• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic constitutive model for soils considering asymmetry of skeleton curve

    2013-07-10 12:23:42GuoxingChenHuPnHuiLongXiojunLi

    GuoxingChen,HuPn,HuiLong,XiojunLi,c

    aInstituteofGeotechnicalEngineering,NanjingUniversityofTechnology,Nanjing210009,China

    bGeotechnicalResearchInstitute,HohaiUniversity,Nanjing210098,China

    cInstituteofGeophysics,ChinaEarthquakeAdministration,Beijing100081,China

    Dynamic constitutive model for soils considering asymmetry of skeleton curve

    GuoxingChena,b,HuaPana,?,HuiLonga,XiaojunLia,c

    aInstituteofGeotechnicalEngineering,NanjingUniversityofTechnology,Nanjing210009,China

    bGeotechnicalResearchInstitute,HohaiUniversity,Nanjing210098,China

    cInstituteofGeophysics,ChinaEarthquakeAdministration,Beijing100081,China

    A R T I C L E I N F O

    Articlehistory:

    Received 18 June 2012

    Received in revised form 2 December 2012

    Accepted 5 January 2013

    Function with double asymptotes

    Dynamic constitutive model

    Shear modulus

    Damping ratio

    Complex initial stress state

    Based on the asymmetric characteristic of skeleton curve obtained from dynamic tests on soils, a function with double asymptotes is proposed for describing the dynamic constitutive relations of soils. The hysteresis loops observed during unloading and reloading show the same form as the skeleton curve and are constructed by taking the ultimate stress as the corresponding asymptote. The coef ficient of initial unloading modulus is used to ensure that the constructed hysteresis loop fits well with the experimental data. Then, a new dynamic constitutive model considering the asymmetry of skeleton curve is elaborated. The veri fication tests on saturated Nanjing fine sand are performed using a hollow cylinder apparatus to verify the applicability of the UD model. It is found that the predicted curves by the UD model agree well with the test data.

    ? 2013 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    The soil dynamic constitutive model is a basis for studying the dynamic characteristics of soils and soil-structure interaction system under dynamic loads as well as the prerequisite for conducting numerical dynamic analysis.

    Masing (1926) suggested a one-dimensional dynamic stress–strain relationship of soil under constant stress cyclic loading. He adopted a hyperbola to describe the skeleton curve, and structured the hysteretic curve using the “double times method”. However, an irrational phenomenon occurred in his model: the value of calculated stress exceeded the ultimate stress under irregular cyclic loading.

    Rosenblueth and Herrear (1964) and Newmark and Rosenblueth (1971) respectively put forward the “upper skeleton curve” and“upper large loop” as two supplementary rules to Masing rule. Masing rule and the two supplementary ones were termed as“extended Masing rule”. However, the extended Masing rule cannot be described by a simple mathematical expression. Moreover, it needs tremendous amount of memory capacity to find the intersection point of the present and previous stress–strain curves. Pyke (1979) simplified the extended Masing rule using “ntimes method”instead of “double times method” to restrict the hysteresis loops of follow-up wave within the asymptote of skeleton curve. Besides, Li (1992) modified the Masing rule by introducing the concept of dynamic skeleton curve, which constrains the calculated stress within the ultimate stress.

    Wang et al. (1980) made adjustments to the theoretical hysteresis loops by introducing “damping ratio degeneration factor”. This factor led the area of hysteresis loop to fit the experimental value of damping ratio. The essence of this method is to adjust the stress–strain hysteretic damping ratio by changing the original unloading and following shear modulus which is obtained based on the Masing rule. Then, Chen et al. (2009) extended this factor into “general damping ratio degeneration factor” by introducing an adjustment parameterAd. They used a changeable curve to fit the experimental value of damping ratio, thus the fitting can be more flexible.

    Based on the studies of Wang et al. (1980), many researchers have conducted extensive studies on this Masing-type constitutive model to analyze the site earthquake responses (Borja et al., 2000; Purzin and Shiran, 2000; Muravskii, 2005; Zhang et al., 2005; Zekkos et al., 2006; Okur and Ansal, 2007; Yamada et al., 2008; Phillips and Hashash, 2009).

    The skeleton curves of Masing hysteresis loops can be constructed by hyperbola model (Hardin and Drnevich, 1972a, 1972b), by Ramberg–Osgood model (Ramberg and Osgood, 1943), or by Martin–Davidenkov model (Martin and Seed, 1982). However, in the Martin–Davidenkov model, the shear strain as well as the shearstress may increase infinitely, which is inapplicable to soils. For this reason, Chen and Zhuang (2005) used upper limit value of strain amplitude as a dividing point. The piecewise function was adopted to modify the skeleton curve, and the formula to calculate the damping ratio was deduced. Qi and Bo (2009) put forward a new dynamic constitutive model of soils, in which the exponential function was used to construct the skeleton curve and the hysteresis loop.

    As mentioned above, the research results of Masing dynamic constitutive model of soils are quite abundant, whereas there is a fault in common that the skeleton curves adopted are all odd functions which are symmetrical around the origin of coordinates. This does not agree with the results of hysteretic characteristics obtained from the tests under cyclic loading, especially under anisotropic consolidation. In this paper, a function with double asymptotes is proposed for describing the skeleton curves of soils. Then, a new dynamic constitutive model (UD model) considering the asymmetry of skeleton curve is constructed. The verification tests on saturated Nanjing fine sand are performed using a hollow cylinder apparatus to verify the applicability of the UD model.

