• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gravity and Spin Forces in Gravitational Quantum Field Theory?

    2018-08-02 07:35:40YueLiangWu吳岳良andRuiZhang張睿
    Communications in Theoretical Physics 2018年8期
    關(guān)鍵詞:張睿

    Yue-Liang Wu(吳岳良)and Rui Zhang(張睿)

    1Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    3International Center for Theoretical Physics Asia-Pacific(ICTP-AP),University of Chinese Academy of Sciences,Beijing 100049,China

    AbstractIn the new framework of gravitational quantum field theory(GQFT)with spin and scaling gauge invariance developed in Phys.Rev.D 93(2016)024012-1,we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe.We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3)and SP(1,3)in biframe spacetime into SO(3)representations for deriving the propagators of the basic quantum fields and extract their interaction terms.The leading order Feynman rules are presented.A tree-level 2 to 2 scattering amplitude of the Dirac fermions,through a gravifield and a spin gauge if eld,is calculated and compared to the Born approximation of the potential.It is shown that the Newton’s gravitational law in the early universe is modified due to the background field.The spin dependence of the gravitational potential is demonstrated.

    Key words:gravifield,spin gauge field,background field,quantum gravity,tensor projection operators,scattering amplitudes,modified Newton’s law

    1 Introduction

    The gravitational quantum field theory(GQFT)with spin and scaling gauge invariance was developed in Refs.[1–2]to overcome the long term obstacle between the general theory of relativity(GR)and quantum mechanics.In fact,there has been enormous efforts on the theory beyond Einstein’s theory since the GR was established by Einstein in 1915.[3]The metric describing the geometry of the spacetime are commonly factorized linearly to explore the quantum structure of gravity and its interaction with matter fields,[4?5]and the Ricci scalar has been shown to be the key of the dynamics of gravity.The property of GR with spin and torsion was investigated in Refs.[6–8]where the totally antisymmetric coupling of the torsion to spin was presented.The general quadratic terms of the 2-rank tensor fields that satisfy the ghost-free and locality conditions were discussed in Ref.[9].With the tool named tensor projection operators developed in Ref.[10],which projects the SO(1,3)tensor representation to the components of different SO(3)representations,the general propagators and gauge freedoms were investigated and extrapolated to a more general case including propagating torsion.[11]The totally antisymmetric part and its renormalizability was anayzed in Ref.[12].

    Recently,a new framework of gravitational quantum field theory(GQFT)was proposed to treat the gravitational interaction on the same footing as electroweak and strong interactions,[1?2]where a biframe spacetime is initiated,namely,the locally flat non-coordinate spacetime and the globally flat Minkowski spacetime,a basic gravifield is defined on the biframe spacetime as a bicovariant vector field which is in general a 16-component field.The spin gauge field and scaling gauge field are introduced to keep the action invariant under a local SP(1,3)×SG(1)gauge transformation.A non-constant background solution has been obtained,which may account for the inflationary behaviour of the early universe.In a proceeding work,a more general action for a hyperunified field theory(HUFT)under the hyper-spin gauge and scaling gauge symmetries was proposed[13]to merge all elementary particles into a single hyper-spinor field and unify all basic forces into a fundamental interaction governed by a hyperspin gauge symmetry.A background solution remains to exist.In such an HUFT,it enables us to demonstrate the gravitational origin of gauge symmetry as the hypergravifield plays an essential role as a Goldstone-like field.The gauge-gravity and gravity-geometry correspondences lead to the gravitational gauge-geometry duality.It has been shown that a general conformal scaling gauge symmetry in HUFT results in a general condition of coupling constants,which eliminates the higher derivative terms due to the quadratic Riemann and Ricci tensors,so that the HUFT will get rid of the so-called unitarity problem caused by the higher order gravitational interactions.To demonstrate explicitly,in the present paper,we consider the gravitational interactions of gravifield and spin gauge field only in four dimensional case with a background field solution.Expanding the full action under such a background field,it is natural to extract the dynamics and interactions of the quantum fields.The interactions among these fields will reflect the gravitational behavior in the early universe.

    2 Action Expansion in a Non-Constant Background Field

    Let us start from a basic action by simply taking four dimentional spacetime,i.e.,D=4,from the hyperunified field theory(HUFT)[13]in hyper-spacetime,

    The tensors are taken the general forms presented in Ref.[13]

    The quantized field are expressed as:

    We can expand the action(1)and collect the leading order interactions and quadratic terms.As the quadratic term of the quantum gravifield includes a non-constant coefficientit is useful to absorb it into the field via a field-rede finition

    The final quadratic terms are given by:

    There are other terms,which involves two quantum fields,but with higher orders of the background field,we present them in the Appendix A.In the early universe,the background field ?(x)is sufficiently small,so that we can ignore the effect of those terms and only consider the quadratic terms in Eq.(2).

