• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A comparative study of bismuth-based photocatalysts with titanium dioxide for perfluorooctanoic acid degradation

    2020-01-14 07:55:08AzizUrRhimBhIqrNbiZhoyngFuKejinLiHnyunChengLiwuZhng
    Chinese Chemical Letters 2019年12期

    Aziz-Ur-Rhim Bh,Iqr Nbi,Zhoyng Fu,Kejin Li,Hnyun Cheng,Liwu Zhng,*

    a Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China

    b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

    c Fudan International School (FDIS), Shanghai 200433, China

    Keywords:

    Photocatalysis

    Perfluorooctanoic acid

    Bismuth-based catalysts

    TiO2

    254 nm UV light

    Persistent organic pollutants

    ABSTRACT

    Bismuth-based material has been broadly studied due to their potential applications in various areas,especially used as promising photocatalysts for the removal of persistent organic pollutants(POPs)and several approaches have been adopted to tailor their features.Herein,the bismuth-based photocatalysts(BiOCl,BiPO4,BiOPO4/BiOCl)were synthesized by hydrothermal method and advanced characterization techniques(XRD,SEM,EDS elemental mapping,Raman and UV-vis DRS)were employed to analyze their morphology, crystal structure, and purity of the prepared photocatalysts.These synthesized photocatalysts offered a praiseworthy activity as compared to commercial TiO2 (P25) for the degradation of model pollutant perfluorooctanoic acid(PFOA)under 254 nm UV light.It was interesting to observe that all synthesized photocatalysts show significant degradation of PFOA and their photocatalytic activity follows the order: bismuth-based catalysts >TiO2 (P25) >without catalyst.Bismuth-based catalysts degraded the PFOA by almost 99.99% within 45 min while this degradation efficiency was 66.05% with TiO2 under the same reaction condition.Our work shows that the bismuth-based photocatalysts are promising in PFOA treatment.

    In order to address the challenge of sustainable development,significant effort has been made for environmental problems through photocatalysis.The photocatalysis has been accepted as a convenient method and widely used in numerous applications such as solar energy conversion [1], electronic devices [2], water splitting [3], and pollutant decomposition [4-6]with simultaneous hydrogen production[7].It is an efficient green sustainable method that employs free and infinite energy source on Earth[8,9].Photocatalytic materials have become important because they possess enhanced and exceptional physio-chemical properties compared to their corresponding analog.Generally, the photocatalyst performance highly depends on stability, chemical structure, specific surface parameters and charge separation[10,11].It is a fast-growing advanced oxidation process for toxic pollutant removal from the environment with their complete mineralization[12,13].Recently persistent organic pollutants such as perfluorooctanoic acid(PFOA)exposure through drinking water has become an emerging concern due to their tendency of accumulation in groundwater[14]and prevalent detected in living organism tissues especially in human beings [15,16].Various strategies have been employed for the synthesis of non-bioaccumulable alternatives to PFOA [17].

    PFOA has been widely used in stain-resistant materials,nonstick cookware and other kind of products like fire-fighting materials,textiles,lubricants,and cosmetics[18].About 90%of its contamination in the environment comes from its manufacturing and disposal sites, studies have shown that it causes cancer,reproductive and immune system problems [19,20].It is a highly stable, persistent compound due to the electron withdrawing properties of C--F bonds that make it difficult to be oxidized[21],although its natural degradation is not known.Numerous techniques have been employed for the degradation of PFOA such as electrochemical [22], adsorption [23], Fenton [24]and photocatalytic processes[25]while other studies on PFOA removal based on photochemical degradation by iron ions complex [26].TiO2is the most attractive photocatalyst due to its high degradation efficiency while hydroxyl radical(·OH)is generally the main active species in TiO2system.TiO2based photocatalytic degradation of PFOA proved ineffective but was only observed in acidic condition[27].Therefore, there is an urgent need to find a suitable catalyst for its degradation.

    Bismuth-based photocatalysts are a promising candidate due to their non-toxicity,high performance,stability and low cost[28,29].Bismuth oxychloride(BiOCl),a p-type semiconductor,exhibit good optical and well-defined morphological properties.It is a ternary layered oxide having a particular internal (Bi2O2) layer structure interleaved by van der Waals interactions between halogen (Cl)atoms [30].This specific structure prevents the electron-holes pairs recombination and increases the redox potential [29].Furthermore, bismuth phosphate (BiPO4) is an n-type semiconductor,non-metal oxyacid salt,and its effectiveness may be due to PO43-twisted tetrahedron structure which extends the charge carrier spell[31].In fact,both catalysts are p-and n-type intrinsic semiconductor, the combination of these two catalysts with a proper position form a p-n type heterojunction[32].Currently,we pay attention to BiOCl, BiPO4and their heterojunction (BiPO4/BiOCl), although they have a wide band gap but, they have more positive valence band(VB)making them highly oxidative,and thus highly suitable photocatalysts for PFOA treatment [31].The comparison of these bismuth-based catalysts with the most widely used TiO2(P25) would be helpful to find the best photocatalyst for PFOA removal.

