• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Progress of the study on Landau-Ginzburg A-model

    2020-02-26 08:31:04,,

    , ,

    (1. School of Mathematical Sciences, Peking University, Beijing 100871, China;2. School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China;3. Humboldt-Universit?t zu Berlin, Berlin 12489, Germany)

    Abstract:A brief introduction of Landau-Ginzburg A-model (LG A-model) in homological mirror symmetry is given. Firstly, a short review of the general picture of the homological mirror symmetry is given. Then the background of Landau-Ginzburg model and its role in homological mirror symmetry are discussed. Finally, a brief introduction of our recent work on the Fukaya category of LG model is included. Both mathematical and physical backgrounds are tried to include in this introduction as much as posible.

    Key words:Fukaya category;Landau-Ginzburg model

    In general, mirror symmetry describes a phenomenon, that the structures of two entirely different mathematical objects are equivalent (in a certain sense). In principle, these objects are two realizations of the same physical theory (often in string theory). In 1990s, Candelas, de la Ossa, Green and Parkes[1] found that we can count the number of algebraic curves via transformations of Picard-Fuchs equation, for quintics inP4. This conjectural result was proved by Givental [2-4] and Liu-Lian-Yau [5-8] respectively in a mathematically rigorous way, and by Hori-Vafa [9] using arguments in physics.

    The aforementioned curve-counting version of mirror symmetry is about the closed string. Here the terminology ‘closed string’ means we consider one dimensional string without boundary, moving in certain dimensional physical world. In Hori-Vafa’s theory, the T-duality plays an important role, which relates strings of scalesRand 1/Rand gives a correspondence of invariants on them.

    If we consider the string with boundary, there also should be some kind of mirror symmetry phenomenon. It is Kontsevich who proposed a conjecture on open string version in 1994. This program is nowadays known as homological mirror symmetry. Instead of numberical curve counting, the homological mirror symmetry is at the categorical level. For a pair of manifolds mirror to each other, the derived Fukaya category (A-model) of one should be equivalent to the the derived category of coherent sheaves (B-model) of the other, and vice versa.

    Here we need some explaination of Fukaya categories, which are constructed from the Lagrangian Floer theory on symplectic manifolds. In general, the objects of the Fukaya category of a symplectic manifoldMare certain Lagrangian submanifolds. For a pair (L0,L1) of such objects, the morphism space Hom(L0,L1) between them are the module freely generated by their intersections, after intersections of Lagrangians are made transverse. We often useCF(L0,L1) to denote this Hom space.

    Forpi∈Li-1∩Li,i=1,2,…,d, andp0∈L0∩Ld, we consider mapsufrom the unit disc toM, satisfying the Cauchy-Riemann equation

    The disc here hasd+1 marked pointsz0,…,zdon the boundary, which divide the boundary circle intod+1 segments. Whenzapproaches some marked pointzi,the limit ofu(z) is required to bepi. Each boundary segments are required to be mapped to one of Lagragians, and the order of the Lagrangians is suitably chosen to make the conditions compatible. If certain tranversality condition is satisfied, or in general virtual technique is applied to achieve the same affect, the moduli space of such maps consists of component of smooth manifolds. Counting the zero dimensional components gives a number, denoted by . We then get the composition map

    μd:Hom(L0,L1)×…×Hom(Ld-1,Ld)→Hom(L0,Ld)

    which is defined by

    on generators (here we assume no disk or sphere bubbling for simplicity in this review).

    The collection of composition maps gives rise to differential graded structure of morphism spaces and their associative compositions up to higher homotopy. In algebraic language, Fukaya category is anA∞category. That is to say, the composition maps will satisfy someA∞r(nóng)elations, which can be verified by the compactification of the moduli spaces. The standard algebraic process of twisting and deriving is then applied to it, in order to access more structures (admitting more objects and making use of higher dimensional moduli spaces).

    Mathematically, the best-understood part of homological mirror symmetry is the Calabi-Yau case. In fact, Kontsevich’s conjecture is for mirror symmetry between Calabi-Yau manifolds. There are rich results on different kinds of Calabi-Yau manifolds. For example, elliptic curve [10], Abelian varieties [11], SYZ fibrations[12-15], Quartic surfaces [16], Products [17], and Calabi-Yau projective hypersurfaces [18-19].

