• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Robust Adaptive Neural Network Backstepping Control for Single Machine Infinite Power System With TCSC

    2020-02-29 14:13:52YanhongLuoShengnanZhaoDongshengYangandHuaguangZhang
    IEEE/CAA Journal of Automatica Sinica 2020年1期
    關鍵詞:良幣劣幣市場秩序

    Yanhong Luo,, Shengnan Zhao, Dongsheng Yang,, and Huaguang Zhang,

    Abstract—For a single machine infinite power system with thyristor controlled series compensation (TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we present a robust adaptive backstepping control scheme based on the radial basis function neural network (RBFNN). The RBFNN is introduced to approximate the complex nonlinear function involving uncertainties and external unknown disturbances, and meanwhile a new robust term is constructed to further estimate the system residual error,which removes the requirement of knowing the upper bound of the disturbances and uncertainty terms. The stability analysis of the power system is presented based on the Lyapunov function,which can guarantee the uniform ultimate boundedness (UUB) of all parameters and states of the whole closed-loop system. A comparison is made between the RBFNN-based robust adaptive control and the general backstepping control in the simulation part to verify the effectiveness of the proposed control scheme.

    I. INTRODUCTION

    WITH the increasing scale and complexity of modern power systems, the issue of grid security and stability has become increasingly prominent. Undoubtedly, all power systems are driven by dynamic safety and stable operation,which makes research and development of power systems.The safety control theory and technology are becoming more and more important [1]. In recent years, thyristor controlled series capacitor (TCSC) has been used as a flexible AC transmission system (FACTS) device to change the apparent reactance smoothly and quickly. It has the function of reducing the subsynchronous resonance (SSR), suppressing the damping low-frequency oscillation and improving the transient stability in the operation and control of the power system [2]-[4].

    In the actual operation, the single machine infinite power system is often affected by external unknown disturbance and parameter uncertainty, which leads to the decline of system dynamic stability and poor robustness. Therefore, it is necessary to design a nonlinear robust controller to improve the dynamic response performance of the system. At present,research on control algorithms in power systems containing TCSC has yielded many scientific research results. In [5], a robust nonlinear co-ordinated generator excitation and TCSC controller is proposed to enhance the transient stability of power systems. Reference [6] uses the linear quadratic Gaussian (LQG) to design the robust TCSC controller for power system oscillation damping enhancement, which can effectively dampen power system oscillations. The above methods ignore the nonlinear characteristics of the power system, and require that the system model must be accurate and the operating conditions are unchanged. In [7], the nonlinear optimal predictive control theory is applied to improve the transient stability and dynamic performance of the power system. The influence of system parameter uncertainties on the control algorithm is not considered. In [8],the nonlinear PI predictive control method is applied, and the uncertainties of the power system are considered to ensure the stability of the closed-loop system under the nonlinear controller. The influence of external unknown disturbances on the system is not considered. References [9] and [10] apply the backstepping method to design the control law, which is adaptive to unknown parameters, uncertain disturbances and model errors. The traditional inversion control is based on the principle of deterministic-equivalence and is used for the control of special structures. In the system, using this method in the recursive design process of the robust controller, there will be a large number of differential operations. In [11], an indirect fuzzy adaptive backstepping control method is applied to design a nonlinearL2gain disturbance attenuation controller with parameter update law. The design process is complex and the storage function of the constructed system is also a difficult problem. In [12], the sliding mode adaptive control method is applied to avoid the state oscillation caused by the coupling of the parameter estimator and the system state. Compared with the adaptive backstepping control, the time to reach the steady state is greatly shortened. When the sliding mode control is close to the sliding surface, factors such as speed, inertia, acceleration, and switching surface need to be considered, and the switching function has a dead zone. An unpredictable chattering interval may be formed in the actual control process.

    The combination of artificial neural network and nonlinear control has become a research hotspot in recent years. In [13],the adaptive neuro-fuzzy inference system and the Levenberg Marquardt (LM) artificial neural network algorithm are used to suppress the frequency oscillation and improve the dynamic performance of the power system. In [14], the traditional PID control combined with the radial basis function neural network (RBFNN) is applied to design nonlinear adaptive damping controllers. The controller not only has the characteristics of traditional PID, but also can adjust the parameters of the PID controller online by using the Jacobian matrix information identified by RBFNN, and has strong adaptability to changes in system operating conditions.

    In this paper, considering the above problems, an RBFNNbased robust adaptive backstepping controller is proposed.And through the numerical simulation, the dynamic response performance of the proposed controller is compared with that of the general backstepping controller. The results show that the obtained system states converge faster than that by the general backstepping method.

    The contribution of this paper can be summarized as follows:

    1) It is the first time that the RBFNN is introduced to the robust adaptive backstepping control scheme for the single machine infinite power system with TCSC, which is applied to approximate complex nonlinear functions including system model uncertainty, nonlinear time-delay and external unknown disturbance without knowing the upper bound of the disturbance and uncertainty terms.