    In this study, we explored the performance of the photocatalysts of BiOCl,BiPO4,and heterojunction of BiPO4/BiOCl,which were synthesized by a hydrothermal method.We compared systematically the photocatalytic activity of bismuth-based catalyst and TiO2(P25) for the degradation of PFOA under 254 nm UV light.Further,the physiochemical and structural properties of the catalysts were studied by scanning electron microscopy (SEM),Raman spectroscopy, X-ray powder diffraction (XRD) and energy dispersive spectrometer (EDS).

    The experimental section, including chemicals, photocatalysts preparation (synthesis of BiOCl, BiPO4,and BiPO4/BiOCl), characterization, photocatalytic degradation experiment, and analysis can be found in Supporting information.

    Fig.1.XRD patterns of BiOCl, BiPO4, BiPO4/BiOCl, and TiO2.

    The purity and crystal phase identification of synthesized catalysts were studied by X-Ray powder diffraction(XRD)(Fig.1).The XRD patterns of BiOCl specifies the good crystallinity with properly indexed diffraction peaks to the tetragonal crystal structure (JCPDS file No.06-0249) [21].It can be observed that there are three strong peaks(001),(101)and(102)at 2θ values of 12.01°, 25.96°and 33.56°, respectively.BiPO4sample exhibits the diffraction peaks that are well indexed to a monoclinic phase,which matches with the standard JCPDS file No.80-209 [32].The diffraction peaks at 2θ values of 19.01°, 21.33°, 27.14°, 29.07°and 31.17°coordinated well with the 011,111,200,120,and 012 crystal planes of BiPO4respectively[33].Diffraction peaks of BiPO4/BiOCl exhibit the co-existence of BiOCl and BiPO4, which can be further supported by later study of SEM, EDS, RAMAN, and UV-vis diffraction reflection spectroscopy (UV-vis DRS).In the XRD pattern of TiO2(P25), a chiefly anatase phase appears (JCPDS file No.21-1272)and some rutile phase is identified(JCPDS file No.21-1276).The diffraction peak at 110 confirms the co-existence of anatase and rutile phase in TiO2.No impurity peak was detected in all samples, indicating the high purity and the emergence of all strong peaks specifies the good crystallinity of all samples.

    The structural morphology and elemental mapping of prepared photocatalysts BiOCl,BiPO4,BiPO4/BiOCl,and TiO2(P25)are shown inFig.2.The BiOCldisplays a huge quantityofassembledsheets with a smooth surface (Fig.2a) and further confirmed that BiOCl was grown with(Bi2O2)layer structure enclosed by double halogen(Cl)atoms according to the literature [30].Fig.2b displays the leading signals of only Bi, O and Cl indicate the basic elements of BiOCl catalyst in the EDS spectrum,which means the product is pure[34].BiPO4depicting the rod-like elongated microcrystal structures with varying length ranges as spotted in Fig.2c[35].The EDS spectrum of BiPO4(Fig.2d)presents the signals of Bi,O and P offerings the main components of photocatalyst and no other element was detected[36].Heterojunction of BiPO4/BiOCl possesses the morphological characteristic of both BiOCl and BiPO4.Simply there were many elongated rods and assembled sheets mixed together,representing the successful formation of heterojunction consistent with the SEM result of BiOCl and BiPO4(Fig.2e).It can be seen that (Fig.2f) the heterojunctionofBiPO4/BiOCl presents the dominant signalsofBi,O,Cland Pshowing the mixedelement composition of BiOCl and BiPO4.TiO2(P25)sample shows the nanoporous morphology,as in Fig.2g while the mass spectrum of commercial TiO2(P25)manifest a signal of C,Ti and O can be recognized,signifying that the TiO2comprises of organic impurity and titanium(Fig.2h).

    Fig.S1 (Supporting information) demonstrates the particles size distribution of prepared photocatalysts BiOCl and BiPO4.The BiOCl shows the highest particle size ratio of 35% in the range of 0.8-1.2 μm(Fig.S1a)while this ratio was 27%in BiPO4(Fig.S1b).It could be seen that the distribution curves fit well the Gaussian function with R2values of 0.94 and 0.83 for BiOCl and BiPO4,indicating that the size distribution of these two samples was consistent with a normal distribution.