    2. Dynamic constitutive model of soils with asymmetric skeleton curve

    2.1.PrinciplesforconstructingMasingtypeconstitutivemodelof soils

    The principles for construction of Masing-type constitutive model suitable for soils can be summarized as follows:

    (1) During the initial loading, the stress–strain relationship can be described by the skeleton curve.

    (2) During the unloading and reloading process, the value of dynamic modulus at the beginning of the unloading process is considered equal to the maximum dynamic shear modulus.

    (3) Stress value in the skeleton curve and following hysteresis loop should not exceed the maximum stress level.

    (4) The hysteresis loop has the same functional form as the skeleton curve, whereas the parameters are different. The hysteresis loop could be obtained by translating, revolving and scaling the skeleton curve.

    2.2.Selectionofskeletoncurvefunction

    Considering the principles for constructing dynamic constitutive model of soils, Eq. (1) is adopted to describe the skeleton curve, which has the following features:

    (1) The function curve passes through the origin of coordinates.

    (2) There are two asymptotes with different absolute asymptotic values.

    (3) The function curve becomes convex when the independent variables are positive and concave-down when the independent variables are negative.

    (4) The function is continuous and differentiable within its definition domain (? ∞ , + ∞).

    Fig. 1. Schematic diagram of skeleton curve.

    whereA,t1,t2,kare the fitting parameters, andA< 0,t1< 0,t2< 0,k> 0. The limits of Eq. (1) asxapproaches positive and negative infinity can be respectively expressed as

    2.3.Constructionofskeletoncurve

    The skeleton curve of the dynamic constitutive model, has the same form as Eq. (1), can be expressed as

    where τ and γ are the dynamic shear stress and dynamic shear strain, respectively. The limits of Eq. (4) can be obtained by

    where τuuand τduare the upper and lower asymptotic lines of the skeleton curve, respectively (see Fig. 1).

    The value of the maximum initial dynamic shear modulusGmaxcan be obtained from the slope of the tangent through the original pointO(Fig. 1):

    From Eqs. (5)–(7), the following equations can be derived:

    By fitting multiple sets of experimental data, it can be found that, whent1= ?100, four parameters of the skeleton curve shown in Eq. (4) can be simplified as three parameters and the fitting results aregood. Thus, the skeleton curve can be determined by

    Fig. 2. Schematic diagram of hysteresis loop.

    2.4.Constructionofhysteresisloop

    Based on the above-mentioned construction principles as well as the processing method from Pyke (1979), the hysteresis loop is constructed by translating and scaling the skeleton curve; meanwhile, τ = τuuand τ = τduare taken as the asymptotes.

    2.4.1.Case1:theunloadingpointliesontheskeletoncurve

    For this case, first step is to construct the lower hysteresis loop. Set the unloading point (reverse loading point)P(γ0, τP) on the upper skeleton curve, and pointB(? γ0, τB) is the symmetric point ofP(γ0, τP), the value of τBcan be determined by the equations related to the skeleton curve. Then the curvePCBin Fig. 2 corresponds to the lower hysteresis loop, and its functional form is the same as the skeleton curve:

    whereAd,kdandtdare the unknown parameters, and the subscript“d” represents the lower hysteresis loop.

    In order to determine the value of the three model parameters (Ad,kdandtd), it is assumed that:

    (1) The asymptote of the lower hysteresis loop is τ = τdu.

    (2) The shear modulus of the initial unloading point on the lower hysteresis loop is equal to the maximum initial shear modulus and can be expressed asPP′‖OHandGP=Gmax.

    (3) In order to ensure the closure feature of the hysteresis loop under constant strain cyclic loading, the pointB(? γ0, τB) must be set on the lower hysteresis loop so that the peak point of the hysteresis loop could be on the skeleton curve.

    Based on the above assumptions, the following expressions can be obtained:

    The values ofAd,kdandtdcan be derived from Eqs. (13)–(15), and the expression of the lower hysteresis loop can be determined.

    Then the upper hysteresis loop should be constructed. Setting the unloading point (reverse loading point)B(? γ0, τB) on the lower skeleton curve, and the pointP(γ0, τP) is the symmetric point ofB(? γ0, τB). Then the curveBDPin Fig. 2 corresponds to the upper hysteresis loop, and its functional form is the same as the skeleton curve:

    whereAu,kuandtuare the undetermined parameters, and the subscript “u” represents the upper hysteresis loop. Similarly, in order to determine the value of the three model parameters (Au,kuandtu), it is assumed that:

    (1) The asymptote of the upper hysteresis loop is τ = τuu.

    (2) The shear modulus of initial unloading point on the upper hysteresis loop is equal to the maximum initial shear modulus which is expressed asBB’ ‖OHandGB=Gmax.

    (3) In order to ensure the closure feature of the hysteresis loop under constant strain cyclic loading, theP(γ0, τP) must be set on the upper hysteresis loop.

    Based on the above assumptions, the following expressions can be obtained:

    The values ofAu,kuandtucan be obtained from Eqs. (17)–(19), and the expression of the upper hysteresis loop can be determined.