    1 The Landau-Ginzburg Model

    Mirror symmetry is not confined to the scope of Calabi-Yau manifolds. Further examples includes Fano cases. In physicists’ point of view, especially in Hori-Vafa’s notion, mirror symmetry can be interpreted as the correspondence between the ‘gauged linear sigma model’ and the ‘Landau-Ginzburg model’. In general, Landau-Ginzburg model (LG model) introduces a holomorphic function on a K?hler manifold, to study the geometrical and physical properties of the system. The LG model and the Calabi-Yau version theory are related by Landau-Ginzburg/Calabi-Yau correspondence (LG/CY correspondence). Note that in the closed string version, there is also LG/CY correspondence. The invariants of FJRW theory (constructed in [20-22]) of a certain Witten equation are related to Gromov-Witten invariants of a related object.

    The global picture of homological mirror symmetry is a square-shaped diagram:

    All two-sided arrows here are conjectured to be equivalences. However, this picture is in principle, that in some cases the LG model might not have a CY corresponding part, and the LG-LG mirror symmetry holds for larger class of examples.

    In general, the A-models are string theories, which is mathematically about the Lagrangian Floer theory, which are symplectic geometric studies. The B-models are fields theories, which are depicted in bundles and finally sheaves in abstract version. In [23-24], Orlov constructed his open string LG B-model theory, he also established the open string B-model LG/CY correspondence in [25].

    In principle, a LG model (M,h,W) consists of a K?hler manifoldMwith metrich, and a holomorphic functionWonM. The physical theory in (2,2) supersymmetry often uses a quasi-homogenous polynomialW, to keep some symmetry of the system, but this can also be generalized. The LG A-model onMis algebraically anA∞category, arising from some Floer-type equation, encoding the information ofW.

    The notion of Lefschetz thimble is crucial in our later discussion about this Floer-type equation. So we first elaborate on its definition. For a critical valuew0∈CofW, we can consider pathsγ:[0,1]→Cending inw0, with no intersection with other cirtical values. These paths are called vanishing paths (associated tow0). IfWis holomorphic Morse, we can regard it as a fibrationM→C. Then for a vanishing pathγ, we can naturally define a parallel transportργ. Forx∈W-1(w0), the Lefschetz thimbleB=Bxis defined by

    This Lefschetz thimble is a Lagrangian submanifold inM. Given a regular fiberN, and a path going through its base point, the intersection of a Lefschetz thimble withNis called a vanishing cycle. Vanishing cycles aren-1 dimensional, topologically spheres. If we take the vanishing path to be some straight ray parallel to thex-axis inC(instead of segments, we can considerγ:(-∞,0] ( or [0,+∞))→Cand all above construction can be applied), then the Lefschetz thimbleBis just the stable/unstable manifold of the flow, generated by the vector field ▽ReW. Note that, the imaginary part ofWis constant onB.

    This setting originates from the LG theory in (2,2) supersymmetry in physics, where the Lefschetz thimbles play the role of the boundary condition for string worldsheet (see Fig.1).

    Fig.1 Strings between two Lefschetz thimbles γa,γb,whose images under W are parallel rays, where a and b are two critical points. This picture is from [26]

    One can see [26] for more details. In short, in this setting, we consider paths [0,π]→Mwhose ends sit in two Lefschetz thimbles, respectively. In order to consider the ‘supersymmetric ground states’ of the system, a functionalhis introduced, where we rewrite it asαfor our compatibility of symbols:

    (1)

    The gradient flow ofαis

    ?sφ+J?tφ=▽ReW(φ)

    (2)

    In complex version, it is

    wherehis the K?hler metric ofM. This is exactly the Witten equation, which is similar to ones in FJRW theory in [20-22]. However, here we must consider equations with boundary. We will discuss it in the next section.

    It is worth noting that, the construction of Lefschetz thimbles and vanishing cycles is not only applied to holomorphic Morse functionsW, but can be used to holomorphic Morse fibrationsπ:E→Sfor some Riemannian surfaceS, and we can still get Lefschetz thimbles and Vanishing circles. In Seidel’s construction of Fukaya-Seidel category (see Fig. 2), one considersSto be a unit disc, and connects all critical values ofπto a fixed pointz0on the boundary ofS. Then one takes vanishing circles inπ-1(z0) to be the collection of objects, and gets a Fukaya category inπ-1(z0). The vanishing paths are not canonically chosen, but one can prove some equivalence between different choices. This kind of equivalence is called mutation. One can see [27-29] for reference.