    Raman spectra were recorded to analyze the local structure and vibrational characteristics of prepared samples (BiOCl, BiPO4,BiPO4/BiOCl, and (P25) TiO2) are shown in Fig.3.Optically active Raman mode was assumed by following the works of Fateley et al.[37]and Cao et al.[38]as denoted in Eq.1:

    Here“g”presents the active mode of Raman while“u”displays the IR(Infra-Red)active mode of Raman[39].Raman spectra of BiOCl show three strong peaks at 57.75,145 and 199.45 cm-1and a weak peak at 394.07 cm-1(Fig.3a).The strong peak at 57.75 cm-1ascribed to A1ginternal stretching mode of Bi-Cl, the peak at 199.45 cm-1assigned to the Eginternal stretching mode of Bi-Cl and masked by 145 cm-1.The peak at 145 cm-1is due to A1ginternal stretching mode of Bi-Cl.Moreover,the weak peak at 394.07 cm-1comes from Egand B1gmodes of Raman which was formed by the oxygen atoms motion [33].

    Fig.3.Raman spectra of the synthesized photocatalysts: (a) BiOCl, (b) BiPO4, (c) BiPO4/BiOCl, (d) TiO2.

    Notably, the Raman peaks for BiPO4at 200 and 300 cm-1was attributed to Bi-O symmetric bending vibration, although the others peak in spectrum belongs to the symmetric and antisymmetric stretching modes of the PO4tetrahedron.The spectrum peaks at 450-600 cm-1were observed due to the v4bending modes of PO4, peaks at 380-450 cm-1and 950-1100 cm-1were credited to the v1symmetric and v3antisymmetric stretching modes of the PO4respectively as presented in Fig.3b[40].Raman spectrum of BiOCl/BiPO4shows the characteristics of both catalyst BiOCl and BiPO4(Fig.3c)while the Raman spectra of TiO2particles presents a set of peaks at 138.4, 392.53, 510.83 and 635.92 cm-1were due to the major anatase phase along with the weak peak of minor rutile phase at 446 cm-1as illustrated in Fig.3d [41].

    The optical properties of photocatalysts were examined by UVvis DRS (Fig.4a).The absorption band of BiOCl appears at about 361 nm[42],and BiPO4could only respond to the deep UV region at about 277 nm [43].The heterojunction of BiPO4/ BiOCl shows the edge band of both photocatalysts at 361 and 277 nm.TiO2shows absorption band at 400 nm representing the effective absorption to near visible light to UV range and bandgap was calculated by the Tauc plot (Fig.4b).Further, the band edge potential of catalysts(Fig.4c),was assessed by using the bandgap and geometric mean of constituent elements electronegativity inconsistency with the literature [44].

    Fig.4.(a) UV-vis absorption spectrum, (b) the Tauc plot, (c) band gap energies and band edge potentials of photocatalysts.

    Fig.5.(a) PFOA degradation with bismuth-based catalysts and reference TiO2 (P25) photocatalyst under 254 nm UV light, (b) PFOA degradation efficiency, (c) apparent reaction rate constants for PFOA degradation,(d) removal ratio of fluoride(F-)and formic acid concentration during PFOA degradation after 60 min.Reaction conditions:[PFOA]= 20 ppm, [catalyst]= 0.05 g of each.All experiments were repeated three times at the natural pH of PFOA solution and the average data is presented here.

    The photocatalytic performance of the prepared catalysts was evaluated by the degradation and defluorination ratio of PFOA under 254 nm UV light as shown in Fig.5.BiOCl exhibited the highest photocatalytic performance as compared to BiPO4/BiOCl,BiPO4,and TiO2(P25), while the direct photolysis (without photocatalyst) of PFOA was negligible after the first 15 min as observed in Fig.5a.It has been reported in the literature that direct photolysis of PFOA is highly dependent on reaction intermediates[45,46].The concentration of intermediates (carboxylic acids)increase with time which effects on degradation, implying that PFOA undergoes a chain reaction for the removal of CF2unit.Therefore, this could be the reason for the slow photolytic degradation of PFOA after the first 15 min.The degradation efficiency of PFOA was about 99.99%, 66.05% and 55.29% for bismuth-based photocatalysts, TiO2,and control experiment after 45 min, respectively (Fig.5b).Notably, the time for complete degradation of PFOA over the BiOCl was only about 30 min,which was much shorter than the corresponding bismuth-based catalysts.Photocatalytic activity of the reference catalyst TiO2(P25)was less as compared to bismuth-based catalysts under the same reaction condition.The photocatalysts activity order for PFOA degradation was without photocatalysts <TiO2(P25) <BiPO4<BiPO4/BiOCl <BiOCl ( Figs.5a and b).The PFOA degradation rate constant was calculated by first decay model order(-ln(C/C0)=kt),where C0is the initial concentration of PFOA, C is the final PFOA concentration after the reaction, “t” and “k” is the rate constant.Fig.5c demonstrates the degradation rate constant of PFOA by BiOCl,BiPO4,and BiPO4/BiOCl catalysts were 0.09297,0.06384 and 0.05282 min-1,which was almost 6,4 and 3 times higher than TiO2(P25) while 9, 6 and 5 times higher than without the catalyst respectively.In addition, the intermediates formation and mineralization process during PFOA degradation reaction were monitored through IC.Fig.5d shows the generation of inorganic fluoride (F-) and formate ions concentration during the degradation reaction, proved the efficient photocatalytic degradation of PFOA.The F-ion concentration in BiOCl, BiPO4,and BiPO4/BiOCl reaction system was more significant as compared to TiO2(P25)and without photocatalyst.The main intermediates in PFOA degradation were formate and F-ions which rapidly reached their maximum concentration after 60 min of photodegradation reaction,indicating the direct C--F bond cleavage in PFOA[16].On the basis of all above-mentioned results, PFOA could be effectively degraded by bismuth-based photocatalysts under UV light irradiation.

