• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discussion on “A generalized three-dimensional failure criterion for rock masses”

    2013-07-10 12:23:42MingqingYou

    Mingqing You

    SchoolofEnergyScienceandEngineering,HenanPolytechnicUniversity,Jiaozuo454010,China

    Discussion on “A generalized three-dimensional failure criterion for rock masses”

    Mingqing You?

    SchoolofEnergyScienceandEngineering,HenanPolytechnicUniversity,Jiaozuo454010,China

    A R T I C L E I N F O

    Articlehistory:

    Received 17 January 2013

    Received in revised form 15 April 2013

    Accepted 16 May 2013

    True triaxial strength criterion

    There are many methods to construct true triaxial strength criteria for rocks. Jaiswal and Shrivastva (2012) proposed a strength criterion, named J–S criterion, in the deviatoric plane, which provides nearly the same misfits for true triaxial test data as the exponential criterion. It is difficult to calculate the strength at given σ2and σ3using the J–S criterion, and the multiple solutions to the nonlinear equation may induce confusion and mistake. Strength envelopes in deviatoric planes are not geometric similar; therefore, true triaxial test data cannot be grouped in the mean stress to check strength criteria in the deviatoric plane.

    ? 2013 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    The genuine state of three principal stresses (σ1, σ2, and σ3, where compression is positive) existing in a rock should have an outer envelope, i.e. strength criterion. It is a surface in the stress space, and written as

    Strength properties of rocks and strength criteria for rocks are studied with tests of conventional triaxial compressionusing cylindrical specimens and true triaxial compressionusing cubic specimens (Mogi, 2007).

    Certainly, the conventional triaxial strength criterion, i.e.

    is the basis of all true triaxial criteria, and is on the safety side for rock engineering after neglecting the effect of the intermediate principal stress, where σSis the conventional triaxial strength at confining pressure of σ3. Therefore, a true triaxial strength criterion must be checked thoroughly using the conventional triaxial strength before it is used.

    2. Construction of true triaxial strength criteria

    There are many methods to construct true triaxial strength criteria for rocks. Criteria with the form

    such as the Drucker-Prager criterion and the Mogi criterion, usually have some explanations about the failure of rocks; and variables of λ and η have practical mechanical concepts. The criteria may be determined by fitting conventional triaxial test data, however, are not expected to express the strength under various stress states. Those seemingly good correlations mainly result from the dominant influence of the major principal stress in the metrics of λ and η (You, 2009).

    A true triaxial strength criterion may be modified from the conventional triaxial strength criterion, as the following comprehension for the effect of the intermediate principal stress σ2. There are many micro-fissures with various directions in rock specimens. In a true triaxial compression test, the bearing capacity of microfissure increases with the increasing σ2, and enhances the strength of specimen. On the other hand, the strength of specimen will decrease with the increasing σ2, including failure in the σ2-σ3direction when σ2is high enough. It may be concluded that the stress resisting the failure of specimen is between σ2and σ3at lowand the stress inducing failure of specimen is betweenandat highTherefore,

    Fig. 1. Deviatoric plane in stress space.

    The two equations are continuous atTrue triaxial test results are needed to determine the parameterk. The unified strength theory is a modification to the Coulomb criterion (Yu, 1998; Yu et al., 2009), which was analyzed in You (2008, 2013).

    The direct way to construct a true triaxial strength criterion is an explicit equation:

    whereHis a function to describe the effect of the intermediate principal stress σ2. It is easy to verify the criterion by test data. The exponential criterion with four parameters proposed by You (2009) may fit most test data and expose a few abnormal data with huge errors (You, 2009, 2011, 2012):

    whereQ0is the uniaxial compression strength,Q∞is the limitation of the differential stress when the confining pressure increases up to infinite,K0is the increasing rate of strength relative to the confining pressure at the confining pressure of 0, andQEis the maximum influence of σ2on the strength. The criterion with five parameters proposed by Rafiai (2011) also has the form of Eq. (5), and was compared with the exponential criterion in You (2012).

    The strength criterion is a loop in the deviatoric plane (π plane) that is vertical to the symmetry axis σ1= σ2= σ3. As the symmetry of the three principal stresses, we only need to investigate one sixth of the loop, i.e.ABshown in Fig. 1. PointsAandBare the stress states of conventional triaxial compression (σ2= σ3) and extension (σ1= σ2), respectively.