    2) An online updating robust term is proposed to reduce the residual error of the system to ensure the uniform ultimate boundedness of all the weight parameters and states of the whole closed-loop system without knowing the upper bound of the adaptive parameter. The ideal weights of neural networks and the adjusting rule of the adaptive parameter can also be updated online.

    3) Introducing inequalities 0 ≤|x|-xtanh(x/?)≤0.2785?,for ? >0, avoids the appearance of chattering and obtains a smooth robust adaptive control law.

    A. Modeling of Single Machine Infinite Power System with TCSC

    Fig. 1. A single machine infinite power system structure diagram with TCSC.

    Consider the single machine infinite power system with TCSC shown in Fig. 1 . Assuming that the generator is represented by a constant voltage source after transient reactance, and the TCSC device can be regarded as an adjustable reactance connected in series to a node of the power system transmission line, the mathematical model of the TCSC system can be established as follows [15]:

    whereThe generator q-axis transient potentialand the prime mover output mechanical powerPmare set as constants in the normal modeling process. The electromagnetic transient process on the transmission line and the active power loss on the transformer transmission line resistance are negligible. The physical meanings represented by the parameters in(1) are given in Table I.

    TABLE 1 THE PHYSICAL MEANING OF EACH PARAMETER

    λis the TCSC controller gain factor (λ >0) anduis the equivalent control input for the TCSC controller.

    In physical significance of parameters, time-delaydis caused by the differences between triggering time and turn-on time of its thyristor controller [16], [17].

    Considering that the generator damping coefficientDis difficult to measure accurately in the actual operation of the power system,Dcan be regarded as an uncertain parameter,that is, θ is an uncertain term.

    Considering that the power system may be affected by external unknown disturbances during operation, such as superposition perturbation on the system admittance and uncertain disturbances on the generator rotor due to aging of the circuit components of the system, when the rotor of the generator is displaced, an axial thrust is generated. If it is not adjusted in time, it will affect the normal operation of the generator rotor, and if it is serious, it will damage the generator. This is not conducive to the safe and stable operation of the power grid. Based on the above considerations, letA=[A1,A2]Tbe the unknown disturbances superimposed on the generator rotor and the system admittance, whereA1andA2are unknown disturbance functions in spaceL2, and satisfy |Ai|≤Λi,i=1,2, Λi>0.

    Define the state variable of the system asx1=δ-δ0,x2=ω-ω0,x3=ytcsc-ytcsc0. According to the structure of (1),

    Therefore, the mathematical model (1) of the TCSC system can be transformed into the following model:

    The stable operating balance of the system isand the system state variable isx=[x1,x2,x3]T. For the case where the system has uncertainty and is affected by external unknown disturbances, we propose a robust adaptive backstepping controllerubased on RBFNN, the state variablex(t)of the system asymptotically converges to 0, i.e.,limt→∞x(t)=0. That is to say, whether the system is changed in operating conditions, the parameters are uncertain, or is subject to external unknown disturbances, the rotor power angle δ, the rotor angular velocity ω and the system admittanceytcscasymptotically converge to their corresponding operational steady-state values δ0, ω0,ytcsc0. At this time, the dynamic stability of the single machine infinite power system is guaranteed.

    B. RBFNN-Based Robust Adaptive Backstepping Controller Design

    The robust control model of a single machine infinite power system with TCSC (2) has uncertainty and is affected by external unknown disturbances, therefore, an RNFNN-based robust adaptive backstepping control scheme is proposed.Meanwhile a sufficient condition for stable operation of the system and an adaptive update law of RBFNN estimation error are obtained. The overall structure of the control system is shown in Fig. 2.

    The first step is to define the coordinate transformation of the state variable as follows:

    α1and α2are intermediate virtual control quantities.Construct the first Lyapunov function as follows:

    Fig. 2. Overall structure diagram of control system.

    Deriving the timeton both sides of (4), we obtain

    Define intermediate virtual control α1=-c1z1, wherec1is a constant to be designed andc1>0 . Substituting α1with (3)into (5) yields

    According to (2) and (3),z2is derived with respective to timetto obtain

    In the second step, construct the second Lyapunov function as follows:

    wherek1is a constant to be designed andk1>0.

    The two sides of (8) are simultaneously derived with respective to timetto obtain

    Based on (3), we can obtain

    Then

    Due to the uncertainty of the system and the influence of external unknown disturbances, the complex nonlinear part of(11) is set as a nonlinear function separately as follows:

    Then (11) is converted to:

    The neural network can be used to approximate the characteristics of any nonlinear function, and the nonlinear functionf1in the model is estimated by the neural network[18]-[20].

    Remark 2: Disturbances and uncertainties widely exist in almost all physical systems in the real world, in the form of unknown system dynamics or external perturbations. For the control of such systems, a disturbance observer and related techniques have provided a powerful tool to dynamically estimate and compensate the diverse disturbances and offer desired control performances [21], [22]. Compared with the extended state observer (ESO) [23], neural networks have stronger ability to approximate nonlinear functions and fault tolerance, and, therefore, are especially suitable for multiinput and multi-output systems. In addition, neural networks do not need to model the system, and therefore the neural network model is unlikely becoming very complicated due to the increased complexity of the system. Therefore, the neural network can be used as a black box model of the actual system, using the input and output data of the system for training without knowing the exact system structure.