    Though the propagators can hardly be read from the action,we can utilize the tensor projection operators to decompose the spin components of the tensor fields,and then derive their propagators.The scaling gauge field decouples from the Dirac spinors,so we would not include it in our present considerations.We shall discuss the details in Sec.3.We can also get the leading-order interaction terms,which are given in the appendix B.Notice that we have absorbed the gauge coupling constant gh,which depends on the normalization of coefficients g1,g2and g4.We shall do a field rede finition after some normalization of the propagator in Sec.5 and turn the interactions to a usual form of gauge interactions.

    3 Tensor Projection Operators and Propagators of Gravifield and Spin Gauge Field as Well as Scalar Field

    The SO(1,3)tensor-like fields hμaand ?μabcan be decomposed into different SO(3)spin-parity components:Following Ref.[9],we shall de fine the tensor projection operatorswhere the subscripts f1and f2denoting the field type,the superscripts J and P label the spin and parity.The tensor projection operators satisfy the following relations:

    with the de finition

    To be specific,we write down the explicit forms for the tensor projection operator of the 2+component of the gravifield

    with the de finition

    and the tensor projection operator of the totally antisymmetric part of the spin gauge field ?μab,

    The explicit forms of other tensor projection operators are presented in the appendix C.

    In general,the tensor projection operators have the following properties,

    Thus we can write the quadratic terms of the action in terms of the tensor projection operators as follows,

    The field equations of the field typecan be expressed by tensor projection operators as:

    The explicit forms of the coefficient matrices are given by

    It is obvious that most of the matrices are degenerate,and these degeneracies indicate certain symmetries of the quadratic terms[11]relevant to unphysical degrees of freedom.When considering only the tree-level calculations,we do not need to know the exact gauge- fixing terms and gauge transformations by introducing the Faddeev-Popov ghosts.Instead,we can just apply the specific gauge- fixing conditions by setting the constraints

    without breaking the field equations,and neglect the corresponding lines in the coefficient matrices.Thus we only need to invert the“reduced” matrices and get the propagators.

    The resulting propagators are given as follows in the specific gauge:

    In general,when treating the fields χμaand ?μabas Yang-Mills gauge fields in GQFT,we can simply add the usual gauge- fixing terms for the gauge-type gravifield χμaand the spin gauge field ?μab.For simplicity,we take the following explicit forms for their gauge fixing conditions

    In such a case,the coefficient matrices of the field equations are given by

    Except for the 1+component of the gravifield,all other coefficient matrices are non-degenerate.Thus we are able to inverse the matrices by requiring

    and get the propagators:

    It is seen that in this case the propagator of the gravifield recovers the same one as the case without adding gauge fixing condition,while the propagator of the spin gauge field is modified for the spin 1 component with even parity,which is relevant to the total antisymmetric part of spin gauge field.

    It is noticed that there is an intersection term ??h,which is caused as the choice of h and ? is not orthogonal.To avoid such a complication,it is useful to rede fine the quantum field

    so that the propagator of the field Hμabecomes

    which is compatible with the propagator in the usual linear gravity approach[5]up to a gauge term pμpν/p2.If we take the gauge coefficients λ,to be 3/2,the explicit form of the H-H propagator is

    When taking the gauge fixing parameters as follows

    the explicit form of the ?-? propagator is

    so that the highest order pole in the propagator isterm,which behaves like a Yang-Mills gauge field propagator.In the following section,we will use the rede fined symmetric quantum gravifield to calculate the physical observable.

    4 Gravitational Scattering Amplitude of Dirac Spinor and Modified Newton’s Law with Background Field

    Let us now focus on the gravitational interaction between the Dirac spinor field Ψ in the early universe.The leading order vertex of the fermion involves the background field.

    In the momentum space,the background scaling factor is given by

    where ?kμ≡ ?/?kμ.Corresponding to Feynman rules shown in Figs.1 and 2.

    Fig.1 3-vertex for f-f-h.The dashed line connected to the cross is the background.

    Fig.2 3-vertex for ?-?-h.The dashed line connected to the cross is the background.

    Note that in calculating the fermion-fermion scatter-ing,the gamma matrix in the vertex is contracted with the two external spinors,which satisfies the equationSo that the couplings to ? do not contribute to the tree-level diagrams.For the same reason,the third term from the H propagator does not contribute to the result,either.

    The tree level amplitude of the two-fermion scattering,with in-state momenta p1and p2,and out-state momenta p3and p4,is shown in Fig.3

    Fig.3 Tree diagram for 2-fermion scattering via gravifield.