    The projections of three principal stress axes in the deviatoric plane are indicated withrespectively. A Cartesian coordinate system is set in the π plane, andy-axis is along theas shown in Fig. 1. The transform equations of variables are as follows:

    The true triaxial strength criterion may be constructed with the variables ofxandy. The strength criterion proposed by Jaiswal and Shrivastva (2012), named J–S criterion, is

    wherea,bandcare parameters; andRis the distance ofOAas shown in Fig. 1. The variableRis calculated from the conventional triaxial compression strength criterion, i.e. the Hoek-Brown criterion with two parameters of σCandmin Jaiswal and Shrivastva (2012).

    ParameterLis the ratio ofOBtoOA, and satisfies

    For a smooth strength envelope, the derivative ofytoxis zero at pointA, and ?tan (π/3) at pointB. Therefore, we haveb> 1 and

    Considering Eqs. (11) and (12), only two parameters,candLas selected in Jaiswal and Shrivastva (2012), are independent among parametersa,b,candL.

    3. Evaluation of the J–S criterion

    3.1.ParametersintheJ–Sstrengthcriterion

    If the strength envelopes, i.e. the curveABin various π planes, are geometrically similar, the strength criterion has four independent parameters, i.e. σC,m,candL. Another hypothesis, no reason was presented in Jaiswal and Shrivastva (2012), is made that the parameterLis not a constant, but changes in a power form. The power numberfis a new parameter, thus the criterion has five independent parameters.

    Parameters in above two cases were determined as a whole set by fitting test data of true triaxial compression. The correlations among parameters were presented as follows:

    However, the original parameters for above equations and their correlation coefficients were not presented. The conclusion in Jaiswal and Shrivastva (2012) was that two parameters, σCandmin the Hoek-Brown criterion, are enough to construct a “3D smooth convex failure criterion”.

    If this is true, we may carry out conventional triaxial compression tests carefully to get enough test data of strengths under various confining pressures, to determine the parameters σCandmin the Hoek-Brown criterion, and to calculate the parameterscandLusing Eqs. (13) and (14). Certainly, we need ask whether the J–S criterion could describe the true triaxial strengths for the nine rocks listed in Jaiswal and Shrivastva (2012). The answer should be“no”.

    As we know, criteria with two parameters are not able to perfectly describe the relationship between conventional triaxialstrength and confining pressure, therefore numerous criteria with three parameters were proposed (You, 2010b; 2011).

    Fig. 2. Conventional triaxial compression strength of Dunham dolomite and the fitting envelopes using the J–S criterion and the exponential criterion.

    3.2.Meanmisfit

    The practical process of calculating strengths for given σ2and σ3from the J–S criterion was not clearly presented. Perhaps, there was something wrong in the calculation in Jaiswal and Shrivastva (2012). For example, the mean misfit for Orikabe monzonite is 31.09 MPa at “uniform extension ratio”, and 35.11 MPa at “variable extension ratio”. However, the former is a special case of the latter at the power numberfof 1, and should present a larger mean misfit.

    The J–S criterion fits the true triaxial test data of Dunham dolomite with mean misfits of 9.55 MPa and 9.76 MPa at uniform and variable extension ratios, respectively, lower than that from the exponential criterion as Jaiswal and Shrivastva (2012) claimed. However, we cannot recalculate the mean misfit and the fitting envelope for the true triaxial test data, but for the conventional triaxial test data merely, as shown in Fig. 2.

    Mean misfits using the J–S criterion at uniform and variable extension ratios are 9.6 MPa and 18.9 MPa for the conventional triaxial compression strengths of Dunham dolomite, respectively. We really doubt the low mean misfit of 9.76 MPa from the J–S criterion at variable extension ratio for true triaxial strengths as mentioned above. Test data of true triaxial compression have larger dispersion than that of conventional triaxial compression. As a reference, the mean misfits are 2.5 MPa and 14.9 MPa for the conventional and true triaxial strengths, respectively, when σ3is less than 125 MPa, using the exponential criterion (You, 2012).

    Clearly, the J–S criterion cannot describe the relation between strength and confining pressure, as shown in Fig. 2. The uniaxial compression strength predicated by the J–S criterion at variable extension ratio is 327.5 MPa, much higher than the real magnitude of 262 MPa. The J–S criterion should not be available to analyze the stability of wellbore, and to estimate the geo-stress from borehole collapse, for the minor principal stress in those cases is always low.

    Fig. 3. Conventional triaxial compression and extension strengths of Carrara marble (Von Kármán, 1911; B?ker, 1915) and fitting envelopes using the exponential criterion. Test data were digitized from Haimson (2006), and presented in You (2010a).

    3.3.Distanceratioofextensionpointtocompressionpointinπplane

    The ratio ofOBtoOAin π plane,L, is a key parameter in the J–S criterion. However, it was not studied in Jaiswal and Shrivastva (2012). In fact, this issue may be definitely concluded from test results of the conventional triaxial compression and extension strengths.