    RBFNN is the popular network in the forward network.Under the condition that there are enough hidden layer nodes,after sufficient learning, any nonlinear function can be approximated with an arbitrary precision, and it has the best approximation ability. In addition, it has a fast convergence speed, powerful noise immunity and repairing capabilities,and the learning method also avoids the local optimal problem[24]-[27]. Therefore, this paper uses an RBFNN to approximate the nonlinear functionf1as follows:

    where ε is the estimated error of the RBFNN, and |ε|≤ε*,ε*is an unknown constant.W1is the optimal weight matrix of the RBFNN, which satisfies

    where φ (xj) is the basis function of RBFNN [22], and

    wherecjis the center of thejth basis function, σjis the width of the basis function, andjis the number of hidden layer nodes. Therefore, (13) can be expressed as

    Define the intermediate virtual control amount α2as follows:

    wherec2is a constant to be designed andis the estimated value of RBFNN.

    Substituting (18) into (17) gives

    α2is derived with respect to timetto obtain

    According to (2), (3), and (20),z3is derived with respect to timetto obtain

    The weight learning rule for the first neural network is given by

    where Ξ is a positive definite diagonal matrix to be designed,γ1>0 is a constant to be designed,W10is the initial weight of the RBFNN.

    The third step is to construct the third Lyapunov function as follows:

    wherek2is a constant to be designed andk2>0.andW~1is the approximate error.q(x(τ)) is a nonnegative function.

    The two sides of (23) are simultaneously derived with respect to timetto obtain

    Substituting (19)-(22) into (24) gives

    當前,政府、企業(yè)、社會多元共治新格局仍未全面形成,打擊侵權假冒工作與人民的殷切期盼還有差距,政府維護市場秩序的公信力仍有待提高。在依法打擊侵權假冒案件基礎上,及時完善我國相關法律法規(guī)和體制機制,營造良好市場營商環(huán)境,防止劣幣驅逐良幣,避免逆向淘汰,從國家、社會、企業(yè)和個人視角,多層面、多維度、全方位促進消費市場的健康穩(wěn)定發(fā)展,多措并舉保護廣大消費者合法權益,已迫在眉睫、勢在必行。

    Due to the influence of external unknown disturbances,there is a nonlinear term in (25). Since the known terms in(25) are too complicated and difficult to calculate, we put them together to form a nonlinear function as follows:

    Then (25) is converted to

    Similarly, we use the second RBFNN to approximate the nonlinear functionf2as follows:

    where η is the estimated error of the RBFNN, and |η|≤η*,η*is an unknown constant.W2is the optimal weight matrix of the RBFNN.

    Therefore, (27) can be expressed as

    Define a nonnegative functionq(x(t))=|a2k2(x3z3)(t)|, and then we can obtainq(x(t-d))=|a2k2(x3z3)(t-d)|. An inequality is established as

    Since neural networks are used to approximate the unknown nonlinear function, the system has residual error, then we letbe the reconstruction error term as follows:

    Due to the existence of the error term, we introduce a robust termurto reduce the reconstruction error to ensure the stability of the system as follows:

    In summary, we design the final robust control inputufor the system as

    wherec3is a constant to be designed andis the estimated value of RBFNN.is the approximate error.

    Substituting (30)-(33) into (29) gives

    The weight learning rule for the second neural network and the adaptive law for the robust term are given by

    where Θ is a positive definite diagonal matrix to be designed,ρ >0 is the learning rate, γ2>0, κ >0 are the constants to be designed,W20is the initial weight of the RBFNN.

    Remark 4: Sensor (measurement) and actuator faults have a significant impact on the control of linear systems, nonlinear systems, and discrete time systems. During the actual operation of the control system, sensor and actuator selfvalidation is a critical step in system control and fault diagnostics. If sensors do not work properly, one cannot rely on their outputs to further deduce system status. Similarly,faulty actuators will not satisfy system performance objectives and may cause disasters in feedback control systems. The reliability of a process machine can be significantly enhanced by introducing a fault-tolerant control system in it [28]-[33].In the next step, we will introduce the sensor (measurement)and actuator faults into the proposed control method and conduct a detailed study.

    C. Proof of Stability

    Theorem: The robust control model for a single machine infinite power system with TCSC (2), if the control law is(33), and the adaptive learning law of the RBFNN weight online learning algorithm and the adaptive law for robust term are (32), (35) and (36), it can ensure that all parameters and states of the closed-loop system are uniformly and ultimately bounded.