    2.4.2.Case2:theunloadingpointisnotontheskeletoncurve

    As shown in Fig. 2, it is assumed that the stress–strain process under loading and unloading after the pointPisP→C→E→M→F→N. When analyzing the unloading pointE, the curveEMFis the upper branch of the follow-up hysteresis loop. Its functional form is the same as the skeleton curve. There are three unknown parameters, and three corresponding assumptions need to be made in order to determine the function form of curveEMF. Obviously, the above-mentioned assumptions of the asymptote and taking the shear modulus of the initial unloading point as the maximum initial shear modulusGmaxstill hold true. However, since the pointEis not on the skeleton curve, its corresponding symmetric strain point cannot be determined. Therefore, another assumption needs to be determined.

    As a result, it is assumed that if the unloading point is not on the skeleton curve, the following hysteresis loopmust go through the previous unloading point (reverse loading point). Taking pointEwhose previous unloading point is pointPfor example, the curveEMFmust go through the pointP. Therefore, in such a case the unloading point is not on the skeleton curve, the following hysteresis loop can be determined according to the above-mentioned three assumptions.

    3. Characteristics of proposed dynamic constitutive model

    The proposed dynamic constitutive model, called UD model by authors, has several features as follows:

    (1) The function of the skeleton curve has two asymptotes respectively called the upper and lower asymptotes with different absolute asymptotic values, which may re flect that the shear moduli under compression and “tension” are not equal (the“tension” means that the practical soils are not necessarily under tension, whereas the soils must be in tension under loading).

    (2) It is suitable for unsymmetrical cyclic loading.

    (3) The constructing method is simple and needs little memory consumption, so it is easily accomplished by numerical algorithms.

    (4) It has only a few parameters that have clear physical meaning and can be determined by conventional tests.

    When verifying the model, it is found that the skeleton curve may fit the test data very well. However, there are two main problems when fitting the test data using the hysteresis loop:

    (1) The hysteresis loop constructed by the UD model cannot fit the test date well.

    Fig. 3. Verification results of proposed model. (a) Isotropic consolidation (the unloading point is on the skeleton curve). (b) Isotropic consolidation (the unloading point is not on the skeleton curve). (c) Anisotropic consolidation (α0= 0°). (d) Anisotropic consolidation (α0= 45°). (e) Anisotropic consolidation (α0= 90°).

    (2) When the strain is comparatively small, the proposed method for determining the hysteresis loop is infeasible: no solution can be obtained by solving the simultaneous equations.

    The first problem is commonly understood. It is the same as that in other viscoelastic constitutive models. In order to ensure that the constructed hysteresis loop can well fit the experimental data, additional technological means should be used to adjust the shape of the hysteresis loop, for example using the damping ratio degeneration factor.

    With respect to the second problem, it is assumed that the shear modulus of the initial unloading point is equal to the maximum initial shear modulus, which actually is not theoretically founded and is not totally vindicated.

    Some results from dynamic tensional shear tests and dynamic triaxial tests (Chen, 2006) demonstrate that the shear modulus of the initial unloading point is not always equal to the maximum initial shear modulus. For normally consolidated cohesive soils or sandy soils, when the strain changes within a small range, the shear modulus of the initial unloading point is usually beyond the maximum initial shear modulus. When the strain varies by a substantial margin, the shear modulus of the initial unloading point is less than the maximum initial shear modulus. The shear modulus of initial unloading point would be in accordance with the maximum initial shear modulus when the strain changes within a medium range. Wang et al. (1980) made adjustments to the theoretical hysteresis loop by introducing a “damping ratio degeneration factor”. The essence of this method is that the adjustment of stress–strain hysteretic damping can be achieved by changing the original and following shear moduli. We found that when the strain changes within a small range, the instantaneous shear modulus can be appropriately raised during the unloading process to solve the above-mentioned second problem. The above two problems can be solved by defining the initial shear modulus coefficient in the unloading process denoted asJ(λ):

    whereG′is the initial shear modulus in unloading process.

    It can be found thatJ(λ) would be greater than 1.0 when the strain amplitude of soils is smaller; andJ(λ) would be approximately equal to 1.0 when the strain amplitude of soils is medium; andJ(λ) would be less than 1.0 when the strain amplitude of soils is larger. However, there are no strict standards for the de finition of the dynamic strain amplitude and the distinct boundaries are made among soils with different characteristics which may be determined by a very large number of trials.

    Thus, the construction process of the UD model can be described as follows:

    (1) According to the above three assumptions (in Case 1 or Case 2), we can solve the simultaneous equations.

    (2) If the simultaneous equations have solutions, the corresponding hysteresis loop can be constructed directly; if not, a reasonableJ(λ) can be given in advance on the basis of the value of dynamic strain, and the equation of the hysteresis loop can be constructed.

    (3) Make the fitting of damping ratio and adjust the value ofJ(λ) gradually (i.e. adjustG′) till the constructed damping ratio is close to the test result.

    4. Model veri fication

    To verify the applicability of the proposed model, saturated Nanjing fine sand was employed. Considering different initial consolidation conditions, four sets of further veri fication tests were conducted. Under isotropic consolidation conditions, preliminary examination was made on the hysteresis loop whose unloading point is not on the skeleton curve. Veri fication results of the proposed model are shown in Fig. 3. From Fig. 3, it can be found that the UD model can well predict the stress–strain relationship of the saturated Nanjing fine sand.