    The pioneering works of conventional triaxial tests were carried out by Von Kármán (1911) and B?ker (1915), as shown in Fig. 3. Twelve test data may be described with a mean misfit of 2.3 MPa using the exponential criterion of Eq. (5) atQ0= 136.8 MPa,Q∞= 472.7 MPa,K0= 4.06 andQE= 59.2 MPa (You, 2010a).

    Mogi conducted true triaxial tests 40 years ago, thereafter many test apparatuses have been developed, as discussed and summarized in Li et al. (2012). The exponential criterion fits true triaxial test data of Dunham dolomite (Mogi, 2007) with a mean misfit of 14.9 MPa atQ0= 262.0 MPa,Q∞= 701.7 MPa,K0= 6.15 andQE= 175.3 MPa (You, 2012). The envelopes of conventional triaxial compression and extension strengths from the fitting solution are shown in Fig. 4. Test data indicated with open circles are strengths at σ2= σ3from true triaxial test. Test data with blanket and solid triangles are conventional triaxial compression and extension strengths from another dolomite block, respectively (Mogi, 2007). They are consistency to the fitting solutions except the uniaxial compression strength.

    The distances ofOAandOBin π plane are calculated from test data in Figs. 3 and 4, and shown in Fig. 5. The curves are calculated from the fitting solutions using the exponential criterion, of which the low limitations are at σ3= 0 MPa.

    The ratio ofOBtoOAis not a constant in the test range of two rocks. It increases from 0.731 to 0.897 with the mean stress σmfrom 120 MPa to 350 MPa for Carrara marble, and from 0.700 to 0.832 with the mean stress σmfrom 200 MPa to 400 MPa for Dunham dolomite. Therefore, the J–S criterion at uniform extension ratio is not true for rocks. Also, there is a clear difference between the conventional triaxial compression and extension strengths at the same minor principal stress, as shown in Figs. 3 and 4. It maybe argued that the Hoek-Brown criterion is used to calculate the distances of bothOAandOB.

    Magnitude ofOBcalculated from any conventional triaxial criteria at low mean stress, e.g. less than 200 MPa for Dunham dolomite, cannot be checked using test results for σ3becomes tensile stress. Therefore, true triaxial criteria constructed in π plane, such as the J–S criterion would not have solid basement.

    Fig. 4. Conventional triaxial compression and extension strengths of Dunham dolomite (Mogi, 2007) and fitting envelopes using the exponential criterion determined by true triaxial test data (You, 2012). Test data indicated with triangles result from another block.

    3.4.Discussion

    The Hoek-Brown criterion is generalized to describe conventional triaxial strength for rock mass with an additional parameters. However, there are no evidences to show that the J–S criterion can describe the true triaxial strength for rock masses. The test data used in Jaiswal and Shrivastva (2012) are totally from specimens of intact rocks.

    It is difficult to calculate the strength at given σ2and σ3using the J–S criterion even at the case of uniform extension ratio. The variableRin Eq. (10) needs to be calculated from the Hoek-Brown criterion that is an implicit equation after the mean stress is given, but the mean stress is unknown before the strength σ1is determined. There are usually multiple solutions for the nonlinear equation, which will induce confusion and mistake. For example, the mean misfit using the J–S criterion at uniform extension ratio for Orikabe monzonite, and for Dunham dolomite as well, is lower than that at variable extension ratio, as presented in Jaiswal and Shrivastva (2012). The result different from our common knowledge was not explained practically by the proposers.

    As mentioned above, the ratioLis not a material-dependent parameter for rocks, but changes with the mean stress. Therefore, the strength envelopes in the deviatoric plane are not geometrically similar. Test data of true triaxial test are always grouped in σ2and σ3, and cannot be plotted in the deviatoric plane with the same mean stress to check the strength criterion.

    It is better to present the whole set of parameters in the J–S criterion, at least for Dunham dolomite, that can be recalculated by the readers. Also, the comparison between test data and fitting curves should be exhibited in an efficient way. It is needed for supporting the J–S criterion to fit the criterion for conventional triaxial test data of Carrara marble and Dunham dolomite.

    Fig. 5. Distances of OA and OB in the deviatoric plane at various mean stresses. The curves are calculated from the fitting solutions using the exponential criterion, of which the low limitations are at σ3= 0 MPa.

    4. Conclusions

    For the convenience of the personal computer, strength criteria are proposed and studied one after another (Jiang et al., 2011; Rafiai, 2011; Jaiswal and Shrivastva, 2012). True triaxial strength criteria may be plotted and analyzed in the deviatoric plane, but the true triaxial tests are always carried out under the given magnitudes of the minor and intermediate principal stresses and test results are difficult to be grouped with the mean principal stress. There isreally no advantage to construct strength criteria in the deviatoric plane.