    Proof: Select the Lyapunov function as

    The two sides of (37) are simultaneously derived with respect to timetto obtain

    Substituting (34)-(36) into (38), and usingwe get

    Substituting (40)-(42) into (39) gives

    Multiply both sides of (44) byectto get

    Integrate both sides of (45) on [ 0,t] [37]-[39] to get

    Combining equations (4), (8), (23) and (37), we can get

    Accordi ng towe can get

    Accor ding to the definitions of α1, α2, (3) and (48), we can get

    According to (46) and letting μ*=2μ/c, we can get

    Similarly, the uniform ultimate boundedness of the state variable of the closed-loop system and the weight parameters of the neural network can be derived as follows:

    Remark 5: It can be seen from the above proof that the convergence domain of the tracking error, neural network weight parameter and the robust term can be changed by adjusting the parametersc1,c2,c3,k1,k2, γ1, γ2, κ , ?. For example, increasingc1or decreasing ? can reduce the tracking error and the convergence of the neural network weight parameters to the radius, and other parameters can be selected according to needs. So we conclude that the tracking error and neural network weight parameters can converge to an arbitrarily small neighborhood near zero by adjusting above parameters.

    D. Numerical Simulation

    In order to verify the effectiveness of the proposed method,the presented controller and adaptive updating law are numerically simulated by the MATLAB/Simulink software.

    The parameters of a single machine infinite power system containing a TCSC are as follows:H=8,Vs=1.99,=1,Xd=0.88,XT=0.88,XL=0.48,BL-Bc=0.25. We select the controller parameters as follows:λ=1,c1=3,c2=6 ,c3=12 ,k1=1.5,k2=100. The equilibrium states corresponding to δ, ω andytcscare δ0=57.2°, ω0=314.159 rad/s andytcsc0=0.6p.u.. Let the unknown disturbance in theL2space beA1=e-3tsin(4t)sin(5t),A2=e-4tcos(6t)cos(8t), and let the disturbance begin to act on the controlled system (2) at timet.

    The number of neurons in the hidden layer of RBFNNs is 9,the center point of the basis function is evenly distributed in interval [-2,+2], the learning gain is ρ=3, the parameters γ1=2, γ2=3, κ=3, the initial value of the neural network

    weight isW10=0,W20=0.

    Four case studies are performed to simulate the nonlinear TCSC systems with different time delaysdor friction damping coefficientsD. Cases 1-3 aim to compare the stability and robustness of TCSC control systems designed by the proposed RBFNN-based robust adaptive bakstepping(RRAB) method, and the adaptive backstepping (AB) method in [40].dandDare set to 0.01 s and 0.8 p.u. in Case 1, 0.02 s and 0.8 p.u. in Case 2, and 0.04 s and 0.8 p.u. in Case 3,respectively. In Case 4, simulations of our designed TCSC system withd= 0.02 s are performed atD= 0.4 p.u. andD=1.2 p.u., respectively.

    The system state variable initial value is set to the following non-zero initial conditions:x1(0)=0.5,x2(0)=2.5,x3(0)=0.1.

    Fig. 3 shows the transient response comparisons of δ, ω,

    ytcscin Case 1. It can be seen that the transient responses of the state variables of the RRAB controller are faster than those of the AB controller.

    Fig. 4 shows the transient response comparisons of δ, ω,ytcscin Case 2. The transient trajectories of the RRAB controller fluctuate less strongly and quickly converge to steady state than those of the AB controller in finite time,suggesting that the proposed RRAB method results in better system performances.

    Fig. 5 shows the transient response comparisons of δ, ω,ytcscin Case 3. The result of Case 3 reveals that the proposed method can guarantee that the state variables of the nonlinear TCSC system are globally bounded and transient responses will eventually converge to a stable value regardless of what delay time is considered. A comparison of the transient responses of the RRAB controller in the three cases shows that the transient responses in Case 3 converge more slowly and the system stability is attained in a longer finite time.Similar comparative results are obtained for the AB controller.

    Fig. 6 shows the transient response comparisons of δ, ω,ytcscin Case 4. The simulation results are compared to investigate the effect of the friction damping coefficientDon the stability and robustness of TCSC control systems. It can be seen that althoughDtakes different values, the transient responses of the state variables eventually converge to the stable value. The above results show that the proposed RRAB controller has good robustness.

    Fig. 3. Transient responses in Case 1.

    Fig. 4. Transient responses in Case 2.

    Fig. 5. Transient responses in Case 3.

    Fig. 6. Transient responses in Case 4.

    II. CONCLUSION

    In this paper, aiming at the stability control problem of the single machine infinite power system with TCSC, considering the model uncertainty, nonlinear time-delay and the influence of external unknown disturbance, an RBFNN-based robust adaptive backstepping control method is proposed. The simulation results show that the designed controller can achieve stable control of the single machine infinite power system with TCSC and has good robust performance.