    The main purpose is to check the newtonian potential in the early universe with the existence of background field.For the case that all fields are massless,we cannot take a non-relativistic limit to simplify the amplitude.Let us first check the cross section of this scattering process to contract all the spinors.After integrating the momenta of the propagator,the amplitude in Eq.(34)becomes:

    The derivatives of δ(p)can be expressed as some functions multiplied by δ(p),thus we can write the second line in Eq.(35)to the following general form

    Then our result of the scattering amplitude,except for the overall coefficient and F(p1?p3)term that are related to the background field,is consistent with the leading order result shown in Ref.[14].If we were working in another gauge if xing condition,the difference would be terms proportional to qμqν/q2,contracted with the vertex will gives the termboth of which are vanishing because of the on-shell condition of the external fermions.So our result is indeed gauge independent.

    The squared matrix element,after throwing all the spin information,is:

    we can simplify Eq.(36)into the follow form

    As long as the two massless fermions are not in the same direction,we can always make a Lorentz boost to a centerof-energy frame,so thatWhen taking the weak interaction limit that θ→ 0,we have

    In comparison with the Born approximation of the cross section[16]

    To compare our result with those from the usual Newtonian potential,we identify the factorwith the coefficient of the Einstein equation 8πG.So the relation between αEand Newtonian gravitational constant GNis

    Then we obtain the potential in the momentum space as:

    The leading term will contribute to a 1/r potential in the coordinate space.Such a term coincides with the Newton’s law,but it is modified by a factorwhich depends on the size of the inverse of scaling factorIn the early universe,the scaling factor is much smaller,thus the gravitational potential can become much stronger.The modified termcontains the structure of the derivatives of delta functions,we shall investigate its effect elsewhere.

    Note that the coefficient 16πGNis four times than the gravitational potential for the massive Dirac fermions.This is because we are working on the massless Dirac fermions.When considering the Dirac fermion getting a mass from spontaneous symmetry breaking,a mass term will be generated.In a unitary scaling gauge condition detχ=1,we need to consider the change of the spinor structure,and an additional

    from the third term(30)of the graviton propagator.The massive Dirac fermion allows us to take a non-relativistic approximation

    The leading order and next-to-leading-order contributions fromis found to be

    The leading term for μ =0 requires r=r′,which together with Eq.(42)enables us to get a factor 1/4 for the potential(50).The next-to-leading-order term forμ=0 comes from the expansion of E

    The next-to-leading order fromμ=i can be simplified to

    the spinor formalism can be re-expressed as a four-vector

    Substituting it into the expression of the amplitude Eq.(34)

    we can obtain the total contribution up to next-to-leading order,

    So the potential for massive fermions is

    Ignoring the kinematic energies,the next-to-leading order effect is proportional to the inner product of two particles,

    If we consider the anti-fermion,its spinor structure is

    and the vertex would have a minus sign from ?(p2+p4)μ.The vertex spinor contraction is

    So the there was only an overall minus sign from the momentum,and will be compensated by the commutation of the fermion operator in the Wick contraction,thus the amplitude does not flip sign.The only possible difference lies in spin of the anti-fermion η?σiη.Thus we may use a separate spin notation to distinguish particle and antiparticle

    So the next-to-leading order effect between fermion and anti-fermion is

    Let us now consider the special case that the two massless ingoing particles are in the same direction.Suppose that their momenta are chosen as follows

    As the overall δ4(p1?p3+p2?p4)guarantees the momentum conservation,the outgoing momenta must be in the same direction.In this case,all the momenta are in the same direction,they are null vectors.So that their product gives zero,namely s=t=u=0.As a consequence,the cross-section becomes vanishing.

    5 Scattering Amplitude of the Dirac Spinor via the Spin Gauge Field

    It is interesting to consider the scattering amplitude of Dirac spinor via the spin gauge field.The leading order spin gauge interaction of Dirac spinor is given by the totally antisymmetric coupling of the spin gauge field.The vertex Feynman rule in Fig.4 can be derived from the last term in Eq.(33).

    Fig.4 3-vertex for f-f-?.

    The propagator of the totally antisymmetric part of the spin gauge field is taken the following form

    We may rede fine the coupling constants[13]

    and rede fine the spin gauge field and replace the vertex

    The Dirac spinor scattering amplitude via the spin gauge field is shown in Fig.5.

    Fig.5 Tree diagram for 2-fermion scattering via spin gauge field.