    B?ker R. Die Mechanik der bleibenden Formanderung in kristallinisch aufgebauten K?rpern. Verhandl Deut Ingr Mitt Forsch 1915;175:1–51.

    Haimson B. True triaxial stresses and the brittle fracture of rock. Pure and Applied Geophysics 2006;163(5/6):1101–30.

    Jaiswal A, Shrivastva BK. A generalized three-dimensional failure criterion for rock masses. Journal of Rock Mechanics and Geotechnical Engineering 2012;4(4):333–43.

    Jiang H, Wang X, Xie Y. New strength criteria for rocks under polyaxial compression. Canadian Geotechnical Journal 2011;48(8):1233–45.

    Li X, Shi L, Bai B, Li Q, Xu D, Feng X. True-triaxial testing techniques of rocks – state of the art and future perspectives. In: Kwasniewski M, Li X, Takahashi M, editors. True Triaxial Testing of Rocks. London: CRC Press; 2012. p. 3–18.

    Mogi K. Experimental rock mechanics. London: Taylor and Francis; 2007.

    Rafiai H. New empirical polyaxial criterion for rock strength. International Journal of Rock Mechanics and Mining Sciences 2011;48(6):922–31.

    Von Kármán T. Festigkeitsversuche unter all seitigem Druck. Zeitschrift Verein Deutsche Ingenieure 1911;55:1749–59.

    You M. Fitting and evaluation of test data using unified strength theory. Chinese Journal of Rock Mechanics and Engineering 2008;27(11):2193–204 (in Chinese).

    You M. True-triaxial strength criteria for rock. International Journal of Rock Mechanics and Mining Sciences 2009;46(1):115–27.

    You M. Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses. International Journal of Rock Mechanics and Mining Sciences 2010a;47(2):195–204.

    You M. Three independent parameters to describe conventional triaxial compression strength of intact rocks. Journal of Rock Mechanics and Geotechnical Engineering 2010b;2(4):350–6.

    You M. Comparison of the accuracy of some conventional triaxial strength criteria for intact rock. International Journal of Rock Mechanics and Mining Sciences 2011;48(5):852–63.

    You M. Comparison of two true-triaxial strength criteria. International Journal of Rock Mechanics and Mining Sciences 2012;54:114–24.

    You M. Discussion on the unified strength theories for rocks. Chinese Journal of Rock Mechanics and Engineering 2013;32(2):258–65 (in Chinese).

    Yu M. Twin-shear theory and its application. Beijing: Science Press; 1998. p. 247–88 (in Chinese).

    Yu M, Xia G, Kolupaev V. Basic characteristics and development of yield criteria for geomaterials. Journal of Rock Mechanics and Geotechnical Engineering 2009;1(1):71–88.

    ?Tel.: +86 13639625278.

    E-mail address: youmq640930@yahoo.com.cn

    Peer review under responsibility of Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.

    1674-7755 ? 2013 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2013.07.006