    猜你喜歡
    良幣劣幣市場秩序
    莫讓電動自行車頭盔“劣幣驅逐良幣”
    公民與法治(2022年6期)2022-07-26 06:16:02
    成都市金牛區(qū):高質量清理整頓人力資源市場秩序
    劣幣一定會驅逐良幣嗎
    關于規(guī)范奶源市場秩序促進奶業(yè)健康發(fā)展的建議
    云南持續(xù)凈化旅游市場秩序推進行業(yè)復工復產
    云南畫報(2020年9期)2020-10-27 02:03:06
    舊幣總是被先花出去
    當代工人(2020年7期)2020-05-20 15:05:15
    良幣被劣幣驅逐之后它欲何往?
    公民導刊(2016年5期)2016-06-11 23:11:40
    維護藥品市場秩序 為縣域經濟保駕護航
    91午夜精品亚洲一区二区三区| 美女被艹到高潮喷水动态| 又爽又黄无遮挡网站| 国产黄色视频一区二区在线观看 | 欧美bdsm另类| 女同久久另类99精品国产91| 欧美最黄视频在线播放免费| 美女高潮的动态| 国产成人aa在线观看| 日韩高清综合在线| a级毛片免费高清观看在线播放| 国产精品.久久久| 高清在线视频一区二区三区 | 国产伦理片在线播放av一区 | 中文字幕久久专区| 久久人人爽人人片av| 亚洲18禁久久av| 看黄色毛片网站| 又爽又黄无遮挡网站| 青春草亚洲视频在线观看| 国产亚洲91精品色在线| 久久婷婷人人爽人人干人人爱| 欧美日韩综合久久久久久| 亚洲第一电影网av| 亚洲四区av| 一级毛片久久久久久久久女| avwww免费| 久久这里只有精品中国| 亚洲自拍偷在线| 欧美三级亚洲精品| 91精品国产九色| 精品无人区乱码1区二区| 亚洲欧美日韩高清专用| 男插女下体视频免费在线播放| 国产蜜桃级精品一区二区三区| 身体一侧抽搐| 婷婷亚洲欧美| 久久久久国产网址| 亚洲av二区三区四区| 熟妇人妻久久中文字幕3abv| 波多野结衣巨乳人妻| 午夜视频国产福利| 久久这里有精品视频免费| 色尼玛亚洲综合影院| 亚洲高清免费不卡视频| 97超视频在线观看视频| 黄片无遮挡物在线观看| 2022亚洲国产成人精品| 成人毛片a级毛片在线播放| 国产亚洲精品av在线| 久99久视频精品免费| 两个人视频免费观看高清| 免费看美女性在线毛片视频| 日韩三级伦理在线观看| 亚洲一级一片aⅴ在线观看| 99热只有精品国产| 看非洲黑人一级黄片| 欧美一区二区精品小视频在线| 又粗又爽又猛毛片免费看| 成人亚洲欧美一区二区av| 黄色一级大片看看| 成人亚洲欧美一区二区av| 亚洲中文字幕一区二区三区有码在线看| 亚洲第一区二区三区不卡| 欧美一级a爱片免费观看看| 一本一本综合久久| 国产亚洲精品久久久com| 性色avwww在线观看| av卡一久久| 亚洲自偷自拍三级| 美女大奶头视频| 中文字幕av成人在线电影| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人中文| 国产精品人妻久久久久久| 国产 一区 欧美 日韩| 99久久人妻综合| 亚洲欧美日韩高清在线视频| 色尼玛亚洲综合影院| 99热全是精品| 亚洲va在线va天堂va国产| 日本av手机在线免费观看| 九色成人免费人妻av| 亚洲欧美成人综合另类久久久 | 看黄色毛片网站| 精品久久久噜噜| 蜜桃久久精品国产亚洲av| 三级毛片av免费| 日本欧美国产在线视频| 久久韩国三级中文字幕| 成人午夜高清在线视频| 99久久无色码亚洲精品果冻| av卡一久久| 国产高清激情床上av| 免费观看在线日韩| www.av在线官网国产| 高清午夜精品一区二区三区 | 国国产精品蜜臀av免费| 丰满人妻一区二区三区视频av| 九色成人免费人妻av| 一级毛片aaaaaa免费看小| 亚洲七黄色美女视频| 日韩欧美三级三区| 亚洲自拍偷在线| 菩萨蛮人人尽说江南好唐韦庄 | 六月丁香七月| 男女边吃奶边做爰视频| 美女xxoo啪啪120秒动态图| 亚洲国产欧美在线一区| 少妇丰满av| 国产一区二区三区av在线 | 最近手机中文字幕大全| 亚洲va在线va天堂va国产| 简卡轻食公司| 极品教师在线视频| 国产成人aa在线观看| 夜夜夜夜夜久久久久| 中文字幕精品亚洲无线码一区| 人妻少妇偷人精品九色| 又爽又黄无遮挡网站| 亚洲欧美清纯卡通| 亚洲四区av| 国产视频内射| 日本在线视频免费播放| 天堂影院成人在线观看| 蜜桃久久精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 桃色一区二区三区在线观看| 欧美高清性xxxxhd video| 欧美最黄视频在线播放免费| 亚洲欧美精品综合久久99| 可以在线观看的亚洲视频| 