    The probable explanation for the higher photocatalytic performance of bismuth-based catalysts is mainly attributed to their wide band gap.Bismuth-based catalysts have more positive valence band potential as compare to TiO2(P25) [47].The photogenerated holes of bismuth-based catalysts exhibit stronger oxidation ability,resulting in higher activity for PFOA degradation.Bismuth-based catalysts also possess a high adsorption capacity for pollutants.It can be seen that (Fig.5a), the amount of PFOA adsorbed by bismuth-based catalysts was higher than TiO2(P25)due to the presence of specific binding sites and oxygen vacancies which tightly bound the PFOA on bismuth-based catalysts.The higher adsorption capacity of PFOA on bismuth-based catalyst could be one reason for the more efficient PFOA photocatalytic degradation.

    Fig.6.The reusability and stability test of bismuth-based catalysts for PFOA removal after 60 min.Error bars presents the standard deviation of three times repeated experiments and after each cycle,the catalysts were filtered,washed with deionized water and dried.

    However, BiOCl exhibited the highest photoactivity among other bismuth-based catalysts,primarily due to its unique intrinsic layered structure which provides a driving force for promoting the charge separation.The more positive valence band potential,PFOA adsorption and unique morphology of bismuth-based catalysts could benefit the adsorption of pollutant (PFOA) and subsequent reactions that can promote the degradation rate in the bismuthbased photocatalytic system.Moreover, the reusability test was conducted to check the stability of bismuth-based catalysts(Fig.6).After four times of consecutive cycles,the bismuth-based catalysts showed exceptional performance for PFOA removal suggesting that they were very stable for real applications, especially in wastewater treatment.

    In summary, we successfully presented the photocatalytic performance of bismuth-based photocatalysts in comparison with TiO2(P25) for significant degradation of highly persistent organic acid PFOA under UV irradiation.Bismuth-based photocatalysts showed an efficient photocatalytic performance for PFOA degradation.BiOCl shows 99.99% degradation of PFOA within 30 min while the other two photocatalysts (BiPO4and BiPO4/BiOCl)degrade it within 45 min.All bismuth-based catalysts were synthesized by hydrothermal method and the catalysts structure,purity and crystallinity were analyzed by using different characterization techniques.This work provides a significant method for persistent organic pollutant removal in wastewater.

    Acknowledgments

    The authors gratefully acknowledge financial support from Ministry of Science and Technology of the People's Republic of China (Nos.2016YFE0112200 and 2016YFC0202700), National Natural Science Foundation of China(Nos.21507011,21677037 and 21607027), and Natural Science Foundation of Shanghai (Nos.19ZR1471200,17ZR1440200).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2019.07.058.