    Deviatoric plane

    Exponential criterion

    Compression and extension strengths

    97超视频在线观看视频| 国产精品一二三区在线看| 99久久成人亚洲精品观看| 日韩欧美在线乱码| 熟女电影av网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩av在线免费看完整版不卡| 日韩欧美三级三区| 18禁在线无遮挡免费观看视频| 久久久国产成人精品二区| 亚洲精华国产精华液的使用体验| 精品人妻偷拍中文字幕| 国产男人的电影天堂91| 国产成人a∨麻豆精品| 麻豆精品久久久久久蜜桃| 欧美潮喷喷水| 国产爱豆传媒在线观看| 国产男人的电影天堂91| 久久国内精品自在自线图片| 天堂网av新在线| 人人妻人人澡人人爽人人夜夜 | 色吧在线观看| 国模一区二区三区四区视频| 99热这里只有是精品50| 亚洲成人av在线免费| 欧美bdsm另类| 国模一区二区三区四区视频| 国产成人精品一,二区| 精品不卡国产一区二区三区| 国产精品久久久久久精品电影| 成人午夜高清在线视频| 成人鲁丝片一二三区免费| 成人一区二区视频在线观看| 日韩一本色道免费dvd| 欧美精品国产亚洲| 美女cb高潮喷水在线观看| 亚洲精品456在线播放app| 日韩欧美在线乱码| 久久久午夜欧美精品| 久久久精品94久久精品| 在线免费十八禁| 精品国内亚洲2022精品成人| 欧美精品一区二区大全| 国产精品一区二区三区四区久久| 男人的好看免费观看在线视频| 国产精品永久免费网站| 波野结衣二区三区在线| 色噜噜av男人的天堂激情| 69人妻影院| 国产精品蜜桃在线观看| 人妻制服诱惑在线中文字幕| 3wmmmm亚洲av在线观看| 亚洲av熟女| 如何舔出高潮| 波野结衣二区三区在线| 精品一区二区免费观看| 亚洲精品影视一区二区三区av| 亚洲国产精品久久男人天堂| 日本免费在线观看一区| 美女黄网站色视频| 午夜福利视频1000在线观看| 日韩视频在线欧美| 麻豆久久精品国产亚洲av| 国产成人精品婷婷| 日本欧美国产在线视频| 国产一区有黄有色的免费视频 | 国产av在哪里看| or卡值多少钱| 嘟嘟电影网在线观看| 久久久久国产网址| 久久久久精品久久久久真实原创| 日韩高清综合在线| 国产一区有黄有色的免费视频 | 91aial.com中文字幕在线观看| av在线天堂中文字幕| 成人鲁丝片一二三区免费| 国产成人freesex在线| 亚洲精品成人久久久久久| 日本爱情动作片www.在线观看| 国产精品久久久久久久久免| 在线观看66精品国产| 最近最新中文字幕免费大全7| 亚洲欧美清纯卡通| 又黄又爽又刺激的免费视频.| 亚洲电影在线观看av| 免费不卡的大黄色大毛片视频在线观看 | 禁无遮挡网站| 秋霞伦理黄片| 我要搜黄色片| 男人狂女人下面高潮的视频| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 美女cb高潮喷水在线观看| 黄色欧美视频在线观看| 91久久精品电影网| 久久久久久久午夜电影| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久大av| 插阴视频在线观看视频| 一级爰片在线观看| 22中文网久久字幕| 青春草亚洲视频在线观看| 99热6这里只有精品| 特级一级黄色大片| 成人国产麻豆网| av国产久精品久网站免费入址| av黄色大香蕉| 亚洲精品自拍成人| 成人漫画全彩无遮挡| 欧美成人精品欧美一级黄| 免费av不卡在线播放| 日韩欧美三级三区| 熟女人妻精品中文字幕| 亚洲国产日韩欧美精品在线观看| 日本wwww免费看| 2021少妇久久久久久久久久久| 欧美97在线视频| 国内少妇人妻偷人精品xxx网站| 长腿黑丝高跟| 又爽又黄无遮挡网站| 亚洲色图av天堂| 日韩大片免费观看网站 | 在线a可以看的网站| 五月玫瑰六月丁香| 99热全是精品| 国语自产精品视频在线第100页| 日日撸夜夜添| 建设人人有责人人尽责人人享有的 | 日韩欧美精品v在线| 少妇猛男粗大的猛烈进出视频 | 欧美成人免费av一区二区三区| 国产高清不卡午夜福利| 亚洲18禁久久av| 国产美女午夜福利| 国产成人一区二区在线| 搡女人真爽免费视频火全软件| 亚洲综合精品二区| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 国产一区有黄有色的免费视频 | 国产不卡一卡二| 午夜老司机福利剧场| 