    5. Conclusions

    The asymmetry characteristic of skeleton curve is universal in dynamic testing of soils. However, the existing dynamic constitutive models do not consider the asymmetry characteristics of skeleton curve. A function with double asymptotes can be used to describe the skeleton curve features. Based on this, a new dynamic constitutive model considering the asymmetry of skeleton curve, which is called UD model, is constructed. The coef ficient of initial unloading modulus is used to ensure that the constructed hysteresis loop fits well the experimental data. Four sets of further veri fication tests demonstrate that the UD model can be used to describe the stress–strain relationship of soils under complex stress condition.

    Acknowledgements

    The authors would like to thank the financial support by the Major Research Plan Integration Project of the National Natural Science Foundation of China under Grant No. 91215301 and by the National Basic Research Program of China under Grant No. 2011CB013601.

    Borja RI, Lin CH, Sama KM, Masada GM. Modelling non-linear ground response of non-lique fiable soils. Earthquake Engineering and Structural Dynamics 2000;29(1):63–83.

    Chen GX, Zhuang HY. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve. Chinese Journal of Geotechnical Engineering 2005;27(8):860–4 (in Chinese).

    Chen XL. Study on soil dynamic characteristics nonlinear seismic response of complex site and its methods. Harbin: Institute of Engineering Mechanics, China Seismological Bureau; 2006 (in Chinese).

    Chen XL, Jin X, Tao XX, Li HY. Dynamic constitutive model for soils based on generalized damping degradation coef ficient. Chinese Journal of Computational Mechanics 2009;26(2):245–51 (in Chinese).

    Hardin BO, Drnevich VP. Shear modulus and damping in soil: Measurement and parameter effects. Journal of the Soil mechanics and Foundation Engineering Division, ASCE 1972a;98(6):603–24.

    Hardin BO, Drnevich VP. Shear modulus and damping in soil: design equations and curves. Journal of the Soil mechanics and Foundation Engineering Division, ASCE 1972b;98(7):667–92.

    Li XJ. One simple functional expression of soil dynamic constitutive relations. Chinese Journal of Geotechnical Engineering 1992;14(5):90–4 (in Chinese).

    Masing G. Eigenspannungeu und verfertigung beim Messing. In: Proceedings of the 2nd International Congress on Applied Mechanics; 1926. p. 332–5.

    Muravskii G. On description of hysteretic behaviour of materials. International Journal of Solids and Structures 2005;42(9/10):2625–44.

    Martin PP, Seed HB. One dimensional dynamic ground response analysis. Journal of Geotechnical Engineering, ASCE 1982;108(7):935–52.

    Newmark NM, Rosenblueth E. Fundamentals of earthquake engineering. Englewood Cliffs, NJ: Prentice Hall Inc; 1971. p. 163–92.

    Okur DV, Ansal A. Stiffness degradation of natural fine grained soils during cyclic loading. Soil Dynamics and Earthquake Engineering 2007;27(9): 843–54.

    Purzin AM, Shiran A. Effects of the constitutive relationship on seismic response of soils. Part I. Constitutive modeling of cyclic behavior of soils. Soil Dynamics and Earthquake Engineering 2000;19(5):305–18.

    Phillips C, Hashash Y. Damping formulation for nonlinear 1D site response analyses. Soil Dynamics and Earthquake Engineering 2009;29(7):1143–58.

    Pyke R. Nonlinear soil models for irregular cyclic loadings. Journal of the Geotechnical Engineering Division, ASCE 1979;105(6):715–25.

    Qi WH, Bo JS. A new soil dynamic constitutive model. Earthquake Engineering and Engineering Vibration 2009;29(1):169–74 (in Chinese).

    Rosenblueth E, Herrear I. On a kind of hysteretic damping. Journal of the Engineering Mechanics Division, ASCE 1964;90(4):37–47.

    Ramberg W, Osgood W. Description of stress strain curves by three parameters. Technical Note No. 902. Washington, DC: National Advisory Committee for Aeronautics; 1943.

    Wang ZL, Wang YQ, Han QY. Visco-elastoplastic soil model for irregular shear cyclic dynamic loadings. Chinese Journal of Geotechnical Engineering 1980;2(3):10–20 (in Chinese).

    Yamada S, Hyodo M, Orense R, Dinesh S, Hyodo T. Strain-dependent dynamic properties of remolded sand-clay mixtures. Journal of Geotechnical and Geoenvironmental Engineering 2008;134(7):972–81.

    Zekkos D, Bray JD, Riemer MF. Shear modulus and material damping of municipal solid waste based on large-scale cyclic triaxial testing. Canadian Geotechnical Journal 2006;45(1):45–58.

    Zhang J, Andrus RD, Juang CH. Normalized shear modulus and material damping ratio relationships. Journal of Geotechnical and Geoenvironmental Engineering 2005;131(4):453–60.