成人av在线播放网站| 少妇人妻精品综合一区二区 | 久久精品国产99精品国产亚洲性色| 一级黄片播放器| 久久精品久久久久久久性| 亚洲最大成人手机在线| 人妻系列 视频| 99久国产av精品国产电影| 少妇猛男粗大的猛烈进出视频 | 一级二级三级毛片免费看| 男女边吃奶边做爰视频| 一边亲一边摸免费视频| 国产国拍精品亚洲av在线观看| 亚洲无线在线观看| 亚洲精品粉嫩美女一区| 国产视频首页在线观看| 亚洲av一区综合| 免费看美女性在线毛片视频| 床上黄色一级片| 精品午夜福利在线看| 又粗又硬又长又爽又黄的视频 | 99久久精品国产国产毛片| 春色校园在线视频观看| 能在线免费观看的黄片| 老司机福利观看| 欧美最黄视频在线播放免费| 国产成人freesex在线| 人妻制服诱惑在线中文字幕| 国产在线精品亚洲第一网站| 99久久成人亚洲精品观看| 高清在线视频一区二区三区 | 亚洲四区av| 国产日本99.免费观看| 久久人人爽人人片av| 久久精品国产99精品国产亚洲性色| 成人二区视频| 亚洲人成网站高清观看| 黄色配什么色好看| 久久久久久九九精品二区国产| 少妇丰满av| 超碰av人人做人人爽久久| 两个人视频免费观看高清| 好男人视频免费观看在线| 国产美女午夜福利| 麻豆av噜噜一区二区三区| 内地一区二区视频在线| 国产伦精品一区二区三区四那| 国产黄片美女视频| 久久99蜜桃精品久久| 黑人高潮一二区| 国产成人91sexporn| 哪个播放器可以免费观看大片| 久久精品国产清高在天天线| 综合色丁香网| 午夜福利视频1000在线观看| 中文字幕制服av| 51国产日韩欧美| 麻豆乱淫一区二区| 欧美成人免费av一区二区三区| 老师上课跳d突然被开到最大视频| 日韩视频在线欧美| 日日摸夜夜添夜夜添av毛片| 国产精品.久久久| 最近的中文字幕免费完整| 免费人成视频x8x8入口观看| 成人性生交大片免费视频hd| 久久精品久久久久久久性| 午夜精品国产一区二区电影 | 深爱激情五月婷婷| 女人十人毛片免费观看3o分钟| 夜夜爽天天搞| 国产亚洲av嫩草精品影院| 午夜精品在线福利| 久久精品夜色国产| 国产一级毛片在线| 高清在线视频一区二区三区 | 亚洲欧美清纯卡通| 一进一出抽搐动态| 91精品国产九色| 丝袜喷水一区| 精品少妇黑人巨大在线播放 | 亚洲成人av在线免费| 国产老妇女一区| 人人妻人人澡欧美一区二区| 国产亚洲91精品色在线| 成人无遮挡网站| 麻豆成人午夜福利视频| 少妇熟女欧美另类| 尤物成人国产欧美一区二区三区| 成人欧美大片| 亚洲成人av在线免费| 精华霜和精华液先用哪个| 99在线人妻在线中文字幕| 国产视频首页在线观看| 久久这里只有精品中国| 99九九线精品视频在线观看视频| 插阴视频在线观看视频| 免费在线观看成人毛片| 国产91av在线免费观看| 看片在线看免费视频| 三级经典国产精品| 亚洲国产精品sss在线观看| 哪里可以看免费的av片| 中国美女看黄片| 国内精品宾馆在线| 国产精品久久久久久精品电影小说 | 亚洲五月天丁香| 美女cb高潮喷水在线观看| 欧美成人精品欧美一级黄| 黄色欧美视频在线观看| 大香蕉久久网| 女同久久另类99精品国产91| 婷婷色综合大香蕉| 亚洲av一区综合| 国产视频内射| 18+在线观看网站| 色哟哟哟哟哟哟| 亚洲精品成人久久久久久| 国产av不卡久久| 亚洲五月天丁香| 免费看av在线观看网站| 午夜免费男女啪啪视频观看| 日韩欧美 国产精品| 99国产极品粉嫩在线观看| 最新中文字幕久久久久| 97在线视频观看| 国模一区二区三区四区视频| 成人鲁丝片一二三区免费| 联通29元200g的流量卡| 波野结衣二区三区在线| 亚洲精品久久久久久婷婷小说 | 亚洲av中文字字幕乱码综合| 美女脱内裤让男人舔精品视频 | av又黄又爽大尺度在线免费看 | 欧美精品一区二区大全| www日本黄色视频网| 哪里可以看免费的av片| 欧美在线一区亚洲| 1024手机看黄色片| 亚洲精品456在线播放app| 亚洲在线自拍视频| 国内精品一区二区在线观看| av天堂在线播放| 日韩三级伦理在线观看| 午夜免费激情av| 99久国产av精品| 久久亚洲国产成人精品v| 身体一侧抽搐| 26uuu在线亚洲综合色| 亚洲国产欧美人成| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 色5月婷婷丁香| 亚洲av中文av极速乱| 国产一区二区亚洲精品在线观看| 久久午夜福利片| 日本三级黄在线观看| 岛国毛片在线播放| 国产精品av视频在线免费观看| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 麻豆一二三区av精品| 91久久精品国产一区二区成人| 