    中文乱码字字幕精品一区二区三区| 嫩草影院入口| 夜夜骑夜夜射夜夜干| 啦啦啦啦在线视频资源| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频 | 黄片播放在线免费| 亚洲成人一二三区av| 一区二区日韩欧美中文字幕| videosex国产| 香蕉丝袜av| 18禁国产床啪视频网站| 伊人久久大香线蕉亚洲五| 日韩一区二区三区影片| 色播在线永久视频| 9191精品国产免费久久| 高清不卡的av网站| 国产成人a∨麻豆精品| 777久久人妻少妇嫩草av网站| 日韩中文字幕欧美一区二区 | 亚洲第一区二区三区不卡| 丝袜美腿诱惑在线| 男女之事视频高清在线观看 | 19禁男女啪啪无遮挡网站| 女性生殖器流出的白浆| 亚洲精品一二三| 欧美日本中文国产一区发布| 欧美最新免费一区二区三区| 国产免费福利视频在线观看| 日韩av在线免费看完整版不卡| 久久性视频一级片| bbb黄色大片| 国产99久久九九免费精品| 热re99久久精品国产66热6| 久久久欧美国产精品| 欧美在线一区亚洲| 青春草亚洲视频在线观看| 色婷婷久久久亚洲欧美| 国产精品蜜桃在线观看| 亚洲精品国产av蜜桃| 人人妻人人爽人人添夜夜欢视频| 美女主播在线视频| 久久韩国三级中文字幕| 精品亚洲成国产av| 亚洲av欧美aⅴ国产| 国产亚洲欧美精品永久| 亚洲五月色婷婷综合| 两个人免费观看高清视频| 国产女主播在线喷水免费视频网站| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 国产免费又黄又爽又色| 丝袜人妻中文字幕| 国产av国产精品国产| 老司机靠b影院| 国产探花极品一区二区| 黄片无遮挡物在线观看| 日本爱情动作片www.在线观看| 女性被躁到高潮视频| 国产精品久久久久成人av| 大香蕉久久成人网| 老鸭窝网址在线观看| 亚洲七黄色美女视频| 中文字幕人妻丝袜制服| 精品国产露脸久久av麻豆| 可以免费在线观看a视频的电影网站 | 午夜福利,免费看| 国产又色又爽无遮挡免| 国产xxxxx性猛交| kizo精华| 国产在线免费精品| 亚洲中文av在线| 免费观看人在逋| 亚洲成人av在线免费| 日韩熟女老妇一区二区性免费视频| 国产成人精品久久久久久| 久久久精品国产亚洲av高清涩受| 黑人猛操日本美女一级片| 高清不卡的av网站| 久久精品久久精品一区二区三区| 国产黄频视频在线观看| 日韩一本色道免费dvd| 欧美日韩成人在线一区二区| 亚洲av日韩在线播放| 中文欧美无线码| 午夜免费鲁丝| 日韩 亚洲 欧美在线| 黑人巨大精品欧美一区二区蜜桃| 妹子高潮喷水视频| 亚洲五月色婷婷综合| 热99国产精品久久久久久7| 久久久久网色| 亚洲精品国产区一区二| 久久久精品免费免费高清| 麻豆av在线久日| www.精华液| 2021少妇久久久久久久久久久| 亚洲精品在线美女| 飞空精品影院首页| 欧美 亚洲 国产 日韩一| 亚洲成人手机| 一区二区三区乱码不卡18| 少妇 在线观看| 涩涩av久久男人的天堂| 1024视频免费在线观看| 又粗又硬又长又爽又黄的视频| 色播在线永久视频| 最近的中文字幕免费完整| 欧美人与性动交α欧美软件| 美女国产高潮福利片在线看| 曰老女人黄片| www日本在线高清视频| 在线免费观看不下载黄p国产| 国产av一区二区精品久久| 伊人亚洲综合成人网| 成人影院久久| 青春草国产在线视频| 成年动漫av网址| 另类亚洲欧美激情| 国产xxxxx性猛交| 精品一区二区三卡| 国产伦理片在线播放av一区| 99国产综合亚洲精品| 免费人妻精品一区二区三区视频| 日韩制服骚丝袜av| 啦啦啦在线观看免费高清www| 亚洲精品av麻豆狂野| 天天躁夜夜躁狠狠躁躁| 中文字幕另类日韩欧美亚洲嫩草| 国产人伦9x9x在线观看| 精品亚洲成a人片在线观看| 国产成人啪精品午夜网站| 伦理电影免费视频| 亚洲欧美清纯卡通| 国产老妇伦熟女老妇高清| 亚洲国产欧美网| 欧美 亚洲 国产 日韩一| 久久久久网色| 啦啦啦啦在线视频资源| 极品少妇高潮喷水抽搐| 国产淫语在线视频| 亚洲七黄色美女视频| 国产片内射在线| 丝袜在线中文字幕| 亚洲男人天堂网一区| 午夜日本视频在线| 操美女的视频在线观看| 校园人妻丝袜中文字幕| 国产老妇伦熟女老妇高清| 午夜福利影视在线免费观看| 老司机亚洲免费影院| www.