    2 Fukaya category of LG model

    We need some definitions here, before further discussions. The tuple (M,h,W) is called a Landau-Ginzburg (LG) system, where (M,h) is ann-complex dimensional complete noncompact K?hler manifold andWis a nontrivial holomorphic function onM. We also require thatMis of bounded geometry, using the K?hler metric. If the K?hler formωof the metrichis exact, we call (M,h,W) an exact LG system.

    (3)

    Another concept we introduce is a regular LG system. IfWis Morse, and for any pairp,q∈CW,p≠q, holds ImW(p)≠ImW(q), then the LG system (M,h,W) is called a regular Morse LG system. A regular tame exact LG system (M,h,W) is a regular LG system, which has exact K?hler formωand satisfies the tame condition.

    Note that the condition of exactness will make the functional in (1) well defined.

    A Landau-Ginzburg Lagrangian braneL#is a Lefschetz thimbleL, together with a lifti#:L→L#and a Pin structure onTL. These Landau-Ginzburg Lagrangian branes are the objects of our category.

    (4)

    whose local coordinate form is

    In fact, in order to define ourA∞category, we need to consider strings with different ‘speeds’. That is to say, instead of (4), we need to consider

    (5)

    To define composition maps, we must define at first the Witten equation for the pointed discs. Techniqually, to define the equation, we first need a sectionσof the log-canonical bundle of the disc. First,σneeds to be holomorphic. In addition, the imaginary part lmσshould be zero on the boundary. Note that, on strip-like ends, where the part of the disc can be written as [a,+∞)×[0,1] (or (-∞,-a]×[0,1]) for somea>0,σcan be written asκdzfor someκ∈R+in this coordinate.

    (6)

    Here,Zis the perturbation term. Marked pointsz0,…,zdon the boundary divide the boundary circle intod+1 segments. Forli∈SW(Li-1,Li),i=1,…,dandl0∈SW(L0,Ld), we can consider such solutionsφthat the limit ofφ(z) isliwhenz→zi. We also require that the boundary segments are mapped to one of these Lefschetz thimbles, whose order is suitably chosen to make the conditions compatible. Note that, whend=1, we can regard the pointed disc as a stripR×[0,1], and the equation (6) becomes

    ?sφ+J?tφ=κ▽ReW+z(φ)

    We take the change of the configuration of discs into consideration and find that, for generic perturbations, such maps will make up a smooth manifold of a certain dimension. If the dimension is zero, it is called the rigid one, then counting such maps will give a number . Counting these numbers will give rise to composition maps

    where on generators, we have

    The symbol * is used to give a sign of the component. By studying the compactness of the moduli spaces, we get theA∞r(nóng)elation (132 of [30])

    (7)

    where (-1)?μis an integer according to these inputs, which is determined by the coherent orientations of the moduli spaces.

    However, the compactness is far from a trivial result. This is because, the targetMis not compact. So we need some kind ofC0estimate. This is done by a mutual control mechanism between theC0bound ofφand |dφ|, for which one can see [30] for the detail. In short, we need to examine the ‘bubbling’ phenomenon where |dφ|→+∞. However, as it is noncompact, we can not get an actual bubble, for no convergence can be obtained if we carry out the bubbling process. Instead, we use some kind of elliptic estimate to control |dφ|, under the condition that the total energy is bounded. In this process, isoperimetric inequality is used (together with the exactness of the symplectic form associated tohand bounded geometry of (M,h)), and the tame condition is also crucial to control the gradient termXRe WImσ+Z(φ).

    Summing up, we get the Fukaya category Fuk(M,h,W) of a Landau-Ginzburg model (M,h,W), which consists of the following data:

    (i) A set Ob(Fuk(M,h,W)) of objects, consisting of all Landau-Ginzburg branes.

    (iii) Composition maps

    satisfying theA∞r(nóng)elation (7).

    3 More discussion

    There are many motivations of the construction of this Fukaya category of LG model. On the other hand, we can also expect to have many applications of this theory. We present a brief discussion in this section.

    The readily goal of this construction is to extend the homological mirror symmetry to more general cases. There are already many studies of homological mirror symmetry of LG model, one can see the introduction in [30] for a comprehensive summary. Our Fukaya category of LG model is defined on a general class of K?hler manifolds (exact, with bounded geometry). Once it is defined, we can expect that, it can be used to extend the homological mirror symmetry to more general cases (beyond Fano case).