    If the Dirac spinor acquires a mass from some symmetry breaking,we may take the non-relativistic limit of this amplitude.Different from the Coulomb potential where the leading contribution comes fromthe γ5in Eq.(57)will lead to

    It is shown that the potential for 2-fermion scattering without spin change can be attractive(repulsive)for aligned spins and repulsive(attractive)for opposed spins,which relies on the sign of the coefficient(1?αW+βW)whether it is positive 1 ? αW+ βW> 0(negative 1?αW+βW<0).The potential of the totally antisymmetric field was studied in a different way in Ref.[6],which arrived at the case of negative coefficient 1?αW+βW<0.Such an interaction is independent of the background field.In the early universe,the scaling factor is so small that the gravitational effect becomes dominant to the cross sections.The spin gauge coupling is no longer significant,its cross section is found to be:

    When taking the weak interaction limit that θ → 0,we have

    which leads to a 1/r potential in the coordinate space.

    6 Conclusion

    We have investigated the gravitational interactions with the background field in the framework of GQFT.The full action of the GQFT with spin gauge and scaling gauge transformations has been expanded in a nonconstant background field.To the leading order gravitational interactions in GQFT,we have derived the Feynman rules for the propagators and interacting vertices of the quantum fields by using the tensor projection operators.The quantum gravifield has been rede fined to be normalized and diagonal,which leads to an interaction between the Dirac spinor and scalar fields.In the leading order,the scalar interaction with the Dirac spinor vanishes when the massless Dirac spinor are on-mass shell as the external fields.We have calculated the tree-level two Dirac spinors scattering through the gravitational interaction and analyzed its amplitude and cross section.Besides the modified term from the derivative of delta function,the overall amplitude is proportional to the inverse of the scaling factors,which implies that the gravitational potential is much stronger in the early universe.The spin dependence of the gravitational potential in the nonrelativistic case has been analyzed.We have also calculated the interaction between the Dirac spinor and the totally antisymmetric part of the spin gauge field at the leading order,which is similar to the result of the scattering through a vector field,but with a flip sign in the amplitude due to the property of axial vector,resulting in a spin gauge force,which depends on the sign of the coefficient in its quadratic terms.

    Appendix A Next-to-Leading Order Quadratic Terms

    We have presented the leading order quadratic terms in the context,the following are the higher order terms of the background field.We de fine

    The next-to-leading order quadratic terms for hμa-? are:

    The terms for hμa-wνare:

    The terms for ?-wμare:

    The terms for wμ-wνare:

    The terms for ?-? are:

    The terms for hμa-hνbare:

    Appendix B Leading Order Vertices

    We have presented the leading order vertices of the fermions in the context,the following are the 3-vertices for the spin gauge field ?μabwith the rede fined field ? by a coupling constant:

    For the gravifield hμainteractions,we have

    For the scalar field ?,except the pure scalar interaction term 4λs?3?,and the scalar and gravifield interactions are found to be,

    for h-?-h,and

    for h-?-?,as well as

    or h-w-?,and

    for h-h-w.With coupling to the spin gauge field,we obtain

    for h-?-?.More interactions include

    Appendix C Tensor Projection Operators

    Here we show the exact expression of projection operatorsfor the spin gauge field,gravifield and scalar,in which we have used the de finitionsfor short.