自偷自拍.com| 欧美黄色片欧美黄色片| 久久女婷五月综合色啪小说| 亚洲一码二码三码区别大吗| 中文字幕人妻熟女乱码| 男女国产视频网站| 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 各种免费的搞黄视频| 9191精品国产免费久久| 亚洲三区欧美一区| 久久久国产欧美日韩av| 日韩电影二区| 日本黄色日本黄色录像| 人妻一区二区av| 丝袜美腿诱惑在线| 亚洲av成人精品一二三区| 成人18禁高潮啪啪吃奶动态图| 中文字幕精品免费在线观看视频| 国产精品国产三级国产专区5o| a级片在线免费高清观看视频| 天堂俺去俺来也www色官网| 麻豆乱淫一区二区| 在线观看人妻少妇| 午夜免费观看性视频| 色94色欧美一区二区| 久久久久视频综合| 999精品在线视频| 国产有黄有色有爽视频| 色视频在线一区二区三区| 亚洲图色成人| 你懂的网址亚洲精品在线观看| 可以免费在线观看a视频的电影网站 | 欧美亚洲 丝袜 人妻 在线| 午夜福利网站1000一区二区三区| 五月开心婷婷网| 人成视频在线观看免费观看| 少妇的丰满在线观看| av国产久精品久网站免费入址| 咕卡用的链子| 亚洲欧美激情在线| 亚洲成色77777| e午夜精品久久久久久久| 99九九在线精品视频| 麻豆av在线久日| 久久人妻熟女aⅴ| 亚洲国产av影院在线观看| 大片电影免费在线观看免费| 久久这里只有精品19| 人人澡人人妻人| a 毛片基地| av在线老鸭窝| 亚洲一码二码三码区别大吗| 久久久精品94久久精品| 水蜜桃什么品种好| 国产又爽黄色视频| 在线天堂中文资源库| 欧美日韩福利视频一区二区| 综合色丁香网| 另类精品久久| 80岁老熟妇乱子伦牲交| 国产黄色免费在线视频| 高清av免费在线| 日韩一区二区三区影片| 国产精品国产av在线观看| 一级片免费观看大全| 久久这里只有精品19| e午夜精品久久久久久久| 日韩大码丰满熟妇| 亚洲精品国产一区二区精华液| 欧美乱码精品一区二区三区| 久久久久久免费高清国产稀缺| 成人午夜精彩视频在线观看| 色94色欧美一区二区| 麻豆av在线久日| 久久久久国产一级毛片高清牌| 又黄又粗又硬又大视频| 婷婷色av中文字幕| a级片在线免费高清观看视频| 美女大奶头黄色视频| 精品一区在线观看国产| 丁香六月天网| bbb黄色大片| 下体分泌物呈黄色| 欧美老熟妇乱子伦牲交| 欧美日韩视频精品一区| 99久久综合免费| 老熟女久久久| 欧美日韩一区二区视频在线观看视频在线| 少妇被粗大猛烈的视频| 国产精品免费大片| 午夜日韩欧美国产| 亚洲精品在线美女| 欧美激情 高清一区二区三区| 在线天堂最新版资源| 国产欧美日韩综合在线一区二区| 美女福利国产在线| 亚洲成人一二三区av| 蜜桃在线观看..| 久久久久久久久久久免费av| 一级爰片在线观看| 欧美xxⅹ黑人| 成人黄色视频免费在线看| 卡戴珊不雅视频在线播放| 亚洲图色成人| 亚洲七黄色美女视频| 成人漫画全彩无遮挡| 久久精品久久久久久久性| 一区二区日韩欧美中文字幕| 国产精品一国产av| 黄色怎么调成土黄色| 黄网站色视频无遮挡免费观看| 久久天堂一区二区三区四区| 99精品久久久久人妻精品| 天天躁日日躁夜夜躁夜夜| 久久狼人影院| 日韩大码丰满熟妇| 丁香六月欧美| 女人高潮潮喷娇喘18禁视频| 岛国毛片在线播放| 99热国产这里只有精品6| 高清欧美精品videossex| 久热这里只有精品99| 日本av免费视频播放| 丁香六月欧美| 搡老岳熟女国产| av在线观看视频网站免费| 黄色毛片三级朝国网站| 日韩制服丝袜自拍偷拍| 制服丝袜香蕉在线| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 熟女少妇亚洲综合色aaa.| 国产片特级美女逼逼视频| kizo精华| 精品国产乱码久久久久久小说| 一本久久精品| 另类亚洲欧美激情| 久久久久精品久久久久真实原创| 免费观看性生交大片5| 在线观看人妻少妇| 一级片免费观看大全| www.精华液| 青春草国产在线视频| 欧美激情极品国产一区二区三区| 成年女人毛片免费观看观看9 | 天天躁夜夜躁狠狠久久av| 国产精品三级大全| 老司机靠b影院| 狠狠婷婷综合久久久久久88av| 亚洲国产中文字幕在线视频| 亚洲av综合色区一区| 男女之事视频高清在线观看 | 多毛熟女@视频| 激情视频va一区二区三区| 日韩,欧美,国产一区二区三区| 狂野欧美激情性xxxx| 美女视频免费永久观看网站| 久久女婷五月综合色啪小说| 又粗又硬又长又爽又黄的视频| 水蜜桃什么品种好| 久久狼人影院| 亚洲av中文av极速乱| 少妇猛男粗大的猛烈进出视频| 国产精品香港三级国产av潘金莲 | 