一夜夜www| 久久精品夜色国产| 国产伦精品一区二区三区四那| 国产精品一区二区性色av| 国产国拍精品亚洲av在线观看| 人妻少妇偷人精品九色| 免费观看精品视频网站| 中文亚洲av片在线观看爽| 男人舔女人下体高潮全视频| 黑人高潮一二区| 有码 亚洲区| 中国美女看黄片| 欧美xxxx性猛交bbbb| 18+在线观看网站| 中文欧美无线码| 校园人妻丝袜中文字幕| 国产v大片淫在线免费观看| 久久亚洲国产成人精品v| 国产亚洲5aaaaa淫片| 激情 狠狠 欧美| 能在线免费观看的黄片| 成人美女网站在线观看视频| 亚洲一区二区三区色噜噜| 国产一区二区激情短视频| 日本欧美国产在线视频| 亚洲不卡免费看| 国产高清不卡午夜福利| 日韩欧美三级三区| 久久久色成人| 精品久久久久久久久久免费视频| 夜夜看夜夜爽夜夜摸| 菩萨蛮人人尽说江南好唐韦庄 | 三级经典国产精品| 久久精品国产清高在天天线| 人妻少妇偷人精品九色| 中文字幕人妻熟人妻熟丝袜美| 亚洲人成网站在线播放欧美日韩| 最新中文字幕久久久久| 岛国在线免费视频观看| 国产精品伦人一区二区| 熟妇人妻久久中文字幕3abv| 中文欧美无线码| 免费大片18禁| 最近2019中文字幕mv第一页| 一级毛片aaaaaa免费看小| 寂寞人妻少妇视频99o| 亚洲无线在线观看| 久久久国产成人免费| 国产成人a区在线观看| 九九在线视频观看精品| 搡女人真爽免费视频火全软件| 青青草视频在线视频观看| 日韩一区二区三区影片| 看片在线看免费视频| 悠悠久久av| 国产成人精品婷婷| 国产亚洲av嫩草精品影院| 最近最新中文字幕大全电影3| 三级男女做爰猛烈吃奶摸视频| 一区福利在线观看| 99国产精品一区二区蜜桃av| 国产精品蜜桃在线观看 | 悠悠久久av| 天堂√8在线中文| 欧美色视频一区免费| 天堂网av新在线| av在线蜜桃| 国产av不卡久久| 国产淫片久久久久久久久| 日韩大尺度精品在线看网址| 国内精品美女久久久久久| 亚州av有码| 日韩亚洲欧美综合| 中文字幕久久专区| 99久久久亚洲精品蜜臀av| 变态另类丝袜制服| 成人av在线播放网站| 国产欧美日韩精品一区二区| 亚洲成人久久性| 国产一区二区亚洲精品在线观看| 中文字幕精品亚洲无线码一区| 国产亚洲精品av在线| 日韩精品有码人妻一区| 美女cb高潮喷水在线观看| 亚洲三级黄色毛片| 午夜福利高清视频| 国产精品爽爽va在线观看网站| 亚洲一区高清亚洲精品| 国产精品国产高清国产av| 国产成年人精品一区二区| 国产精品一二三区在线看| 日本成人三级电影网站| 国产一区二区激情短视频| 免费在线观看成人毛片| 亚洲最大成人中文| 99久久中文字幕三级久久日本| 51国产日韩欧美| 白带黄色成豆腐渣| 色哟哟·www| 91精品国产九色| 亚洲av二区三区四区| 久久久久久久久久黄片| 日本欧美国产在线视频| 成人欧美大片| 最好的美女福利视频网| 亚洲精品影视一区二区三区av| 精品久久久久久久久久免费视频| 国产精品久久久久久亚洲av鲁大| 久久6这里有精品| 日韩大尺度精品在线看网址| 日本与韩国留学比较| 日韩成人av中文字幕在线观看| 日本三级黄在线观看| av在线蜜桃| 免费看美女性在线毛片视频| 久久精品国产亚洲av天美| 12—13女人毛片做爰片一| 69人妻影院| 国内精品久久久久精免费| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久av不卡| 国产精品麻豆人妻色哟哟久久 | 好男人在线观看高清免费视频| 人人妻人人看人人澡| 哪个播放器可以免费观看大片| 亚洲精品国产av成人精品| 在线播放无遮挡| 99久久中文字幕三级久久日本| 国产美女午夜福利| 看免费成人av毛片| 亚州av有码| 免费av观看视频| 在线观看一区二区三区| 亚洲精品国产av成人精品| 色5月婷婷丁香| 久久精品夜夜夜夜夜久久蜜豆| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av涩爱 | 亚洲成人久久爱视频| 色5月婷婷丁香| 99热网站在线观看| 一级黄片播放器| 国产精品1区2区在线观看.