    猜你喜歡
    張睿
    A Lost Ball
    I ’m a Dog Lover
    廣播操比賽
    小主人報(2022年7期)2022-08-16 06:59:28
    小主人報(2022年5期)2022-04-01 01:12:02
    The dilemma and development of industrial design in contemporary life
    秋天到了
    Wechat, life in our Palm
    張睿 主宰人生, 睿不可當(dāng)
    我的新發(fā)現(xiàn)
    我的開心事
    国产精华一区二区三区| 国产精品一区二区三区四区免费观看 | 欧美精品啪啪一区二区三区| 精品人妻偷拍中文字幕| 99在线人妻在线中文字幕| 最后的刺客免费高清国语| 久久久国产成人精品二区| 人人妻人人看人人澡| 成人特级黄色片久久久久久久| 国产精品香港三级国产av潘金莲| 午夜亚洲福利在线播放| 久久草成人影院| 一级毛片高清免费大全| 日韩欧美国产一区二区入口| 国产精品爽爽va在线观看网站| 日韩亚洲欧美综合| 亚洲av成人精品一区久久| 一级黄色大片毛片| www.色视频.com| 亚洲黑人精品在线| 久久久久精品国产欧美久久久| 欧美日韩瑟瑟在线播放| 国产一区二区在线观看日韩 | 脱女人内裤的视频| 女同久久另类99精品国产91| 他把我摸到了高潮在线观看| 女人十人毛片免费观看3o分钟| xxxwww97欧美| 日韩国内少妇激情av| 国产av在哪里看| 欧美性猛交黑人性爽| 别揉我奶头~嗯~啊~动态视频| 丰满人妻熟妇乱又伦精品不卡| 99久久九九国产精品国产免费| 国产野战对白在线观看| 香蕉丝袜av| 国内精品久久久久久久电影| 内射极品少妇av片p| 午夜免费成人在线视频| 99国产综合亚洲精品| 国产日本99.免费观看| 波多野结衣巨乳人妻| 亚洲专区中文字幕在线| 国产精品自产拍在线观看55亚洲| 女人被狂操c到高潮| 国产亚洲精品一区二区www| 亚洲专区中文字幕在线| 免费大片18禁| 中出人妻视频一区二区| 亚洲av二区三区四区| 男女下面进入的视频免费午夜| 女人十人毛片免费观看3o分钟| 色综合欧美亚洲国产小说| 特级一级黄色大片| 国产一区在线观看成人免费| 欧美xxxx黑人xx丫x性爽| 亚洲不卡免费看| 欧美日韩精品网址| 高清日韩中文字幕在线| 国产欧美日韩一区二区精品| 看免费av毛片| 亚洲 国产 在线| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清专用| 日韩大尺度精品在线看网址| 久久精品人妻少妇| 亚洲性夜色夜夜综合| 无人区码免费观看不卡| 亚洲国产日韩欧美精品在线观看 | 熟女少妇亚洲综合色aaa.| 国产伦一二天堂av在线观看| 成人三级黄色视频| 观看美女的网站| 国产精品亚洲av一区麻豆| 色综合婷婷激情| 男人舔奶头视频| 欧美一区二区国产精品久久精品| 色视频www国产| 久久精品国产综合久久久| 97碰自拍视频| 久久6这里有精品| 免费看日本二区| 老司机深夜福利视频在线观看| 日韩欧美精品v在线| 亚洲七黄色美女视频| 亚洲avbb在线观看| 亚洲中文字幕日韩| 哪里可以看免费的av片| 免费在线观看成人毛片| 又黄又粗又硬又大视频| 最新中文字幕久久久久| 成人无遮挡网站| 99久久成人亚洲精品观看| 女同久久另类99精品国产91| 久久精品综合一区二区三区| 少妇的丰满在线观看| 在线十欧美十亚洲十日本专区| 成人三级黄色视频| 桃红色精品国产亚洲av| 亚洲av中文字字幕乱码综合| 久久国产乱子伦精品免费另类| 狠狠狠狠99中文字幕| 欧美极品一区二区三区四区| 黄色日韩在线| 天堂√8在线中文| 三级毛片av免费| 韩国av一区二区三区四区| 男女午夜视频在线观看| 国产精品久久久久久人妻精品电影| 欧美中文综合在线视频| 国内精品美女久久久久久| 有码 亚洲区| 国产成人av教育| 色综合婷婷激情| 久久人人精品亚洲av| 在线观看美女被高潮喷水网站 | 制服人妻中文乱码| 精品人妻偷拍中文字幕| 国产黄色小视频在线观看| 免费看日本二区| 国产精品1区2区在线观看.