亚洲精品,欧美精品| av不卡在线播放| 欧美老熟妇乱子伦牲交| 精品一区二区免费观看| 国产 精品1| 久久精品人人爽人人爽视色| 日日撸夜夜添| 日韩中文字幕欧美一区二区 | 欧美在线一区亚洲| 国产亚洲午夜精品一区二区久久| 中文字幕亚洲精品专区| 久久99一区二区三区| 免费观看性生交大片5| 久久国产精品男人的天堂亚洲| 青草久久国产| 美国免费a级毛片| 熟女av电影| 最新在线观看一区二区三区 | 老司机影院成人| 91精品三级在线观看| 一本色道久久久久久精品综合| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲综合一区二区三区_| 国产片内射在线| 男女午夜视频在线观看| 十八禁人妻一区二区| 无限看片的www在线观看| 国产在线视频一区二区| av免费观看日本| 欧美人与性动交α欧美软件| 99国产精品免费福利视频| 免费久久久久久久精品成人欧美视频| 欧美 日韩 精品 国产| 中文天堂在线官网| 在线观看免费高清a一片| a级片在线免费高清观看视频| 日日撸夜夜添| 另类精品久久| 啦啦啦 在线观看视频| 精品久久蜜臀av无| 亚洲精品国产区一区二| 宅男免费午夜| e午夜精品久久久久久久| 丰满饥渴人妻一区二区三| 男女边摸边吃奶| 国产黄色视频一区二区在线观看| 又大又爽又粗| 亚洲精品第二区| 婷婷色麻豆天堂久久| 侵犯人妻中文字幕一二三四区| 老鸭窝网址在线观看| 欧美精品亚洲一区二区| 亚洲人成电影观看| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久小说| 国产欧美日韩一区二区三区在线| 欧美日韩一级在线毛片| 免费看不卡的av| 男女边吃奶边做爰视频| 亚洲成人国产一区在线观看 | a 毛片基地| 老鸭窝网址在线观看| av电影中文网址| 在线天堂最新版资源| 美国免费a级毛片| 狠狠婷婷综合久久久久久88av| 欧美人与性动交α欧美软件| 欧美在线一区亚洲| 国产亚洲av高清不卡| 丝袜人妻中文字幕| 国产成人欧美| 极品人妻少妇av视频| 久久久久久久国产电影| 日本vs欧美在线观看视频| 国产三级在线视频| 亚洲av电影不卡..在线观看| 欧美午夜高清在线| 中文字幕久久专区| 淫秽高清视频在线观看| 日韩国内少妇激情av| 满18在线观看网站| 少妇 在线观看| 一本久久中文字幕| 国产欧美日韩一区二区三区在线| 久久久精品国产亚洲av高清涩受| 天天躁狠狠躁夜夜躁狠狠躁| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮喷水抽搐中文字幕| 久久国产亚洲av麻豆专区| 视频区欧美日本亚洲| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图av天堂| 欧美成人一区二区免费高清观看 | 最新在线观看一区二区三区| 日韩精品免费视频一区二区三区| av天堂久久9| 91精品三级在线观看| 久久国产亚洲av麻豆专区| 久久久精品欧美日韩精品| 久久国产亚洲av麻豆专区| 在线免费观看的www视频| 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| 青草久久国产| 亚洲av成人不卡在线观看播放网| 老司机午夜福利在线观看视频| 在线观看免费视频网站a站| 国产区一区二久久| 国产午夜福利久久久久久| 亚洲精品中文字幕一二三四区| 丝袜美足系列| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 久久久久亚洲av毛片大全| 别揉我奶头~嗯~啊~动态视频| 欧美激情久久久久久爽电影 | 精品卡一卡二卡四卡免费| 欧美激情高清一区二区三区| 老司机在亚洲福利影院| 91国产中文字幕| 精品电影一区二区在线| 中文字幕色久视频| 国产精品久久久久久精品电影 | 12—13女人毛片做爰片一| 久久久久国内视频| 亚洲欧美精品综合一区二区三区| 91av网站免费观看| 国产精品免费视频内射| 国产欧美日韩一区二区精品| 天天躁夜夜躁狠狠躁躁| 日韩大码丰满熟妇| av免费在线观看网站| 视频在线观看一区二区三区| 12—13女人毛片做爰片一| av片东京热男人的天堂| 男女做爰动态图高潮gif福利片 | 久久狼人影院| 国产成人av激情在线播放| 久久久久久大精品| 一边摸一边抽搐一进一出视频| 18禁裸乳无遮挡免费网站照片 | 精品不卡国产一区二区三区| 久99久视频精品免费| 村上凉子中文字幕在线| 69精品国产乱码久久久| 午夜两性在线视频| 