wwww免费看| 热re99久久国产66热| 免费黄网站久久成人精品| 久久久国产精品麻豆| 精品国产一区二区久久| 亚洲四区av| 国产色婷婷99| 中文天堂在线官网| 国产精品 欧美亚洲| 亚洲欧美精品综合一区二区三区 | 国产一区亚洲一区在线观看| 少妇 在线观看| 亚洲视频免费观看视频| 成人黄色视频免费在线看| 午夜免费鲁丝| 日韩制服丝袜自拍偷拍| 欧美xxⅹ黑人| 欧美日韩亚洲国产一区二区在线观看 | 免费av中文字幕在线| 免费观看a级毛片全部| 国产麻豆69| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一区二区三区不卡| 人成视频在线观看免费观看| 美女主播在线视频| 一本色道久久久久久精品综合| 人人澡人人妻人| av不卡在线播放| 美女视频免费永久观看网站| 乱人伦中国视频| 亚洲国产av影院在线观看| 午夜激情久久久久久久| videossex国产| 欧美成人午夜免费资源| 在线天堂中文资源库| 边亲边吃奶的免费视频| 搡女人真爽免费视频火全软件| 男女国产视频网站| 少妇熟女欧美另类| 日韩欧美一区视频在线观看| 国产高清不卡午夜福利| 久久这里只有精品19| av国产精品久久久久影院| 日韩中文字幕欧美一区二区 | 亚洲,一卡二卡三卡| 亚洲五月色婷婷综合| 国产亚洲精品第一综合不卡| 欧美最新免费一区二区三区| 观看av在线不卡| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 99久久人妻综合| 久久久久精品人妻al黑| 制服诱惑二区| 日本猛色少妇xxxxx猛交久久| 婷婷色综合www| 午夜影院在线不卡| 亚洲欧美精品自产自拍| 亚洲,欧美,日韩| 国产免费福利视频在线观看| 中国三级夫妇交换| 国产精品久久久久成人av| 精品人妻一区二区三区麻豆| 亚洲国产日韩一区二区| 91午夜精品亚洲一区二区三区| 国产男人的电影天堂91| 亚洲色图综合在线观看| 三级国产精品片| 亚洲欧美色中文字幕在线| 女人久久www免费人成看片| 欧美精品一区二区大全| 国产国语露脸激情在线看| 黑人猛操日本美女一级片| 久久 成人 亚洲| 97人妻天天添夜夜摸| 韩国精品一区二区三区| 精品视频人人做人人爽| 亚洲中文av在线| 国产黄色免费在线视频| 十分钟在线观看高清视频www| 欧美精品av麻豆av| 最近手机中文字幕大全| 亚洲精品在线美女| 久久这里有精品视频免费| 国产熟女欧美一区二区| 观看av在线不卡| 高清不卡的av网站| h视频一区二区三区| 成人手机av| 国产成人a∨麻豆精品| 日本欧美视频一区| 只有这里有精品99| 99久久综合免费| 久久国产精品男人的天堂亚洲| 日韩一本色道免费dvd| 欧美日韩视频高清一区二区三区二| 亚洲av在线观看美女高潮| 久久99一区二区三区| 制服人妻中文乱码| tube8黄色片| 免费高清在线观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 精品视频人人做人人爽| 国产精品秋霞免费鲁丝片| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 色吧在线观看| 老汉色∧v一级毛片| 国产高清不卡午夜福利| 综合色丁香网| 97在线人人人人妻| 国产黄色免费在线视频| 热re99久久国产66热| 成年动漫av网址| 哪个播放器可以免费观看大片| 一级毛片我不卡| 80岁老熟妇乱子伦牲交| 日日撸夜夜添| 香蕉精品网在线| 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级| 亚洲伊人色综图| 久久久亚洲精品成人影院| 久久 成人 亚洲| 一区福利在线观看| 日韩制服骚丝袜av| 一级黄片播放器| 欧美最新免费一区二区三区| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 日本午夜av视频| 又黄又粗又硬又大视频| 99国产精品免费福利视频| 