| 国产精品一及| 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 波多野结衣高清无吗| 88av欧美| 两人在一起打扑克的视频| 国产 一区 欧美 日韩| 欧美区成人在线视频| 国产av不卡久久| e午夜精品久久久久久久| 少妇熟女aⅴ在线视频| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区精品| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月| 男插女下体视频免费在线播放| 啦啦啦观看免费观看视频高清| 日本免费一区二区三区高清不卡| 99国产精品一区二区蜜桃av| 免费观看精品视频网站| 无遮挡黄片免费观看| 欧美黑人巨大hd| 高潮久久久久久久久久久不卡| 好男人电影高清在线观看| av在线天堂中文字幕| 欧美成人免费av一区二区三区| 变态另类成人亚洲欧美熟女| 亚洲性夜色夜夜综合| 99热这里只有精品一区| 久久久久久人人人人人| 女人十人毛片免费观看3o分钟| 久久人妻av系列| 一区二区三区高清视频在线| 亚洲av第一区精品v没综合| 亚洲国产精品久久男人天堂| 精品一区二区三区人妻视频| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 99久久久亚洲精品蜜臀av| 久久久久久大精品| 亚洲欧美精品综合久久99| 变态另类成人亚洲欧美熟女| 99久久综合精品五月天人人| 啦啦啦韩国在线观看视频| 此物有八面人人有两片| 欧美黑人巨大hd| 成人一区二区视频在线观看| 精品国产三级普通话版| 给我免费播放毛片高清在线观看| 99国产精品一区二区三区| 啦啦啦免费观看视频1| 18禁裸乳无遮挡免费网站照片| 啦啦啦韩国在线观看视频| 在线视频色国产色| 好男人在线观看高清免费视频| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产| 欧美日韩一级在线毛片| 欧美日韩综合久久久久久 | 欧美又色又爽又黄视频| 午夜福利视频1000在线观看| 欧美日韩国产亚洲二区| 国产国拍精品亚洲av在线观看 | 亚洲专区中文字幕在线| 高清毛片免费观看视频网站| 国产免费男女视频| 天堂√8在线中文| 夜夜夜夜夜久久久久| av天堂中文字幕网| 国产一区二区激情短视频| 婷婷丁香在线五月| 精品电影一区二区在线| 久久天躁狠狠躁夜夜2o2o| 美女被艹到高潮喷水动态| 午夜福利欧美成人| 99精品久久久久人妻精品| 成人高潮视频无遮挡免费网站| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 好男人电影高清在线观看| 久久久久久久精品吃奶| 国产伦精品一区二区三区四那| 18禁黄网站禁片免费观看直播| 国产精华一区二区三区| 亚洲av五月六月丁香网| 久久久国产精品麻豆| 亚洲精品乱码久久久v下载方式 | 黄色丝袜av网址大全| 日韩精品青青久久久久久| 一个人观看的视频www高清免费观看| 观看免费一级毛片| 国产真人三级小视频在线观看| 一本久久中文字幕| 亚洲色图av天堂| 女生性感内裤真人,穿戴方法视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲真实伦在线观看| 免费看十八禁软件| 免费av观看视频| 他把我摸到了高潮在线观看| 亚洲第一欧美日韩一区二区三区| 91字幕亚洲| 岛国在线免费视频观看| a级一级毛片免费在线观看| 精品国产三级普通话版| 美女高潮的动态| 一区二区三区激情视频| 老鸭窝网址在线观看| 人人妻人人看人人澡| 国产91精品成人一区二区三区| 亚洲欧美激情综合另类| 我的老师免费观看完整版| 亚洲av一区综合| 一本精品99久久精品77| 18禁黄网站禁片免费观看直播| 欧美色视频一区免费| 国内精品一区二区在线观看| 九九热线精品视视频播放| 亚洲第一电影网av| 一级a爱片免费观看的视频| 一级作爱视频免费观看| 欧美日韩精品网址| 国产高清有码在线观看视频| 中文资源天堂在线| 亚洲av免费在线观看| 欧美丝袜亚洲另类 | 欧美日韩精品网址| 18禁美女被吸乳视频| 免费人成在线观看视频色| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 日本黄色视频三级网站网址| 中亚洲国语对白在线视频| 波多野结衣巨乳人妻| 久久精品国产清高在天天线| 蜜桃久久精品国产亚洲av| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影免费在线| 日本黄大片高清| 亚洲av熟女| 一区二区三区国产精品乱码| 九色成人免费人妻av| 成人亚洲精品av一区二区| 91字幕亚洲| 性色avwww在线观看| 伊人久久精品亚洲午夜| 欧美性感艳星| 小蜜桃在线观看免费完整版高清| 国产欧美日韩一区二区三| 成年女人毛片免费观看观看9| 成人av一区二区三区在线看| 美女cb高潮喷水在线观看| 国产精品国产高清国产av| 亚洲av电影在线进入| 中文字幕人妻熟人妻熟丝袜美 | 观看免费一级毛片| 草草在线视频免费看| 国产美女午夜福利| 久久久久久九九精品二区国产| 在线观看午夜福利视频| 国产黄片美女视频| 51午夜福利影视在线观看| 国产精品电影一区二区三区| 88av欧美| 国产又黄又爽又无遮挡在线| 久久婷婷人人爽人人干人人爱| 成年免费大片在线观看| 97碰自拍视频| 三级毛片av免费| 人妻夜夜爽99麻豆av| 最后的刺客免费高清国语| 日本熟妇午夜| 