    Guoxing Chenobtained his M.Sc. and a Ph.D. degree from Institute of Engineering Mechanics, China Earthquake Administration. He is a professor of Civil Engineering and the Dean of College of Transportation Science and Engineering, Nanjing University of Technology. He has been involved in geotechnical and earthquake engineering research, consulting and education more than 20 years. His research fields involve soil dynamics, nonlinear seismic site effects, cyclic triaxial test and shaking table model test technology, rail rapid transit dynamics, as well as earthquake disaster prevention and mitigation of urban underground structure, earth and rock dam. He is the author or co-author of more than 200 scientific papers and he serves on the editorial boards of several top journals in China. He has obtained the professional qualifications of Civil Engineer (Geotechnical) and Level 1 Seismic Hazard Assessment Engineer in China. He is a member of National Seismic Hazard Assessment Committee and Science & Technology Committee of Earthquake Administration in Jiangsu Province. He has consulted widely and has given both geotechnical and seismic advice on a series of major projects. He has been awarded the State-class Young and Middle-aged Experts with Outstanding Contribution in 1996. Also, he has been awarded National Outstanding Scientific and Technological Workers in 2012.

    pan1983@163.com (H. Pan).

    Peer review under responsibility of Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.

    ?Corresponding author. Tel.: +86 15026555734.

    E-mail address: hua

    1674-7755 ? 2013 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2013.01.003