亚洲精品乱久久久久久| 丰满饥渴人妻一区二区三| 亚洲国产看品久久| 日韩不卡一区二区三区视频在线| 亚洲国产最新在线播放| 国产成人精品一,二区| 欧美亚洲 丝袜 人妻 在线| 最近中文字幕高清免费大全6| 久久久久久人人人人人| 久久国产精品男人的天堂亚洲| www日本在线高清视频| 青春草亚洲视频在线观看| 久久久精品区二区三区| 国产福利在线免费观看视频| 9191精品国产免费久久| 国产伦理片在线播放av一区| 亚洲精品乱久久久久久| 999久久久国产精品视频| 最近最新中文字幕大全免费视频 | 亚洲av中文av极速乱| 国产精品久久久久久av不卡| 18禁国产床啪视频网站| 亚洲国产欧美在线一区| 丝瓜视频免费看黄片| 亚洲一区二区三区欧美精品| 99久国产av精品国产电影| 在线精品无人区一区二区三| 国产精品三级大全| av在线app专区| 只有这里有精品99| 人妻少妇偷人精品九色| 成人免费观看视频高清| 国产综合精华液| 欧美精品高潮呻吟av久久| 日本色播在线视频| 国产精品免费视频内射| av.在线天堂| 久久久久久久久免费视频了| 日韩一区二区视频免费看| 亚洲av成人精品一二三区| 免费黄色在线免费观看| 亚洲第一区二区三区不卡| 亚洲精品久久午夜乱码| 亚洲精华国产精华液的使用体验| 亚洲av福利一区| 中文字幕亚洲精品专区| 这个男人来自地球电影免费观看 | 丝袜喷水一区| 搡女人真爽免费视频火全软件| 一级黄片播放器| 欧美激情高清一区二区三区 | 亚洲国产成人一精品久久久| 这个男人来自地球电影免费观看 | 国产色婷婷99| 中国三级夫妇交换| 亚洲伊人色综图| 中文欧美无线码| www日本在线高清视频| 九草在线视频观看| 男女国产视频网站| 青春草视频在线免费观看| 日本wwww免费看| 在线观看www视频免费| 久久精品国产亚洲av高清一级| 中文字幕av电影在线播放| 国产精品国产av在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产成人欧美| 青草久久国产| 人妻系列 视频| av.在线天堂| 国产1区2区3区精品| 日韩在线高清观看一区二区三区| √禁漫天堂资源中文www| 亚洲精品一区蜜桃| 国产国语露脸激情在线看| 亚洲三区欧美一区| 男女啪啪激烈高潮av片| 男人爽女人下面视频在线观看| 久久精品人人爽人人爽视色| 中文字幕av电影在线播放| 亚洲精华国产精华液的使用体验| 国产精品欧美亚洲77777| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 最近2019中文字幕mv第一页| 伊人亚洲综合成人网| 午夜老司机福利剧场| 国产在线视频一区二区| 亚洲精品国产色婷婷电影| 午夜影院在线不卡| 各种免费的搞黄视频| 国产欧美日韩一区二区三区在线| 这个男人来自地球电影免费观看 | 亚洲精品久久成人aⅴ小说| 99热网站在线观看| 日日啪夜夜爽| 一区二区av电影网| 九九爱精品视频在线观看| av在线观看视频网站免费| 国产老妇伦熟女老妇高清| 精品国产一区二区三区久久久樱花| 精品少妇久久久久久888优播| 亚洲视频免费观看视频| 国产亚洲最大av| 天天影视国产精品| 国产97色在线日韩免费| 日本91视频免费播放| 欧美日韩一级在线毛片| 18禁动态无遮挡网站| freevideosex欧美| 人妻系列 视频| 电影成人av| 久久国内精品自在自线图片| 免费高清在线观看日韩| 色播在线永久视频| 90打野战视频偷拍视频| 美女福利国产在线| 国产免费现黄频在线看| 毛片一级片免费看久久久久| av有码第一页| 一二三四中文在线观看免费高清| 亚洲中文av在线| 久久久久久久精品精品| 精品人妻熟女毛片av久久网站| 青春草亚洲视频在线观看| 成人午夜精彩视频在线观看| 一级毛片电影观看| 蜜桃在线观看..