精品国内亚洲2022精品成人| 男女下面进入的视频免费午夜| 午夜福利视频1000在线观看| 熟妇人妻久久中文字幕3abv| 长腿黑丝高跟| 女人被狂操c到高潮| 在线观看66精品国产| 国产黄a三级三级三级人| 久久精品国产亚洲网站| 欧美不卡视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 人妻系列 视频| 免费无遮挡裸体视频| av又黄又爽大尺度在线免费看 | 日本免费在线观看一区| 国产亚洲最大av| 国产v大片淫在线免费观看| 夫妻性生交免费视频一级片| 国产视频首页在线观看| 欧美高清性xxxxhd video| 日本免费在线观看一区| 听说在线观看完整版免费高清| 18禁动态无遮挡网站| 欧美日韩综合久久久久久| 国国产精品蜜臀av免费| 极品教师在线视频| 亚洲中文字幕日韩| 一级毛片电影观看 | 亚洲真实伦在线观看| 久久久久久久亚洲中文字幕| 最近视频中文字幕2019在线8| 国产视频内射| 一个人看的www免费观看视频| 黑人高潮一二区| 午夜激情福利司机影院| 久久久久久久久久久免费av| 乱人视频在线观看| 免费电影在线观看免费观看| 超碰97精品在线观看| 成年版毛片免费区| 变态另类丝袜制服| 久热久热在线精品观看| 精品国产露脸久久av麻豆 | 少妇裸体淫交视频免费看高清| 蜜桃久久精品国产亚洲av| 国产极品精品免费视频能看的| 欧美性感艳星| 国产日韩欧美在线精品| 国产精品无大码| 春色校园在线视频观看| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久 | 精品人妻视频免费看| 亚洲精品国产av成人精品| 欧美日本视频| 国产亚洲91精品色在线| 18禁动态无遮挡网站| 成人毛片60女人毛片免费| 综合色丁香网| 欧美潮喷喷水| 午夜a级毛片| 水蜜桃什么品种好| 白带黄色成豆腐渣| 97在线视频观看| 蜜桃久久精品国产亚洲av| 男的添女的下面高潮视频| 69av精品久久久久久| 可以在线观看毛片的网站| 色噜噜av男人的天堂激情| 成人av在线播放网站| 国产精品国产高清国产av| 国产亚洲91精品色在线| 国产91av在线免费观看| 日韩一本色道免费dvd| 亚洲五月天丁香| 日韩欧美在线乱码| 国产精品,欧美在线| 免费看av在线观看网站| 免费观看在线日韩| 深爱激情五月婷婷| 一级爰片在线观看| 国产一区二区在线观看日韩| a级毛色黄片| 九九在线视频观看精品| 免费看美女性在线毛片视频| 美女被艹到高潮喷水动态| 热99在线观看视频| 在线免费观看不下载黄p国产| 久久久久久久久久久免费av| 观看美女的网站| 一级爰片在线观看| 久久精品国产自在天天线| av女优亚洲男人天堂| 国内精品一区二区在线观看| 深爱激情五月婷婷| 啦啦啦观看免费观看视频高清| 3wmmmm亚洲av在线观看| 少妇人妻精品综合一区二区| 麻豆久久精品国产亚洲av| 色播亚洲综合网| 少妇的逼水好多| 最近最新中文字幕免费大全7| 国产精品伦人一区二区| 久久热精品热| 一本一本综合久久| 一个人看的www免费观看视频| 最近视频中文字幕2019在线8| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 老司机影院成人| 少妇高潮的动态图| 九九热线精品视视频播放| av黄色大香蕉| 婷婷六月久久综合丁香| 女人被狂操c到高潮| 91久久精品电影网| 国语对白做爰xxxⅹ性视频网站| 亚洲性久久影院| 国产男人的电影天堂91| 国产91av在线免费观看| 人人妻人人澡欧美一区二区| 午夜精品在线福利| av天堂中文字幕网| 日本爱情动作片www.在线观看| 午夜视频国产福利| 亚洲自偷自拍三级| 精品久久久久久成人av| 亚洲成人精品中文字幕电影| 在线免费观看不下载黄p国产| 欧美三级亚洲精品| 日日摸夜夜添夜夜爱| 午夜免费男女啪啪视频观看| 亚洲内射少妇av| 久久久久久久久久久丰满| 精品人妻视频免费看| 国产麻豆成人av免费视频| av.