    It worth noting that, if we choose a regular fiberπ-1(w0), we use Seidel’s construction to get a Fukaya-Seidel category Fuk(π-1(w0)). A natural question is the relation between Fuk(π-1(w0)) and Fuk(M,h,W), as they are both A-side theory of LG model. There is no evidence for general relation here. However, in special cases, asCnand (C*)n, we expect there is someA∞quasi-equivalence between them. Some construction is done, in a work in progress by H. Fan, W. Jiang and D. Yang. Furthermore, the Fukaya category of LG model constructed here can be expected to ‘unify’ different constructions for LG A-model ever appeared.

    This theory is also related to the quantum singularity theory via Witten equation developed in [20-22] (commonly refered to as FJRW theory), which is a closed string invariant about singularity, constructed by studying the Witten equation on orbifold line bundles on closed Riemannian surfaces. Actually, the construction of LG Fukaya category draws many inspirations from the FJRW theory. In particular, the tame condition we used in the construction above is from there. To go further, we can expect to construct an enriched theory to take both boundary marked points in LG Fukaya category theory, and interior marked points in FJRW theory into consideration. This ‘universal’ theory, once established, can be used to formulate some kind of open-closed correspondence of LG model.

    In addition, in Gaiotto-Moore-Witten’s web-based formalism ([31]) of LG theory for holomorphic MorseW, one can consider polytopes generated by singular values ofWinCand secondary fans of all its possible regular polyhedral subdivisions (the dual of which is the space of webs), and establish anL∞-algebra R.One can find the mathematical formulation in the paper of Kapranov-Kontsevich-Soibelman ([32]). The construction there is expected to recover some kind of LG-Fukaya category ( [32,Conjecture 14.10]). In this paper, we are using the same Witten equation as in GMW and KKS, and techniques and viewpoints especially compactness etc. should pave the way to rigorously construct this algebra of infrared and approach this conjecture.