| 免费av中文字幕在线| 久久狼人影院| 国产男女内射视频| 青春草视频在线免费观看| 日韩中文字幕视频在线看片| 午夜影院在线不卡| 啦啦啦在线观看免费高清www| 波多野结衣av一区二区av| 精品久久久久久电影网| 十八禁高潮呻吟视频| 国产欧美日韩综合在线一区二区| 久久久久久人人人人人| 成人国产麻豆网| 纯流量卡能插随身wifi吗| 国产精品无大码| 亚洲三区欧美一区| 香蕉国产在线看| 国产精品一二三区在线看| freevideosex欧美| 久久精品久久久久久久性| av在线观看视频网站免费| 少妇熟女欧美另类| 亚洲精品,欧美精品| 亚洲欧美日韩另类电影网站| 日韩av不卡免费在线播放| 亚洲一区中文字幕在线| 亚洲国产av影院在线观看| 香蕉精品网在线| 午夜av观看不卡| 成人二区视频| 欧美bdsm另类| 伊人久久国产一区二区| 韩国精品一区二区三区| 国产极品粉嫩免费观看在线| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 亚洲av在线观看美女高潮| 日本wwww免费看| 国产欧美日韩一区二区三区在线| 久久精品国产自在天天线| 如何舔出高潮| 国产麻豆69| 韩国精品一区二区三区| 性少妇av在线| 91成人精品电影| 中国三级夫妇交换| 亚洲国产看品久久| 91久久精品国产一区二区三区| 日韩一区二区视频免费看| 夫妻午夜视频| 亚洲第一青青草原| 亚洲 欧美一区二区三区| 91精品三级在线观看| 精品少妇久久久久久888优播| 国产探花极品一区二区| 啦啦啦在线免费观看视频4| 看免费成人av毛片| 久久精品国产综合久久久| 人体艺术视频欧美日本| 不卡av一区二区三区| 亚洲av日韩在线播放| 久久久久精品性色| 免费高清在线观看视频在线观看| 丝袜在线中文字幕| 亚洲国产av影院在线观看| 97在线人人人人妻| 啦啦啦在线观看免费高清www| 精品视频人人做人人爽| 久久午夜综合久久蜜桃| 国产一区二区三区综合在线观看| av国产精品久久久久影院| av有码第一页| 亚洲综合精品二区| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 91午夜精品亚洲一区二区三区| 秋霞在线观看毛片| 两性夫妻黄色片| 欧美成人精品欧美一级黄| 欧美bdsm另类| 在线观看人妻少妇| 色哟哟·www| 亚洲精品一二三| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放| 丝袜美足系列| 男女免费视频国产| 一二三四在线观看免费中文在| 男女边摸边吃奶| 黄网站色视频无遮挡免费观看| 亚洲熟女精品中文字幕| 亚洲伊人色综图| 18禁裸乳无遮挡动漫免费视频| 欧美97在线视频| www.熟女人妻精品国产| 99国产精品免费福利视频| 久久 成人 亚洲| 精品国产一区二区三区久久久樱花| 欧美人与性动交α欧美软件| 精品人妻偷拍中文字幕| 久久久精品区二区三区| 成人国产麻豆网| 久久久国产欧美日韩av| 国产精品欧美亚洲77777| 亚洲,欧美精品.| 久久精品久久精品一区二区三区| 免费高清在线观看日韩| 久久久久网色| 亚洲精品久久久久久婷婷小说| 另类精品久久| 国产麻豆69| 在线观看一区二区三区激情| 国产片内射在线| 久久av网站| 久久国产亚洲av麻豆专区| 亚洲av电影在线进入| 夜夜骑夜夜射夜夜干| av网站免费在线观看视频| 欧美成人午夜精品| 中文字幕人妻熟女乱码| 在线观看人妻少妇| av一本久久久久| 日韩在线高清观看一区二区三区| 啦啦啦视频在线资源免费观看| 久久鲁丝午夜福利片| 久久热在线av| 国产精品国产av在线观看| 午夜激情久久久久久久| 十八禁高潮呻吟视频| 少妇人妻 视频| 免费在线观看视频国产中文字幕亚洲 | av网站免费在线观看视频| 亚洲欧美中文字幕日韩二区| 久久99一区二区三区| 国产精品熟女久久久久浪| 大话2 男鬼变身卡| 午夜老司机福利剧场| 在线天堂最新版资源| 亚洲精品国产av成人精品| 久久人妻熟女aⅴ| 女性被躁到高潮视频| 国产福利在线免费观看视频| 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 黄色配什么色好看| 两性夫妻黄色片| 