在线天堂| 亚洲欧美日韩卡通动漫| 国产伦理片在线播放av一区| 成人特级av手机在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 日本黄大片高清| 男女视频在线观看网站免费| www.av在线官网国产| 综合色av麻豆| 人人妻人人看人人澡| 亚洲av免费在线观看| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 99热6这里只有精品| 午夜福利网站1000一区二区三区| 午夜福利视频1000在线观看| 国产精品久久久久久久电影| 插阴视频在线观看视频| 看十八女毛片水多多多| 免费观看性生交大片5| 在线播放无遮挡| 九色成人免费人妻av| 午夜久久久久精精品| 少妇丰满av| 久久精品久久久久久久性| 免费观看在线日韩| 性色avwww在线观看| 亚洲色图av天堂| 国产黄片视频在线免费观看| 亚洲成av人片在线播放无| 亚洲av成人av| 天堂网av新在线| 亚洲av.av天堂| 高清毛片免费看| 五月伊人婷婷丁香| 婷婷色av中文字幕| av播播在线观看一区| 非洲黑人性xxxx精品又粗又长| 纵有疾风起免费观看全集完整版 | 国产精品国产三级国产专区5o | 国产91av在线免费观看| 日本午夜av视频| 三级国产精品片| 日本免费一区二区三区高清不卡| 国产真实乱freesex| 亚洲中文字幕日韩| 午夜老司机福利剧场| 网址你懂的国产日韩在线| 天美传媒精品一区二区| 亚洲,欧美,日韩| 青春草亚洲视频在线观看| 欧美变态另类bdsm刘玥| 一边亲一边摸免费视频| 国产免费又黄又爽又色| 日韩欧美三级三区| 老师上课跳d突然被开到最大视频| 男女下面进入的视频免费午夜| 国产一级毛片在线| 成人三级黄色视频| 一级av片app| 亚洲自拍偷在线| 一级黄片播放器| 亚洲精品乱码久久久久久按摩| 国产老妇伦熟女老妇高清| 在线天堂最新版资源| 性色avwww在线观看| 一级黄色大片毛片| 一个人观看的视频www高清免费观看| 欧美激情国产日韩精品一区| 一区二区三区四区激情视频| 联通29元200g的流量卡| 国产成人精品婷婷| 精品国内亚洲2022精品成人| 久久久久久国产a免费观看| 欧美潮喷喷水| 国产视频首页在线观看| 在线播放无遮挡| 嫩草影院精品99| 精品久久久久久久人妻蜜臀av| 色哟哟·www| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧洲综合997久久,| 免费观看精品视频网站| 国产av不卡久久| 亚洲在线观看片| 97超视频在线观看视频| 夜夜爽夜夜爽视频| 国产男人的电影天堂91| 99热精品在线国产| 色哟哟·www| 麻豆一二三区av精品| 一边亲一边摸免费视频| a级一级毛片免费在线观看| 亚洲av福利一区| 亚洲在线观看片| 又粗又硬又长又爽又黄的视频| 一级爰片在线观看| 九色成人免费人妻av| 国产欧美日韩精品一区二区| 欧美性猛交黑人性爽| 一级毛片aaaaaa免费看小| 国产亚洲午夜精品一区二区久久 | videos熟女内射| 国产成人91sexporn| 国产在视频线在精品| 国产精品,欧美在线| 99热这里只有是精品50| 一边亲一边摸免费视频| 亚洲人成网站在线观看播放| 深爱激情五月婷婷| 久久鲁丝午夜福利片| 女人十人毛片免费观看3o分钟| 国产精品.久久久| 亚洲五月天丁香| 精品不卡国产一区二区三区| 老司机影院成人| 午夜福利高清视频| 日韩一区二区三区影片| 亚洲成人精品中文字幕电影| 免费黄网站久久成人精品| 久久99热这里只有精品18| 国产精品永久免费网站| 日韩欧美三级三区| 免费人成在线观看视频色| 亚洲内射少妇av| 国产又色又爽无遮挡免| av在线天堂中文字幕| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 国产高清不卡午夜福利| 国产精品熟女久久久久浪| 国内精品美女久久久久久| 国产片特级美女逼逼视频| 成人毛片a级毛片在线播放| 午夜激情福利司机影院| 亚洲国产精品sss在线观看| 午夜精品国产一区二区电影 | 国产老妇女一区| 99久国产av精品国产电影| av在线蜜桃| 热99re8久久精品国产| 亚洲乱码一区二区免费版| 婷婷色av中文字幕| 日本wwww免费看| 日本一本二区三区精品| 精品久久国产蜜桃| 国产成人一区二区在线| 久久韩国三级中文字幕| av.