一夜夜www| 免费一级毛片在线播放高清视频| 免费电影在线观看免费观看| 在线播放国产精品三级| 18禁黄网站禁片免费观看直播| 51国产日韩欧美| 99视频精品全部免费 在线| 欧美在线一区亚洲| 亚洲av五月六月丁香网| 色播亚洲综合网| 久久精品国产亚洲av涩爱 | xxxwww97欧美| 波多野结衣高清无吗| 1024手机看黄色片| 国产极品精品免费视频能看的| 免费搜索国产男女视频| 757午夜福利合集在线观看| 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 男女下面进入的视频免费午夜| 欧美色欧美亚洲另类二区| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 国产伦在线观看视频一区| 琪琪午夜伦伦电影理论片6080| xxx96com| 在线免费观看的www视频| 校园春色视频在线观看| www日本黄色视频网| 性欧美人与动物交配| 欧美又色又爽又黄视频| 免费在线观看亚洲国产| 此物有八面人人有两片| 国产麻豆成人av免费视频| 久久国产精品影院| 99久久无色码亚洲精品果冻| 欧美日韩精品网址| 一区二区三区免费毛片| av天堂中文字幕网| 久久精品91无色码中文字幕| 黄色日韩在线| 性色avwww在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久大精品| 中文字幕av在线有码专区| 岛国视频午夜一区免费看| 一本精品99久久精品77| 97超视频在线观看视频| 99久久成人亚洲精品观看| 草草在线视频免费看| 校园春色视频在线观看| 男女下面进入的视频免费午夜| 特大巨黑吊av在线直播| 男人舔女人下体高潮全视频| 老司机午夜福利在线观看视频| 日本五十路高清| 免费在线观看成人毛片| 国产午夜精品久久久久久一区二区三区 | 99热精品在线国产| 亚洲国产欧美人成| 少妇的逼水好多| 19禁男女啪啪无遮挡网站| 九色国产91popny在线| 日韩欧美一区二区三区在线观看| 99久久成人亚洲精品观看| 黄色女人牲交| 国产aⅴ精品一区二区三区波| 国产精品一及| 欧美一级a爱片免费观看看| 亚洲,欧美精品.| 国产色爽女视频免费观看| 高清日韩中文字幕在线| 夜夜躁狠狠躁天天躁| 在线免费观看的www视频| 久久国产精品人妻蜜桃| 十八禁网站免费在线| 天堂网av新在线| www.999成人在线观看| 99热这里只有是精品50| 亚洲精品粉嫩美女一区| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 亚洲无线观看免费| 成人午夜高清在线视频| 国产黄片美女视频| 男人的好看免费观看在线视频| 国产老妇女一区| 一边摸一边抽搐一进一小说| 国产一级毛片七仙女欲春2| 好男人在线观看高清免费视频| 人妻夜夜爽99麻豆av| 亚洲国产色片| 人人妻,人人澡人人爽秒播| 久久久久性生活片| 国产真实伦视频高清在线观看 | 18禁黄网站禁片午夜丰满| 97碰自拍视频| 欧美中文日本在线观看视频| 一a级毛片在线观看| 国产成人啪精品午夜网站| 久久婷婷人人爽人人干人人爱| 久久久久精品国产欧美久久久| 欧美午夜高清在线| 99热这里只有是精品50| 久久久久久国产a免费观看| 亚洲av中文字字幕乱码综合| 偷拍熟女少妇极品色| 国产伦在线观看视频一区| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久| а√天堂www在线а√下载| 国产毛片a区久久久久| 99久久无色码亚洲精品果冻| 夜夜看夜夜爽夜夜摸| 精品欧美国产一区二区三| 两个人的视频大全免费| 在线看三级毛片| 久久人人精品亚洲av| 婷婷丁香在线五月| 国产精品一及| 国产伦精品一区二区三区四那| 精品久久久久久久毛片微露脸| 91在线观看av| 亚洲av第一区精品v没综合| 手机成人av网站| 最近最新免费中文字幕在线| 不卡一级毛片| 国内精品久久久久久久电影| 国产一区在线观看成人免费| 国产综合懂色| 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看 | 成年女人看的毛片在线观看| 国产成人av教育| 久久国产乱子伦精品免费另类| 欧美日韩亚洲国产一区二区在线观看| 亚洲激情在线av| 久久久精品大字幕| 最近视频中文字幕2019在线8| 免费看光身美女| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线美女| 免费在线观看亚洲国产| 男人舔女人下体高潮全视频| 99热这里只有是精品50| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av涩爱 | 级片在线观看| 国产av不卡久久| 在线播放无遮挡| 一个人免费在线观看电影| 一个人看的www免费观看视频| 