    欧洲精品卡2卡3卡4卡5卡区| 欧美黄色片欧美黄色片| 成人国产综合亚洲| 久久久精品大字幕| 窝窝影院91人妻| 麻豆一二三区av精品| 丁香六月欧美| 欧美乱码精品一区二区三区| 一本大道久久a久久精品| 亚洲成av人片在线播放无| 最好的美女福利视频网| 亚洲精品在线美女| 亚洲电影在线观看av| 欧美一区二区精品小视频在线| 精品人妻1区二区| 搡老岳熟女国产| 亚洲乱码一区二区免费版| 欧美日本亚洲视频在线播放| 亚洲精品一区av在线观看| 国产真人三级小视频在线观看| 一进一出好大好爽视频| 亚洲国产欧洲综合997久久,| 欧美黄色片欧美黄色片| 九九热线精品视视频播放| 丝袜美腿诱惑在线| 久久人妻福利社区极品人妻图片| a级毛片在线看网站| av超薄肉色丝袜交足视频| 欧美乱妇无乱码| 午夜激情福利司机影院| 精品久久蜜臀av无| 国产人伦9x9x在线观看| 精品一区二区三区av网在线观看| netflix在线观看网站| 亚洲中文日韩欧美视频| 国产午夜精品论理片| 黑人欧美特级aaaaaa片| 精品国内亚洲2022精品成人| 91九色精品人成在线观看| 国产精品国产高清国产av| 精品国产亚洲在线| 午夜福利在线在线| 一区福利在线观看| 天堂动漫精品| 久久人妻福利社区极品人妻图片| 久久精品成人免费网站| 久99久视频精品免费| 国产成人欧美在线观看| 成年女人毛片免费观看观看9| 久久午夜亚洲精品久久| 国产欧美日韩一区二区精品| 桃色一区二区三区在线观看| 日韩欧美在线二视频| 高潮久久久久久久久久久不卡| 9191精品国产免费久久| 成年版毛片免费区| 成人国产一区最新在线观看| 美女免费视频网站| 在线免费观看的www视频| 九九热线精品视视频播放| 99久久无色码亚洲精品果冻| 两性夫妻黄色片| aaaaa片日本免费| 国产精品永久免费网站| 国产激情偷乱视频一区二区| 成年版毛片免费区| 大型黄色视频在线免费观看| 国产真人三级小视频在线观看| 国产高清视频在线观看网站| 99国产综合亚洲精品| 18美女黄网站色大片免费观看| 非洲黑人性xxxx精品又粗又长| 日韩欧美国产在线观看| 国产精品国产高清国产av| 少妇粗大呻吟视频| 久久国产乱子伦精品免费另类| 免费av毛片视频| 欧美一区二区国产精品久久精品 | 亚洲av美国av| 久久人妻福利社区极品人妻图片| 俺也久久电影网| 欧美中文日本在线观看视频| 精品久久久久久久久久免费视频| 亚洲国产欧美网| 麻豆成人av在线观看| ponron亚洲| 日本 av在线| 久久精品综合一区二区三区| 亚洲精华国产精华精| aaaaa片日本免费| 91老司机精品| 少妇熟女aⅴ在线视频| 一区二区三区高清视频在线| 人人妻,人人澡人人爽秒播| 日韩成人在线观看一区二区三区| 91麻豆精品激情在线观看国产| 一个人免费在线观看的高清视频| 啪啪无遮挡十八禁网站| 欧美日韩一级在线毛片| 婷婷丁香在线五月| 欧美日韩亚洲国产一区二区在线观看| 99热这里只有精品一区 | 美女扒开内裤让男人捅视频| 国产激情欧美一区二区| 激情在线观看视频在线高清| 日韩精品青青久久久久久| 久久精品国产清高在天天线| 亚洲九九香蕉| 国产精华一区二区三区| 性欧美人与动物交配| 亚洲在线自拍视频| 成人永久免费在线观看视频| 99国产精品一区二区三区| 欧美日韩黄片免| 成人三级黄色视频| 天堂动漫精品| 中亚洲国语对白在线视频| x7x7x7水蜜桃| 精品第一国产精品| 99国产精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 少妇被粗大的猛进出69影院| 听说在线观看完整版免费高清| 午夜免费激情av| 午夜福利成人在线免费观看| 波多野结衣巨乳人妻| 欧美日韩瑟瑟在线播放| 12—13女人毛片做爰片一| 亚洲美女视频黄频| 一夜夜www| 真人一进一出gif抽搐免费| 精品久久久久久成人av| 黑人操中国人逼视频| 不卡一级毛片| 欧美黑人精品巨大| 日韩欧美免费精品| 麻豆成人午夜福利视频| 免费看日本二区| 精品久久蜜臀av无| 国产精品永久免费网站| xxx96com| 国产午夜精品论理片| 黑人巨大精品欧美一区二区mp4| 亚洲自拍偷在线| 99在线人妻在线中文字幕| 69av精品久久久久久| 国内精品久久久久久久电影| 成人欧美大片| 亚洲成人久久性| 国产亚洲欧美在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 免费在线观看完整版高清| 久久午夜亚洲精品久久| 日本熟妇午夜| 国产精品九九99| 99久久精品国产亚洲精品| 99国产精品一区二区三区| 