    亚洲av电影在线观看一区二区三区| 麻豆成人av视频| 精品国产国语对白av| 色婷婷av一区二区三区视频| 久久国产乱子免费精品| 91aial.com中文字幕在线观看| 亚洲精品久久久久久婷婷小说| 免费看光身美女| 欧美激情极品国产一区二区三区 | 免费观看av网站的网址| 看免费成人av毛片| 成年人免费黄色播放视频 | 中国三级夫妇交换| 欧美另类一区| 国产在视频线精品| 老司机亚洲免费影院| 成人二区视频| 午夜免费男女啪啪视频观看| 婷婷色综合大香蕉| 亚洲精品自拍成人| 街头女战士在线观看网站| 午夜日本视频在线| av免费在线看不卡| 我要看日韩黄色一级片| 午夜91福利影院| 特大巨黑吊av在线直播| 国产精品不卡视频一区二区| 国产在线免费精品| 夫妻性生交免费视频一级片| 亚洲成人av在线免费| 亚洲欧美一区二区三区黑人 | .国产精品久久| h日本视频在线播放| 欧美精品人与动牲交sv欧美| 少妇丰满av| 丰满迷人的少妇在线观看| 国产精品久久久久久av不卡| 国产成人aa在线观看| 九九爱精品视频在线观看| 久久久a久久爽久久v久久| 熟女人妻精品中文字幕| 日韩欧美精品免费久久| 五月天丁香电影| a级毛色黄片| 老女人水多毛片| 亚洲性久久影院| 99视频精品全部免费 在线| 一级,二级,三级黄色视频| 看非洲黑人一级黄片| www.色视频.com| 亚洲国产av新网站| 亚洲精品乱久久久久久| 久久久久久久精品精品| 久久 成人 亚洲| a级毛片免费高清观看在线播放| 日韩强制内射视频| 欧美国产精品一级二级三级 | 久久99热6这里只有精品| 亚洲四区av| 亚洲av男天堂| 欧美日韩精品成人综合77777| www.av在线官网国产| 欧美区成人在线视频| 在线天堂最新版资源| 久久久精品免费免费高清| 韩国高清视频一区二区三区| 韩国av在线不卡| 国产欧美日韩一区二区三区在线 | 自线自在国产av| 18禁动态无遮挡网站| 成人美女网站在线观看视频| 国产精品人妻久久久久久| 国产精品一区二区三区四区免费观看| 老司机影院毛片| 天堂中文最新版在线下载| 高清黄色对白视频在线免费看 | 欧美另类一区| 国产亚洲最大av| 青青草视频在线视频观看| av在线播放精品| 校园人妻丝袜中文字幕| 丰满迷人的少妇在线观看| 午夜老司机福利剧场| 日日爽夜夜爽网站| 久久99热这里只频精品6学生| 国产精品人妻久久久影院| 99九九线精品视频在线观看视频| 午夜免费鲁丝| 最近手机中文字幕大全| 人妻系列 视频| 久久精品国产亚洲av天美| 亚洲国产精品999| 亚洲国产精品一区二区三区在线| 精品午夜福利在线看| 国精品久久久久久国模美| 国产淫片久久久久久久久| 国产精品久久久久久久久免| 欧美精品高潮呻吟av久久| 久久亚洲国产成人精品v| 国产男女超爽视频在线观看| 一级,二级,三级黄色视频| 美女国产视频在线观看| 精品少妇久久久久久888优播| 欧美日韩av久久| 免费看不卡的av| 国产亚洲5aaaaa淫片| 欧美另类一区| 国语对白做爰xxxⅹ性视频网站| 国产亚洲一区二区精品| 久久久久久久亚洲中文字幕| 亚洲经典国产精华液单| 国产午夜精品久久久久久一区二区三区| 国产成人精品婷婷| 大片免费播放器 马上看| 91精品国产九色| 国产欧美日韩精品一区二区| 欧美三级亚洲精品| 少妇人妻久久综合中文| 在线观看国产h片| 春色校园在线视频观看| 精品国产乱码久久久久久小说| 精品久久久久久电影网| 国产精品一区二区在线不卡| 91久久精品国产一区二区成人| 一本一本综合久久| 欧美 日韩 精品 国产| 欧美变态另类bdsm刘玥| 你懂的网址亚洲精品在线观看| 美女主播在线视频| 欧美另类一区| 亚洲国产精品成人久久小说| 高清在线视频一区二区三区| 亚洲在久久综合| 香蕉精品网在线| 在线观看免费高清a一片| 黄色怎么调成土黄色| 观看美女的网站| 男人爽女人下面视频在线观看| 黑人巨大精品欧美一区二区蜜桃 | 伦理电影免费视频| 成年人午夜在线观看视频| 免费看av在线观看网站| 热re99久久国产66热| av又黄又爽大尺度在线免费看| 国产亚洲精品久久久com| 乱人伦中国视频| 国产精品99久久久久久久久| 欧美精品一区二区大全| 国产亚洲欧美精品永久| 午夜91福利影院| 高清在线视频一区二区三区| 国产在线免费精品| 这个男人来自地球电影免费观看 | 人人妻人人看人人澡| 99视频精品全部免费 在线| 精华霜和精华液先用哪个| 成人18禁高潮啪啪吃奶动态图 | 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 欧美日韩精品成人综合77777| 日本wwww免费看| 国产精品人妻久久久久久| 日韩,欧美,国产一区二区三区| 国产男女超爽视频在线观看| 自拍偷自拍亚洲精品老妇| 国产亚洲91精品色在线| 好男人视频免费观看在线| 国产精品久久久久久精品电影小说| 蜜桃久久精品国产亚洲av| 欧美一级a爱片免费观看看| av在线老鸭窝| 午夜视频国产福利| 国产在线视频一区二区| 成人毛片60女人毛片免费| www.色视频.com| 一二三四中文在线观看免费高清| 国产精品一二三区在线看| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 日韩中文字幕视频在线看片| 国产极品粉嫩免费观看在线 | 久久久久国产精品人妻一区二区| 欧美xxxx性猛交bbbb| 丁香六月天网| 国产黄片美女视频| 日本与韩国留学比较| 男女边吃奶边做爰视频| 亚洲av免费高清在线观看| 国产一区有黄有色的免费视频| 午夜日本视频在线| 18禁在线无遮挡免费观看视频| 久久狼人影院| 久久久久久久久大av| 免费黄色在线免费观看| 老司机影院毛片| 亚洲欧洲精品一区二区精品久久久 | 国产伦精品一区二区三区视频9| 男人和女人高潮做爰伦理| a级片在线免费高清观看视频| 草草在线视频免费看| 亚洲欧美中文字幕日韩二区| 欧美最新免费一区二区三区| 日韩成人av中文字幕在线观看| 国产一区有黄有色的免费视频| 日本av免费视频播放| 