18禁裸乳无遮挡免费网站照片| 我的老师免费观看完整版| 很黄的视频免费| 91av网一区二区| 尤物成人国产欧美一区二区三区| 91字幕亚洲| 少妇人妻精品综合一区二区 | 欧美黑人欧美精品刺激| 看片在线看免费视频| 99国产综合亚洲精品| 色老头精品视频在线观看| 99riav亚洲国产免费| 老熟妇仑乱视频hdxx| 夜夜夜夜夜久久久久| 国产主播在线观看一区二区| 一级毛片女人18水好多| 国产精品女同一区二区软件 | 亚洲成av人片在线播放无| 日日干狠狠操夜夜爽| 国产视频一区二区在线看| 在线观看日韩欧美| 日韩欧美精品v在线| 成人18禁在线播放| 成年女人永久免费观看视频| 在线十欧美十亚洲十日本专区| 99riav亚洲国产免费| 在线观看av片永久免费下载| 国产单亲对白刺激| 久久中文看片网| 国产激情偷乱视频一区二区| av视频在线观看入口| 在线观看免费视频日本深夜| 51国产日韩欧美| 国产真人三级小视频在线观看| 中文在线观看免费www的网站| 女生性感内裤真人,穿戴方法视频| 熟妇人妻久久中文字幕3abv| 黄片大片在线免费观看| 欧美+亚洲+日韩+国产| 成熟少妇高潮喷水视频| 十八禁网站免费在线| 好看av亚洲va欧美ⅴa在| 嫩草影院入口| 日韩人妻高清精品专区| 91麻豆av在线| 亚洲精品色激情综合| 久久精品国产综合久久久| 久久亚洲真实| 欧美一区二区精品小视频在线| 少妇的丰满在线观看| 宅男免费午夜| 欧美日本视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文字幕日韩| 两人在一起打扑克的视频| 国产精品久久久人人做人人爽| 丁香六月欧美| 亚洲黑人精品在线| 日韩免费av在线播放| 精品日产1卡2卡| 亚洲,欧美精品.| 在线观看舔阴道视频| 一区二区三区免费毛片| 神马国产精品三级电影在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av免费在线观看| 欧美日本视频| 久久久久九九精品影院| 日本与韩国留学比较| 一本精品99久久精品77| av在线天堂中文字幕| 在线观看免费视频日本深夜| 免费在线观看亚洲国产| 精品国产美女av久久久久小说| av专区在线播放| 日韩av在线大香蕉| 亚洲专区中文字幕在线| 亚洲国产精品久久男人天堂| 久久久久久大精品| 国产毛片a区久久久久| 亚洲国产色片| 色噜噜av男人的天堂激情| 婷婷精品国产亚洲av在线| 久久伊人香网站| 亚洲无线在线观看| av福利片在线观看| 久9热在线精品视频| 亚洲精品日韩av片在线观看 | 国产精品久久久人人做人人爽| 国产激情偷乱视频一区二区| 嫩草影院入口| 久久久久亚洲av毛片大全| 99久久成人亚洲精品观看| or卡值多少钱| 又紧又爽又黄一区二区| 夜夜夜夜夜久久久久| 久久中文看片网| 一本综合久久免费| 一本一本综合久久| 丁香欧美五月| 窝窝影院91人妻| 夜夜爽天天搞| 日韩欧美国产一区二区入口| 天堂影院成人在线观看| 我要搜黄色片| 三级国产精品欧美在线观看| 老司机午夜福利在线观看视频| 十八禁网站免费在线| 岛国在线观看网站| 18禁黄网站禁片午夜丰满| 国产伦精品一区二区三区视频9 | www.999成人在线观看| 免费看光身美女| 国产淫片久久久久久久久 | 亚洲内射少妇av| 网址你懂的国产日韩在线| 中文字幕精品亚洲无线码一区| 99久久精品热视频| 好看av亚洲va欧美ⅴa在| 亚洲成av人片免费观看| 啦啦啦免费观看视频1| 国产av麻豆久久久久久久| 亚洲精品影视一区二区三区av| 国产精品影院久久| 国产色爽女视频免费观看| 一夜夜www| ponron亚洲| 在线播放国产精品三级| 深爱激情五月婷婷| 麻豆久久精品国产亚洲av| 亚洲人成网站在线播| a级毛片a级免费在线| 亚洲中文字幕日韩| 99久久综合精品五月天人人| 国产亚洲欧美在线一区二区| 免费av不卡在线播放| 最新在线观看一区二区三区| 亚洲av免费在线观看| 国产毛片a区久久久久| 中文字幕精品亚洲无线码一区| 免费电影在线观看免费观看| 免费看光身美女| 女警被强在线播放| 久久久成人免费电影| 久久精品亚洲精品国产色婷小说| 精品一区二区三区视频在线 | 国产精品野战在线观看| 色精品久久人妻99蜜桃| 色在线成人网| av专区在线播放| www.www免费av| 精华霜和精华液先用哪个| 一级毛片高清免费大全| 男人的好看免费观看在线视频| 欧美在线黄色| 18+在线观看网站| 嫁个100分男人电影在线观看| 国产成人系列免费观看| 午夜视频国产福利| 午夜福利视频1000在线观看| 一a级毛片在线观看| 欧美日本视频| 麻豆成人午夜福利视频| 一进一出好大好爽视频| 国产精品乱码一区二三区的特点| 一进一出抽搐动态| 18禁国产床啪视频网站| 国产精品乱码一区二三区的特点| 热99re8久久精品国产| 丰满人妻一区二区三区视频av |