他把我摸到了高潮在线观看| 好男人在线观看高清免费视频| 搡老熟女国产l中国老女人| 午夜福利欧美成人| 国产精华一区二区三区| 又粗又爽又猛毛片免费看| 国产精品日韩av在线免费观看| aaaaa片日本免费| 白带黄色成豆腐渣| 黄色视频不卡| 日本撒尿小便嘘嘘汇集6| 国产乱人伦免费视频| 国产精品免费一区二区三区在线| 国产区一区二久久| 一区二区三区激情视频| 在线观看美女被高潮喷水网站 | 日韩成人在线观看一区二区三区| 1024手机看黄色片| 成人永久免费在线观看视频| 九色成人免费人妻av| 可以免费在线观看a视频的电影网站| 超碰成人久久| 亚洲熟妇中文字幕五十中出| 99久久精品国产亚洲精品| 国产精品98久久久久久宅男小说| 午夜福利免费观看在线| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 欧美色视频一区免费| 亚洲国产日韩欧美精品在线观看 | 村上凉子中文字幕在线| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 亚洲精品色激情综合| 欧美丝袜亚洲另类 | 18禁国产床啪视频网站| 91麻豆av在线| 黄色 视频免费看| 天天添夜夜摸| 亚洲av成人精品一区久久| 亚洲精品在线观看二区| 青草久久国产| 欧美性长视频在线观看| 国产黄a三级三级三级人| 成人亚洲精品av一区二区| 悠悠久久av| 黄频高清免费视频| 看黄色毛片网站| 美女午夜性视频免费| 毛片女人毛片| 婷婷精品国产亚洲av| 亚洲国产欧洲综合997久久,| 成人亚洲精品av一区二区| 成人av一区二区三区在线看| 欧美在线一区亚洲| 99国产精品99久久久久| 88av欧美| 国内久久婷婷六月综合欲色啪| 久久久久久人人人人人| 午夜福利在线观看吧| 看片在线看免费视频| 在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 超碰成人久久| 女生性感内裤真人,穿戴方法视频| 校园春色视频在线观看| 久久欧美精品欧美久久欧美| 国产精华一区二区三区| 777久久人妻少妇嫩草av网站| 女生性感内裤真人,穿戴方法视频| 国产精品久久电影中文字幕| 国产精品综合久久久久久久免费| 1024视频免费在线观看| 亚洲一区中文字幕在线| 听说在线观看完整版免费高清| 成人18禁高潮啪啪吃奶动态图| 18禁观看日本| 又大又爽又粗| 777久久人妻少妇嫩草av网站| 九九热线精品视视频播放| 亚洲天堂国产精品一区在线| 国产真人三级小视频在线观看| 日韩有码中文字幕| 日本黄大片高清| 亚洲av第一区精品v没综合| 99精品在免费线老司机午夜| 久久精品国产清高在天天线| 国产激情久久老熟女| 日韩免费av在线播放| cao死你这个sao货| 超碰成人久久| av有码第一页| 脱女人内裤的视频| 1024香蕉在线观看| 色综合欧美亚洲国产小说| 国产高清视频在线播放一区| 亚洲成av人片免费观看| 婷婷精品国产亚洲av| av在线天堂中文字幕| 黑人欧美特级aaaaaa片| 日本 av在线| 两人在一起打扑克的视频| 成人特级黄色片久久久久久久| 欧美日韩乱码在线| 女人爽到高潮嗷嗷叫在线视频| 在线免费观看的www视频| 婷婷丁香在线五月| 少妇人妻一区二区三区视频| 中文字幕精品亚洲无线码一区| 黑人巨大精品欧美一区二区mp4| 性色av乱码一区二区三区2| 国产探花在线观看一区二区| 丰满人妻一区二区三区视频av | 久久久久久久精品吃奶| 日韩国内少妇激情av| 亚洲中文av在线| 一本精品99久久精品77| 草草在线视频免费看| 日本撒尿小便嘘嘘汇集6| 人妻夜夜爽99麻豆av| 啪啪无遮挡十八禁网站| 日韩精品中文字幕看吧| 制服丝袜大香蕉在线| 国产精品电影一区二区三区| 久久精品国产清高在天天线| www.熟女人妻精品国产| 黄色女人牲交| 成年女人毛片免费观看观看9| www.自偷自拍.com| 啪啪无遮挡十八禁网站| 国产激情欧美一区二区| 日韩欧美 国产精品| 亚洲精品久久成人aⅴ小说| 久久精品综合一区二区三区| 少妇的丰满在线观看| 欧美精品啪啪一区二区三区| 久久这里只有精品中国| 男人的好看免费观看在线视频 | 欧美又色又爽又黄视频| 久久久久久久午夜电影| 成人国语在线视频| 国产精品免费视频内射| 日本精品一区二区三区蜜桃| 免费在线观看黄色视频的| 亚洲一区二区三区不卡视频| 午夜福利欧美成人| 国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 国产精品综合久久久久久久免费| 叶爱在线成人免费视频播放| 