在线天堂| 国产精品一区www在线观看| 亚洲精品乱码久久久久久按摩| 色视频www国产| av免费观看日本| 久久精品国产鲁丝片午夜精品| 亚洲av免费在线观看| 久久这里有精品视频免费| 成人漫画全彩无遮挡| 久久久久国产网址| 亚洲综合精品二区| 日韩人妻高清精品专区| 麻豆av噜噜一区二区三区| 亚洲精品成人久久久久久| 高清在线视频一区二区三区 | 精品久久久久久久久久久久久| 日韩大片免费观看网站 | 免费av毛片视频| 亚洲三级黄色毛片| 青春草亚洲视频在线观看| 九草在线视频观看| 禁无遮挡网站| 2022亚洲国产成人精品| 如何舔出高潮| 久久久久久久久久黄片| a级一级毛片免费在线观看| 在线观看美女被高潮喷水网站| 久久久久久久久久久免费av| 老司机影院成人| 国产极品天堂在线| 久热久热在线精品观看| 日韩大片免费观看网站 | 美女黄网站色视频| 国产精品野战在线观看| 久久99热这里只频精品6学生 | 校园人妻丝袜中文字幕| 夫妻性生交免费视频一级片| 成人性生交大片免费视频hd| 免费观看a级毛片全部| 久久精品国产鲁丝片午夜精品| 成人三级黄色视频| 国产精品蜜桃在线观看| 爱豆传媒免费全集在线观看| 人人妻人人看人人澡| av视频在线观看入口| 中文亚洲av片在线观看爽| 亚洲欧美一区二区三区国产| 久久精品国产自在天天线| 观看免费一级毛片| 听说在线观看完整版免费高清| 免费无遮挡裸体视频| 日韩亚洲欧美综合| 村上凉子中文字幕在线| 乱码一卡2卡4卡精品| 日本猛色少妇xxxxx猛交久久| 欧美人与善性xxx| 一级毛片我不卡| 亚洲精品乱码久久久久久按摩| 女的被弄到高潮叫床怎么办| 亚洲18禁久久av| 国产亚洲精品av在线| 嫩草影院入口| 一区二区三区高清视频在线| 国产精品蜜桃在线观看| 国产欧美另类精品又又久久亚洲欧美| 中文资源天堂在线| 成人无遮挡网站| 欧美一区二区精品小视频在线| 国产精品伦人一区二区| 黑人高潮一二区| 久久久久免费精品人妻一区二区| 丰满少妇做爰视频| 亚洲av中文av极速乱| 内地一区二区视频在线| АⅤ资源中文在线天堂| 亚洲欧美日韩东京热| 大香蕉97超碰在线| 国产一区二区三区av在线| 最近最新中文字幕大全电影3| or卡值多少钱| 小说图片视频综合网站| 韩国av在线不卡| 日韩制服骚丝袜av| 午夜免费男女啪啪视频观看| 国产精品久久视频播放| 天天躁夜夜躁狠狠久久av| 一卡2卡三卡四卡精品乱码亚洲| av又黄又爽大尺度在线免费看 | 久久精品综合一区二区三区| 色综合色国产| 99在线视频只有这里精品首页| 中文欧美无线码| 国产色爽女视频免费观看| 欧美性感艳星| 久久精品91蜜桃| 三级国产精品片| 久久久久久伊人网av| 日韩在线高清观看一区二区三区| 99久久无色码亚洲精品果冻| 日韩av不卡免费在线播放| 欧美另类亚洲清纯唯美| 国国产精品蜜臀av免费| 国产精品1区2区在线观看.| 国产麻豆成人av免费视频| 搡女人真爽免费视频火全软件| 99久久精品一区二区三区| 99久久无色码亚洲精品果冻| 国产乱人视频| 在线播放国产精品三级| 91久久精品国产一区二区三区| 国产精品1区2区在线观看.| 免费黄色在线免费观看| 亚洲av男天堂| 高清视频免费观看一区二区 | 精品国内亚洲2022精品成人| 日日摸夜夜添夜夜爱| 久久久久久九九精品二区国产| 亚洲久久久久久中文字幕| 国产精品日韩av在线免费观看| 搞女人的毛片| 午夜精品在线福利| 3wmmmm亚洲av在线观看| 秋霞伦理黄片| 一区二区三区免费毛片| 欧美日本亚洲视频在线播放| 一级爰片在线观看| 亚洲欧美日韩卡通动漫| 男女啪啪激烈高潮av片| 国产在视频线在精品| 偷拍熟女少妇极品色| 永久网站在线| 18禁动态无遮挡网站| 亚洲国产欧美人成| 一级黄色大片毛片| 亚洲欧美中文字幕日韩二区| 久久亚洲精品不卡| 亚洲精华国产精华液的使用体验| 亚洲精品国产av成人精品| 亚洲欧美日韩无卡精品| 免费观看精品视频网站| 91精品伊人久久大香线蕉| 欧美又色又爽又黄视频| 男女那种视频在线观看| 日本爱情动作片www.在线观看| 一区二区三区高清视频在线| 日本三级黄在线观看| 听说在线观看完整版免费高清| 久久精品91蜜桃| 老司机福利观看| 精品久久久久久久久av| 一级黄色大片毛片| 超碰97精品在线观看| 一边亲一边摸免费视频| 免费av不卡在线播放| 成年免费大片在线观看| 久久人人爽人人爽人人片va| 亚洲成色77777| 色视频www国产| 亚洲av成人av| 国产精品1区2区在线观看.| 久久99热6这里只有精品| 欧美精品国产亚洲| 黄色日韩在线| 三级国产精品片| 国产成人精品婷婷| .国产精品久久| 超碰97精品在线观看| 精品久久国产蜜桃| 99视频精品全部免费 在线| 国产单亲对白刺激| 床上黄色一级片| 精品国产一区二区三区久久久樱花 | 麻豆一二三区av精品| 最后的刺客免费高清国语| 中文欧美无线码| 日韩一区二区视频免费看| 亚洲va在线va天堂va国产| 亚洲国产精品sss在线观看| 成人午夜精彩视频在线观看| 亚洲欧美清纯卡通| 最新中文字幕久久久久| 尾随美女入室| 国产人妻一区二区三区在| 菩萨蛮人人尽说江南好唐韦庄 | 国产亚洲午夜精品一区二区久久 |