99久久精品国产国产毛片| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| 伊人久久国产一区二区| 亚洲精品视频女| 国产免费一区二区三区四区乱码| 一个人看视频在线观看www免费| 日韩大片免费观看网站| 国产爽快片一区二区三区| 91久久精品电影网| 夜夜骑夜夜射夜夜干| 高清视频免费观看一区二区| 国产亚洲91精品色在线| 中文字幕免费在线视频6| 日韩欧美 国产精品| 国产成人免费无遮挡视频| 久久狼人影院| 亚洲av.av天堂| 性色av一级| 亚洲欧美一区二区三区黑人 | 成年美女黄网站色视频大全免费 | 三上悠亚av全集在线观看 | 国产精品久久久久久精品古装| 国产熟女欧美一区二区| 国精品久久久久久国模美| av专区在线播放| 搡女人真爽免费视频火全软件| 国产成人aa在线观看| 免费av不卡在线播放| 插阴视频在线观看视频| 在线播放无遮挡| 最近最新中文字幕免费大全7| 日本黄色片子视频| 亚洲精品视频女| 性色avwww在线观看| 色5月婷婷丁香| 国产精品人妻久久久影院| 特大巨黑吊av在线直播| av播播在线观看一区| 我要看黄色一级片免费的| 内射极品少妇av片p| 一级片'在线观看视频| 熟妇人妻不卡中文字幕| 日本色播在线视频| 欧美日韩av久久| 色网站视频免费| 观看美女的网站| 日韩电影二区| 中国三级夫妇交换| 黑人巨大精品欧美一区二区蜜桃 | 边亲边吃奶的免费视频| 午夜老司机福利剧场| 99re6热这里在线精品视频| 国产国拍精品亚洲av在线观看| 狠狠精品人妻久久久久久综合| 午夜日本视频在线| 黄色视频在线播放观看不卡| 插逼视频在线观看| av在线播放精品| 国产精品人妻久久久久久| 国产一区亚洲一区在线观看| 精品人妻一区二区三区麻豆| 精品国产一区二区久久| 极品教师在线视频| av播播在线观看一区| 国产精品一区www在线观看| 国产高清不卡午夜福利| 国产免费视频播放在线视频| 久久久久久久久久成人| 亚洲国产精品一区三区| 久久久欧美国产精品| 爱豆传媒免费全集在线观看| 十八禁高潮呻吟视频 | 久久精品国产鲁丝片午夜精品| 亚洲精品久久久久久婷婷小说| 热99国产精品久久久久久7| 国产白丝娇喘喷水9色精品| 欧美性感艳星| a级片在线免费高清观看视频| 久久人人爽人人爽人人片va| 欧美一级a爱片免费观看看| 亚洲国产av新网站| 丝瓜视频免费看黄片| 街头女战士在线观看网站| 亚洲国产色片| 久久99一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲,欧美,日韩| 男女边吃奶边做爰视频| 秋霞伦理黄片| 日韩三级伦理在线观看| 亚洲精品乱码久久久v下载方式| 91aial.com中文字幕在线观看| 国产精品99久久99久久久不卡 | 大片电影免费在线观看免费| 在线观看人妻少妇| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 26uuu在线亚洲综合色| 久久99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 一本一本综合久久| 国产有黄有色有爽视频| 性色avwww在线观看| 日韩熟女老妇一区二区性免费视频| 欧美性感艳星| 人妻一区二区av| 免费av中文字幕在线| 国产日韩欧美在线精品| 在线观看三级黄色| 一级爰片在线观看| 大码成人一级视频| 日韩视频在线欧美| 一级片'在线观看视频| 亚洲图色成人| 国产精品一区二区性色av| 久久久久精品久久久久真实原创| 黄色配什么色好看| 婷婷色综合大香蕉| 欧美 亚洲 国产 日韩一| 成人午夜精彩视频在线观看| 最近中文字幕2019免费版| 天天躁夜夜躁狠狠久久av| 国产精品欧美亚洲77777| 热re99久久精品国产66热6| 久久亚洲国产成人精品v| 国产成人精品无人区| √禁漫天堂资源中文www| 少妇人妻精品综合一区二区| 一级毛片aaaaaa免费看小| 日韩中字成人| 日本欧美国产在线视频| 欧美+日韩+精品| 在线天堂最新版资源| 高清黄色对白视频在线免费看 | 国产在视频线精品| 亚洲国产毛片av蜜桃av| av网站免费在线观看视频| 欧美性感艳星| 亚洲成人一二三区av| 日本-黄色视频高清免费观看| 黑人猛操日本美女一级片| 亚洲欧美一区二区三区国产| 不卡视频在线观看欧美| 十分钟在线观看高清视频www | 国产在线男女| 亚洲精品日韩av片在线观看| 一级黄片播放器| 精品人妻偷拍中文字幕| 最近2019中文字幕mv第一页| 最新的欧美精品一区二区| 亚洲欧美一区二区三区国产| 日日啪夜夜撸| 国产精品一二三区在线看| 亚洲精品久久久久久婷婷小说| 欧美xxxx性猛交bbbb| 日韩人妻高清精品专区| 一级黄片播放器| 这个男人来自地球电影免费观看 | av视频免费观看在线观看| 国产精品三级大全| 97超碰精品成人国产| av天堂久久9| 国产成人午夜福利电影在线观看| 国产精品一区二区在线不卡| 国产毛片在线视频| 亚洲欧美日韩卡通动漫| 色94色欧美一区二区| 亚洲色图综合在线观看| 看十八女毛片水多多多| 欧美日韩国产mv在线观看视频| 免费av不卡在线播放| 国产免费一区二区三区四区乱码| 中文字幕人妻丝袜制服| 麻豆成人午夜福利视频| 男人舔奶头视频| 最近2019中文字幕mv第一页| 国产精品福利在线免费观看| 在线观看www视频免费| 国产精品成人在线| 极品教师在线视频| 99久久精品热视频| 一级爰片在线观看| 免费av中文字幕在线| 久久久欧美国产精品| 我要看日韩黄色一级片| 在线精品无人区一区二区三| 国产免费视频播放在线视频| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 国产永久视频网站| 国产日韩欧美视频二区| 亚洲av二区三区四区| 毛片一级片免费看久久久久| 欧美区成人在线视频| 最近手机中文字幕大全| av网站免费在线观看视频| 少妇 在线观看| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久精品古装| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| 