美女扒开内裤让男人捅视频| 日韩中文字幕欧美一区二区| 麻豆国产97在线/欧美 | www日本在线高清视频| 18禁国产床啪视频网站| 99久久国产精品久久久| 中文字幕av在线有码专区| 18禁观看日本| 日韩欧美免费精品| 国产精品 欧美亚洲| 国产一区二区三区视频了| or卡值多少钱| 亚洲男人的天堂狠狠| 黄色 视频免费看| 我要搜黄色片| 国产aⅴ精品一区二区三区波| 久久久久久九九精品二区国产 | 久久久久免费精品人妻一区二区| 日本黄大片高清| 九色成人免费人妻av| 午夜老司机福利片| 黑人欧美特级aaaaaa片| av天堂在线播放| 亚洲国产欧美一区二区综合| 中文字幕久久专区| 午夜免费成人在线视频| 搡老妇女老女人老熟妇| 久久国产精品人妻蜜桃| 日本五十路高清| 日本 欧美在线| 日日夜夜操网爽| 成人三级黄色视频| 俺也久久电影网| 国产午夜精品论理片| 精品乱码久久久久久99久播| 99热6这里只有精品| 亚洲自偷自拍图片 自拍| 美女黄网站色视频| 99热6这里只有精品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av成人av| 国产69精品久久久久777片 | 一进一出抽搐gif免费好疼| 亚洲七黄色美女视频| 黑人欧美特级aaaaaa片| 午夜影院日韩av| 在线观看午夜福利视频| 亚洲 欧美一区二区三区| 亚洲欧美日韩无卡精品| 十八禁人妻一区二区| 中文字幕av在线有码专区| 99久久精品热视频| 99热6这里只有精品| 一级黄色大片毛片| 最近视频中文字幕2019在线8| 精品久久久久久久久久久久久| 日本免费一区二区三区高清不卡| 色播亚洲综合网| 国产精品电影一区二区三区| 国产又色又爽无遮挡免费看| 日本一区二区免费在线视频| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 午夜精品久久久久久毛片777| 免费在线观看视频国产中文字幕亚洲| 亚洲精品色激情综合| 亚洲第一欧美日韩一区二区三区| 色哟哟哟哟哟哟| 欧美日韩亚洲综合一区二区三区_| 午夜久久久久精精品| 男人舔女人的私密视频| 亚洲国产精品成人综合色| 麻豆一二三区av精品| 少妇被粗大的猛进出69影院| 精品无人区乱码1区二区| 国产精品1区2区在线观看.| 久久精品综合一区二区三区| 狂野欧美激情性xxxx| 亚洲中文字幕一区二区三区有码在线看 | 亚洲 欧美 日韩 在线 免费| 极品教师在线免费播放| 国产又黄又爽又无遮挡在线| 亚洲成人精品中文字幕电影| 午夜福利视频1000在线观看| 亚洲最大成人中文| 日本精品一区二区三区蜜桃| 人妻久久中文字幕网| 午夜视频精品福利| 狠狠狠狠99中文字幕| 欧美中文综合在线视频| 成人国产一区最新在线观看| 夜夜爽天天搞| 男男h啪啪无遮挡| 免费av毛片视频| 国产69精品久久久久777片 | 亚洲乱码一区二区免费版| 嫁个100分男人电影在线观看| 久久久久免费精品人妻一区二区| 中文字幕人妻丝袜一区二区| 亚洲第一欧美日韩一区二区三区| 黄色 视频免费看| 母亲3免费完整高清在线观看| 中文字幕av在线有码专区| 亚洲av美国av| 欧洲精品卡2卡3卡4卡5卡区| 国产三级中文精品| 成人手机av| 国产精品99久久99久久久不卡| 99国产综合亚洲精品| 久久久精品大字幕| 亚洲精品久久成人aⅴ小说| 黄色片一级片一级黄色片| 亚洲国产高清在线一区二区三| 日日干狠狠操夜夜爽| 国产激情偷乱视频一区二区| 国产精品免费一区二区三区在线| 成人三级做爰电影| 波多野结衣高清无吗| 俺也久久电影网| 老熟妇乱子伦视频在线观看| 99国产综合亚洲精品| 啦啦啦韩国在线观看视频| 日韩欧美一区二区三区在线观看| 欧美中文日本在线观看视频| 好男人电影高清在线观看| 丝袜人妻中文字幕| 日韩欧美在线乱码| 亚洲熟妇中文字幕五十中出| 成人18禁在线播放| 巨乳人妻的诱惑在线观看| 免费在线观看成人毛片| 妹子高潮喷水视频| 久久亚洲真实| 国产伦在线观看视频一区| 哪里可以看免费的av片| 欧美另类亚洲清纯唯美| 国产99白浆流出| 母亲3免费完整高清在线观看| 欧美日韩国产亚洲二区| 午夜福利免费观看在线| 怎么达到女性高潮| 国产私拍福利视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日本五十路高清| 国产精品美女特级片免费视频播放器 | xxx96com| 少妇被粗大的猛进出69影院| 色av中文字幕| 丁香欧美五月| 国产精品影院久久| 一本一本综合久久| 亚洲熟女毛片儿| 老鸭窝网址在线观看| 在线十欧美十亚洲十日本专区| 