免费看十八禁软件| 精品不卡国产一区二区三区| 久久久久国内视频| 亚洲欧美日韩另类电影网站| 久久人妻福利社区极品人妻图片| 免费一级毛片在线播放高清视频 | netflix在线观看网站| 成人免费观看视频高清| 欧美一级a爱片免费观看看 | 亚洲在线自拍视频| 他把我摸到了高潮在线观看| 欧洲精品卡2卡3卡4卡5卡区| av在线播放免费不卡| 人妻久久中文字幕网| 久久国产精品男人的天堂亚洲| 成人三级做爰电影| 日韩精品免费视频一区二区三区| 亚洲成国产人片在线观看| 日韩成人在线观看一区二区三区| 亚洲成国产人片在线观看| 亚洲欧美日韩无卡精品| av片东京热男人的天堂| 村上凉子中文字幕在线| 少妇的丰满在线观看| 丁香欧美五月| 一卡2卡三卡四卡精品乱码亚洲| 男女下面进入的视频免费午夜 | 中文字幕色久视频| 亚洲精品一区av在线观看| 日本撒尿小便嘘嘘汇集6| 午夜影院日韩av| 精品久久蜜臀av无| 搡老岳熟女国产| 亚洲av电影不卡..在线观看| 国产精品香港三级国产av潘金莲| 日韩欧美在线二视频| 精品国产美女av久久久久小说| av天堂久久9| 深夜精品福利| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 亚洲情色 制服丝袜| 日本精品一区二区三区蜜桃| 亚洲在线自拍视频| 在线免费观看的www视频| 精品久久久久久久久久免费视频| 久久天堂一区二区三区四区| 美女扒开内裤让男人捅视频| 成人三级黄色视频| 成熟少妇高潮喷水视频| 美女大奶头视频| av福利片在线| 成人av一区二区三区在线看| 亚洲色图 男人天堂 中文字幕| 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 变态另类成人亚洲欧美熟女 | 午夜影院日韩av| 成人18禁高潮啪啪吃奶动态图| 久久久久久大精品| 一级黄色大片毛片| 久久这里只有精品19| 久久婷婷人人爽人人干人人爱 | 夜夜爽天天搞| 18禁观看日本| 美女扒开内裤让男人捅视频| 日韩三级视频一区二区三区| 亚洲av五月六月丁香网| bbb黄色大片| 亚洲片人在线观看| 午夜免费鲁丝| 两个人视频免费观看高清| 老汉色∧v一级毛片| 精品欧美一区二区三区在线| 午夜a级毛片| 亚洲精品国产色婷婷电影| 中文字幕人成人乱码亚洲影| 亚洲男人天堂网一区| 人妻久久中文字幕网| 在线观看免费视频网站a站| 欧洲精品卡2卡3卡4卡5卡区| 久久天堂一区二区三区四区| 9191精品国产免费久久| 男人的好看免费观看在线视频 | 成人永久免费在线观看视频| 午夜福利视频1000在线观看 | 9色porny在线观看| 国产av精品麻豆| 亚洲电影在线观看av| 久久精品国产99精品国产亚洲性色 | 老汉色av国产亚洲站长工具| av电影中文网址| 久久午夜亚洲精品久久| 国产不卡一卡二| 99国产精品99久久久久| 亚洲精品久久国产高清桃花| 久久久国产欧美日韩av| 高潮久久久久久久久久久不卡| 久久精品国产亚洲av高清一级| 久久久久久人人人人人| 丰满人妻熟妇乱又伦精品不卡| 成在线人永久免费视频| 国产99白浆流出| 人妻久久中文字幕网| 亚洲av日韩精品久久久久久密| 亚洲五月色婷婷综合| 女人被狂操c到高潮| 久久精品影院6| 97人妻天天添夜夜摸| 日本vs欧美在线观看视频| 亚洲男人天堂网一区| 欧美激情久久久久久爽电影 | 一区福利在线观看| 亚洲av成人一区二区三| 91国产中文字幕| 午夜福利欧美成人| 热re99久久国产66热| 黄片大片在线免费观看| 一级a爱片免费观看的视频| 国产精品野战在线观看| 这个男人来自地球电影免费观看| 波多野结衣av一区二区av| 日日夜夜操网爽| 免费看十八禁软件| 亚洲国产精品sss在线观看| 最新美女视频免费是黄的| 亚洲精品美女久久av网站| 久久精品国产综合久久久| 中文亚洲av片在线观看爽| 香蕉国产在线看| 91字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩精品青青久久久久久| 亚洲成国产人片在线观看| 国产av一区二区精品久久| 亚洲欧洲精品一区二区精品久久久| 免费在线观看完整版高清| 91精品国产国语对白视频| 成人免费观看视频高清| 久久国产亚洲av麻豆专区| 丝袜美腿诱惑在线| 精品福利观看| 日韩高清综合在线| 亚洲一区二区三区色噜噜| 一级作爱视频免费观看| 乱人伦中国视频| 少妇的丰满在线观看| 黄色女人牲交| 淫妇啪啪啪对白视频| 成人亚洲精品一区在线观看| 超碰成人久久|