少妇丰满av| 久久久久久久久久久丰满| 最近最新中文字幕免费大全7| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久 | 国产精品一二三区在线看| 欧美日韩在线观看h| 亚洲av不卡在线观看| 99热国产这里只有精品6| 亚洲精品乱码久久久v下载方式| 色婷婷av一区二区三区视频| 成人综合一区亚洲| 我要看日韩黄色一级片| 岛国毛片在线播放| 婷婷色综合www| 日韩欧美 国产精品| 国产中年淑女户外野战色| 日本av免费视频播放| 中文字幕亚洲精品专区| 国产成人免费观看mmmm| 久久精品熟女亚洲av麻豆精品| a级毛片免费高清观看在线播放| 亚洲无线观看免费| 国产精品久久久久久av不卡| 精品国产露脸久久av麻豆| 国产亚洲精品久久久com| 伊人亚洲综合成人网| 韩国av在线不卡| 哪个播放器可以免费观看大片| 中文字幕免费在线视频6| 亚洲av.av天堂| 国产淫语在线视频| 一级二级三级毛片免费看| 久久久久国产网址| 在线观看美女被高潮喷水网站| 一本一本综合久久| 亚洲,欧美,日韩| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕| 亚洲美女视频黄频| 三级国产精品片| 亚洲精品亚洲一区二区| 精品人妻熟女av久视频| av播播在线观看一区| 亚洲av不卡在线观看| 久久久久久久久大av| 青春草视频在线免费观看| 成人影院久久| 国产精品一区二区三区四区免费观看| 国产精品久久久久成人av| 欧美xxⅹ黑人| 国产视频内射| 一区二区av电影网| 美女中出高潮动态图| 青春草亚洲视频在线观看| 国产精品一区二区三区四区免费观看| 久久国内精品自在自线图片| av.在线天堂| 2021少妇久久久久久久久久久| 熟女电影av网| 大片免费播放器 马上看| 久久女婷五月综合色啪小说| 美女内射精品一级片tv| 三级国产精品欧美在线观看| 在现免费观看毛片| av福利片在线观看| 欧美日韩国产mv在线观看视频| 九九在线视频观看精品| 亚洲欧美中文字幕日韩二区| 天天操日日干夜夜撸| 亚洲精品国产av成人精品| 交换朋友夫妻互换小说| 另类精品久久| av免费在线看不卡| 久久久欧美国产精品| 一二三四中文在线观看免费高清| 国产成人精品久久久久久| 免费在线观看成人毛片| av福利片在线| 久久国产精品男人的天堂亚洲 | 爱豆传媒免费全集在线观看| 中文资源天堂在线| 亚洲国产最新在线播放| 午夜日本视频在线| 老熟女久久久| 欧美少妇被猛烈插入视频| 免费大片黄手机在线观看| 美女cb高潮喷水在线观看| 亚洲精品自拍成人| 国产爽快片一区二区三区| 精品午夜福利在线看| 国产伦在线观看视频一区| 欧美日韩国产mv在线观看视频| 日韩人妻高清精品专区| 成年av动漫网址| 又粗又硬又长又爽又黄的视频| 国产毛片在线视频| 日韩免费高清中文字幕av| 日韩av在线免费看完整版不卡| 午夜精品国产一区二区电影| 少妇的逼好多水| 亚洲国产日韩一区二区| 中文乱码字字幕精品一区二区三区| 日本av免费视频播放| videos熟女内射| 国产高清国产精品国产三级| av天堂中文字幕网| 免费黄色在线免费观看| 日韩制服骚丝袜av| av视频免费观看在线观看| 在线观看免费高清a一片| 午夜福利网站1000一区二区三区| 如何舔出高潮| 高清av免费在线| 人妻制服诱惑在线中文字幕| 国产片特级美女逼逼视频| 欧美日韩视频精品一区| 黄色欧美视频在线观看| 嫩草影院新地址| 大话2 男鬼变身卡| 晚上一个人看的免费电影| 啦啦啦在线观看免费高清www| 99国产精品免费福利视频| 中文字幕精品免费在线观看视频 | 美女大奶头黄色视频| 中文字幕制服av| 国产男女内射视频| 成人免费观看视频高清| 97精品久久久久久久久久精品| 日韩不卡一区二区三区视频在线| 欧美变态另类bdsm刘玥| av国产久精品久网站免费入址| freevideosex欧美| 国产亚洲av片在线观看秒播厂| 国产视频首页在线观看| 欧美区成人在线视频| 国产亚洲一区二区精品| 亚洲精品色激情综合| 精品人妻熟女毛片av久久网站| 99久久精品国产国产毛片| 国产午夜精品久久久久久一区二区三区| 新久久久久国产一级毛片| 欧美性感艳星| 日本黄大片高清| 中文字幕亚洲精品专区| 多毛熟女@视频| 波野结衣二区三区在线| 韩国av在线不卡| 丰满人妻一区二区三区视频av| 欧美+日韩+精品| 在线 av 中文字幕| 久久久久精品久久久久真实原创| av视频免费观看在线观看| av国产久精品久网站免费入址| 只有这里有精品99| 亚洲国产毛片av蜜桃av| av国产精品久久久久影院| 亚洲精品aⅴ在线观看| 国产爽快片一区二区三区| 成人特级av手机在线观看| 最近中文字幕2019免费版| 国产69精品久久久久777片| 亚洲自偷自拍三级| 精品酒店卫生间| 最近的中文字幕免费完整| 亚洲国产精品专区欧美| 中文资源天堂在线| 国产精品嫩草影院av在线观看| 少妇丰满av| 国产精品国产av在线观看| 成人无遮挡网站| 国产精品成人在线| 男女无遮挡免费网站观看| 久久韩国三级中文字幕| 蜜臀久久99精品久久宅男| 国产色爽女视频免费观看| 国产高清有码在线观看视频| 在线观看av片永久免费下载| 国产日韩欧美亚洲二区| 久久久久久久精品精品| 在线观看av片永久免费下载| 精品亚洲成a人片在线观看| 少妇裸体淫交视频免费看高清| 两个人的视频大全免费| 亚洲av在线观看美女高潮| 一级二级三级毛片免费看| 亚洲av日韩在线播放| 丝瓜视频免费看黄片| 中国国产av一级| 我的老师免费观看完整版| 亚洲不卡免费看| 免费大片18禁| 国内少妇人妻偷人精品xxx网站| av黄色大香蕉| 久久精品久久精品一区二区三区| 男女边摸边吃奶| 国产一区有黄有色的免费视频| 91在线精品国自产拍蜜月| 精品国产乱码久久久久久小说| 久久毛片免费看一区二区三区| 国产精品久久久久成人av| 少妇丰满av| 午夜福利,免费看| 丝袜脚勾引网站| 99久久中文字幕三级久久日本| 国产成人freesex在线| 少妇 在线观看| 国产精品人妻久久久影院|