叶爱在线成人免费视频播放| 天堂av国产一区二区熟女人妻 | bbb黄色大片| 两个人的视频大全免费| 欧美成人一区二区免费高清观看 | 国产成人aa在线观看| 在线a可以看的网站| 亚洲黑人精品在线| 成人高潮视频无遮挡免费网站| 国产精品av久久久久免费| 丁香六月欧美| 久久久水蜜桃国产精品网| 精品第一国产精品| 午夜免费观看网址| 亚洲男人的天堂狠狠| av国产免费在线观看| 性欧美人与动物交配| 欧美日本亚洲视频在线播放| 非洲黑人性xxxx精品又粗又长| 一进一出抽搐gif免费好疼| 亚洲欧美日韩高清专用| 国产亚洲av高清不卡| 精品久久久久久久末码| 又黄又爽又免费观看的视频| 久久人妻福利社区极品人妻图片| 欧美高清成人免费视频www| 国产亚洲欧美在线一区二区| 啦啦啦韩国在线观看视频| 一二三四社区在线视频社区8| 国产精品一区二区免费欧美| 国产精品一及| 久久久久精品国产欧美久久久| 久久亚洲精品不卡| 亚洲男人的天堂狠狠| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 少妇人妻一区二区三区视频| 女人被狂操c到高潮| 日韩欧美精品v在线| 国产日本99.免费观看| 成人国产一区最新在线观看| 日本一区二区免费在线视频| 亚洲全国av大片| 欧美日韩一级在线毛片| 国产爱豆传媒在线观看 | 国产精品综合久久久久久久免费| 两性夫妻黄色片| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| 日本成人三级电影网站| 啪啪无遮挡十八禁网站| 国产乱人伦免费视频| 最近最新免费中文字幕在线| 国产黄片美女视频| 亚洲黑人精品在线| 国产精品免费视频内射| 午夜福利视频1000在线观看| 久久久久久免费高清国产稀缺| 一本久久中文字幕| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 99久久久亚洲精品蜜臀av| 一进一出抽搐动态| 伊人久久大香线蕉亚洲五| 亚洲人与动物交配视频| 久久精品人妻少妇| 99久久精品国产亚洲精品| 精品久久久久久,| 99久久综合精品五月天人人| av欧美777| www.熟女人妻精品国产| 亚洲男人天堂网一区| 夜夜躁狠狠躁天天躁| 黄色视频,在线免费观看| 国产视频一区二区在线看| 热99re8久久精品国产| 亚洲片人在线观看| 丁香六月欧美| 色精品久久人妻99蜜桃| 午夜免费成人在线视频| 最新美女视频免费是黄的| 国内毛片毛片毛片毛片毛片| 亚洲成人免费电影在线观看| 女人被狂操c到高潮| 国产精品一区二区三区四区久久| 在线十欧美十亚洲十日本专区| 好男人在线观看高清免费视频| 五月伊人婷婷丁香| 国产探花在线观看一区二区| 亚洲黑人精品在线| 久久欧美精品欧美久久欧美| 国产又黄又爽又无遮挡在线| 黄频高清免费视频| 午夜视频精品福利| 国内久久婷婷六月综合欲色啪| 亚洲人成77777在线视频| av福利片在线观看| 夜夜夜夜夜久久久久| 91麻豆精品激情在线观看国产| 国产午夜精品论理片| 成年人黄色毛片网站| 国产一区在线观看成人免费| 亚洲 欧美一区二区三区| 久久亚洲真实| 亚洲真实伦在线观看| 91老司机精品| 亚洲国产精品成人综合色| 97碰自拍视频| 久久国产精品人妻蜜桃| 国产高清有码在线观看视频 | 日本 欧美在线| 成人国产一区最新在线观看| 中文在线观看免费www的网站 | 夜夜看夜夜爽夜夜摸| 久久草成人影院| 女生性感内裤真人,穿戴方法视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美色欧美亚洲另类二区| 黄片小视频在线播放| 无限看片的www在线观看| tocl精华| 久久这里只有精品中国| 欧美乱码精品一区二区三区| 亚洲欧美日韩高清专用| 亚洲美女视频黄频| 女人爽到高潮嗷嗷叫在线视频| 人成视频在线观看免费观看| 日韩中文字幕欧美一区二区| 日韩有码中文字幕| 精品人妻1区二区| 少妇的丰满在线观看| 精华霜和精华液先用哪个| 免费观看精品视频网站| 岛国在线免费视频观看| 少妇粗大呻吟视频| 国产精品 欧美亚洲| 黄色视频,在线免费观看| 久久精品91蜜桃| 精品午夜福利视频在线观看一区| videosex国产| 午夜两性在线视频| 精品久久蜜臀av无| 国产一区二区激情短视频| 全区人妻精品视频| 久久久久国产一级毛片高清牌| 免费高清视频大片| 午夜激情av网站| xxxwww97欧美| 岛国视频午夜一区免费看| 国内精品一区二区在线观看| bbb黄色大片| av国产免费在线观看| 国产人伦9x9x在线观看|