| 国产成人福利小说| 欧美极品一区二区三区四区| 国产成人精品久久久久久| 青青草视频在线视频观看| 国产综合懂色| 99国产极品粉嫩在线观看| 男女视频在线观看网站免费| 少妇的逼水好多| 丰满的人妻完整版| 亚洲成a人片在线一区二区| 女同久久另类99精品国产91| 九色成人免费人妻av| 91精品国产九色| 亚洲电影在线观看av| 综合色av麻豆| 高清毛片免费看| 国产精品综合久久久久久久免费| 日本免费a在线| 午夜免费男女啪啪视频观看| 草草在线视频免费看| 在线免费观看不下载黄p国产| 全区人妻精品视频| 久久久久久久午夜电影| 一卡2卡三卡四卡精品乱码亚洲| 国产成人精品久久久久久| 我要搜黄色片| 国产在线精品亚洲第一网站| 自拍偷自拍亚洲精品老妇| 97热精品久久久久久| kizo精华| 国产私拍福利视频在线观看| 少妇人妻精品综合一区二区 | 一区二区三区高清视频在线| 亚洲av熟女| 欧美潮喷喷水| 一区福利在线观看| 国产精品一区www在线观看| 国产免费男女视频| av又黄又爽大尺度在线免费看 | 九九热线精品视视频播放| 亚洲国产精品久久男人天堂| 天天躁夜夜躁狠狠久久av| 波多野结衣高清作品| 亚洲精品国产av成人精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区在线av高清观看| 天堂影院成人在线观看| 婷婷色综合大香蕉| 秋霞在线观看毛片| 色哟哟哟哟哟哟| 色播亚洲综合网| 日韩在线高清观看一区二区三区| 97超视频在线观看视频| 亚洲人成网站在线播| 国产三级在线视频| 1024手机看黄色片| 国产老妇女一区| 国产高清有码在线观看视频| 日韩一区二区视频免费看| 色综合亚洲欧美另类图片| 日本撒尿小便嘘嘘汇集6| 国产老妇女一区| 免费观看人在逋| 欧美潮喷喷水| 亚洲自偷自拍三级| 午夜久久久久精精品| 一区福利在线观看| 亚洲一区高清亚洲精品| 亚洲激情五月婷婷啪啪| 国产亚洲av嫩草精品影院| 99久久九九国产精品国产免费| 久久久久久大精品| 亚洲在线自拍视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产国拍精品亚洲av在线观看| 别揉我奶头 嗯啊视频| 精品人妻视频免费看| a级毛色黄片| 久久热精品热| 久久久色成人| 免费av不卡在线播放| 我要搜黄色片| 麻豆一二三区av精品| 国产高清视频在线观看网站| 尤物成人国产欧美一区二区三区| 村上凉子中文字幕在线| 国产成人aa在线观看| 国产一级毛片七仙女欲春2| 久久久久九九精品影院| h日本视频在线播放| 亚洲欧美日韩卡通动漫| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品精品国产色婷婷| 美女被艹到高潮喷水动态| 深夜精品福利| 精品日产1卡2卡| 久久欧美精品欧美久久欧美| 精品人妻熟女av久视频| 成人特级黄色片久久久久久久| 97热精品久久久久久| 国产精品1区2区在线观看.| 亚洲aⅴ乱码一区二区在线播放| 一本一本综合久久| 成人欧美大片| 亚洲精品色激情综合| 精品人妻一区二区三区麻豆| 日韩精品有码人妻一区| 亚洲欧美精品综合久久99| 只有这里有精品99| 午夜激情福利司机影院| 男的添女的下面高潮视频| 亚洲欧美日韩高清专用| 欧美三级亚洲精品| 亚洲五月天丁香| 大香蕉久久网| 久久久精品94久久精品| 天堂av国产一区二区熟女人妻| 亚洲精品粉嫩美女一区| 大又大粗又爽又黄少妇毛片口| 少妇人妻一区二区三区视频| 日韩 亚洲 欧美在线| 悠悠久久av| 精品欧美国产一区二区三| 熟女电影av网| 一区二区三区免费毛片| 久久久久久久久久久免费av| 一个人免费在线观看电影| 中国美白少妇内射xxxbb| 九九热线精品视视频播放| 一级毛片aaaaaa免费看小| 五月玫瑰六月丁香| 丝袜喷水一区| 美女黄网站色视频| 天堂影院成人在线观看| 99久久精品热视频| 亚洲精品乱码久久久v下载方式| 欧美日韩精品成人综合77777| 男人狂女人下面高潮的视频| 国产三级在线视频| 人妻系列 视频| 九九久久精品国产亚洲av麻豆| 成人亚洲精品av一区二区| 中文欧美无线码| 午夜激情福利司机影院| 91午夜精品亚洲一区二区三区| 亚洲人与动物交配视频| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 欧美+亚洲+日韩+国产| 日韩一区二区三区影片| 国产一级毛片七仙女欲春2| 亚洲欧美清纯卡通| 欧美区成人在线视频| 亚洲精品国产av成人精品| 全区人妻精品视频| 一本久久中文字幕| 三级国产精品欧美在线观看| 国产精品久久久久久精品电影小说 | 亚洲成人中文字幕在线播放| 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 国产av一区在线观看免费| 在线免费观看的www视频| 联通29元200g的流量卡| 色综合站精品国产| 91精品一卡2卡3卡4卡| 免费观看人在逋| 国产精品99久久久久久久久| 观看美女的网站| 日韩,欧美,国产一区二区三区 | 有码 亚洲区| av在线亚洲专区| 国产精品久久久久久av不卡| 欧美+日韩+精品| 国产精品久久久久久av不卡| 国产精品一区二区性色av| 99热全是精品|