久久精品久久久久久久性| 制服诱惑二区| 999久久久国产精品视频| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人看| 国产乱人偷精品视频| 成人国产av品久久久| 女性被躁到高潮视频| 国产成人精品久久二区二区91 | 好男人视频免费观看在线| 女人久久www免费人成看片| 热re99久久国产66热| 看十八女毛片水多多多| 国产1区2区3区精品| 久久鲁丝午夜福利片| 黄色毛片三级朝国网站| av有码第一页| 国产1区2区3区精品| 久久精品人人爽人人爽视色| 久久午夜福利片| 国产免费现黄频在线看| 99久久综合免费| 成人免费观看视频高清| 嫩草影院入口| 亚洲第一青青草原| 亚洲色图综合在线观看| 亚洲精品美女久久久久99蜜臀 | 欧美日韩综合久久久久久| av电影中文网址| 国产成人精品久久久久久| 丝袜脚勾引网站| 91午夜精品亚洲一区二区三区| 一边摸一边做爽爽视频免费| 欧美亚洲 丝袜 人妻 在线| 999精品在线视频| 美女主播在线视频| 精品亚洲乱码少妇综合久久| 亚洲欧美成人综合另类久久久| 久久精品国产鲁丝片午夜精品| 成人国产av品久久久| 一级毛片我不卡| 国产成人精品久久久久久| 欧美日韩精品网址| 2022亚洲国产成人精品| 久久久精品区二区三区| 欧美日韩视频精品一区| 免费黄网站久久成人精品| 久久久久久伊人网av| 免费少妇av软件| 伦理电影免费视频| 18+在线观看网站| 观看美女的网站| 精品酒店卫生间| 久久午夜福利片| 精品国产一区二区三区久久久樱花| 人妻人人澡人人爽人人| 欧美最新免费一区二区三区| 久久午夜福利片| 在线天堂最新版资源| 777久久人妻少妇嫩草av网站| 最新的欧美精品一区二区| 飞空精品影院首页| av片东京热男人的天堂| 国产又爽黄色视频| 2018国产大陆天天弄谢| 精品人妻在线不人妻| 国产视频首页在线观看| 人妻 亚洲 视频| 国产片内射在线| 久久亚洲国产成人精品v| 黑人欧美特级aaaaaa片| 人妻一区二区av| 日日摸夜夜添夜夜爱| 日韩熟女老妇一区二区性免费视频| 丝袜美足系列| 欧美激情高清一区二区三区 | 国产 精品1| 国产精品国产三级专区第一集| 婷婷色av中文字幕| 欧美bdsm另类| 十八禁高潮呻吟视频| 各种免费的搞黄视频| 久久精品熟女亚洲av麻豆精品| 丰满乱子伦码专区| 中文字幕人妻丝袜一区二区 | 五月天丁香电影| 中文天堂在线官网| 丰满饥渴人妻一区二区三| 观看av在线不卡| 十八禁高潮呻吟视频| 久久久久国产一级毛片高清牌| 国产成人午夜福利电影在线观看| av电影中文网址| 91aial.com中文字幕在线观看| 国产又爽黄色视频| 久久国产亚洲av麻豆专区| av卡一久久| 欧美亚洲 丝袜 人妻 在线| 少妇精品久久久久久久| 一区二区三区四区激情视频| 日韩人妻精品一区2区三区| 亚洲国产精品国产精品| 久久热在线av| 最近最新中文字幕大全免费视频 | 亚洲精品在线美女| 欧美精品国产亚洲| 久久精品人人爽人人爽视色| 亚洲三区欧美一区| 国产男人的电影天堂91| 亚洲中文av在线| 99热全是精品| av又黄又爽大尺度在线免费看| 亚洲国产日韩一区二区| 一级a爱视频在线免费观看| 日日撸夜夜添| 老汉色av国产亚洲站长工具| 欧美精品亚洲一区二区| 少妇人妻久久综合中文| 人妻一区二区av| av女优亚洲男人天堂| 一区二区av电影网| 人妻一区二区av| 国产精品久久久久久精品电影小说| 久久久精品国产亚洲av高清涩受| 亚洲三级黄色毛片| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| 久久国内精品自在自线图片| 免费高清在线观看视频在线观看| 久久精品国产鲁丝片午夜精品| 国产精品 欧美亚洲| 国产欧美亚洲国产| 一区二区三区乱码不卡18| 纵有疾风起免费观看全集完整版| 麻豆精品久久久久久蜜桃| 国产极品粉嫩免费观看在线| 一级爰片在线观看| 在线观看国产h片| 精品酒店卫生间| 五月天丁香电影|