• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A comparative study of bismuth-based photocatalysts with titanium dioxide for perfluorooctanoic acid degradation

    2020-01-14 07:55:08AzizUrRhimBhIqrNbiZhoyngFuKejinLiHnyunChengLiwuZhng
    Chinese Chemical Letters 2019年12期

    Aziz-Ur-Rhim Bh,Iqr Nbi,Zhoyng Fu,Kejin Li,Hnyun Cheng,Liwu Zhng,*

    a Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China

    b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

    c Fudan International School (FDIS), Shanghai 200433, China

    Keywords:

    Photocatalysis

    Perfluorooctanoic acid

    Bismuth-based catalysts

    TiO2

    254 nm UV light

    Persistent organic pollutants

    ABSTRACT

    Bismuth-based material has been broadly studied due to their potential applications in various areas,especially used as promising photocatalysts for the removal of persistent organic pollutants(POPs)and several approaches have been adopted to tailor their features.Herein,the bismuth-based photocatalysts(BiOCl,BiPO4,BiOPO4/BiOCl)were synthesized by hydrothermal method and advanced characterization techniques(XRD,SEM,EDS elemental mapping,Raman and UV-vis DRS)were employed to analyze their morphology, crystal structure, and purity of the prepared photocatalysts.These synthesized photocatalysts offered a praiseworthy activity as compared to commercial TiO2 (P25) for the degradation of model pollutant perfluorooctanoic acid(PFOA)under 254 nm UV light.It was interesting to observe that all synthesized photocatalysts show significant degradation of PFOA and their photocatalytic activity follows the order: bismuth-based catalysts >TiO2 (P25) >without catalyst.Bismuth-based catalysts degraded the PFOA by almost 99.99% within 45 min while this degradation efficiency was 66.05% with TiO2 under the same reaction condition.Our work shows that the bismuth-based photocatalysts are promising in PFOA treatment.

    In order to address the challenge of sustainable development,significant effort has been made for environmental problems through photocatalysis.The photocatalysis has been accepted as a convenient method and widely used in numerous applications such as solar energy conversion [1], electronic devices [2], water splitting [3], and pollutant decomposition [4-6]with simultaneous hydrogen production[7].It is an efficient green sustainable method that employs free and infinite energy source on Earth[8,9].Photocatalytic materials have become important because they possess enhanced and exceptional physio-chemical properties compared to their corresponding analog.Generally, the photocatalyst performance highly depends on stability, chemical structure, specific surface parameters and charge separation[10,11].It is a fast-growing advanced oxidation process for toxic pollutant removal from the environment with their complete mineralization[12,13].Recently persistent organic pollutants such as perfluorooctanoic acid(PFOA)exposure through drinking water has become an emerging concern due to their tendency of accumulation in groundwater[14]and prevalent detected in living organism tissues especially in human beings [15,16].Various strategies have been employed for the synthesis of non-bioaccumulable alternatives to PFOA [17].

    PFOA has been widely used in stain-resistant materials,nonstick cookware and other kind of products like fire-fighting materials,textiles,lubricants,and cosmetics[18].About 90%of its contamination in the environment comes from its manufacturing and disposal sites, studies have shown that it causes cancer,reproductive and immune system problems [19,20].It is a highly stable, persistent compound due to the electron withdrawing properties of C--F bonds that make it difficult to be oxidized[21],although its natural degradation is not known.Numerous techniques have been employed for the degradation of PFOA such as electrochemical [22], adsorption [23], Fenton [24]and photocatalytic processes[25]while other studies on PFOA removal based on photochemical degradation by iron ions complex [26].TiO2is the most attractive photocatalyst due to its high degradation efficiency while hydroxyl radical(·OH)is generally the main active species in TiO2system.TiO2based photocatalytic degradation of PFOA proved ineffective but was only observed in acidic condition[27].Therefore, there is an urgent need to find a suitable catalyst for its degradation.

    Bismuth-based photocatalysts are a promising candidate due to their non-toxicity,high performance,stability and low cost[28,29].Bismuth oxychloride(BiOCl),a p-type semiconductor,exhibit good optical and well-defined morphological properties.It is a ternary layered oxide having a particular internal (Bi2O2) layer structure interleaved by van der Waals interactions between halogen (Cl)atoms [30].This specific structure prevents the electron-holes pairs recombination and increases the redox potential [29].Furthermore, bismuth phosphate (BiPO4) is an n-type semiconductor,non-metal oxyacid salt,and its effectiveness may be due to PO43-twisted tetrahedron structure which extends the charge carrier spell[31].In fact,both catalysts are p-and n-type intrinsic semiconductor, the combination of these two catalysts with a proper position form a p-n type heterojunction[32].Currently,we pay attention to BiOCl, BiPO4and their heterojunction (BiPO4/BiOCl), although they have a wide band gap but, they have more positive valence band(VB)making them highly oxidative,and thus highly suitable photocatalysts for PFOA treatment [31].The comparison of these bismuth-based catalysts with the most widely used TiO2(P25) would be helpful to find the best photocatalyst for PFOA removal.

    In this study, we explored the performance of the photocatalysts of BiOCl,BiPO4,and heterojunction of BiPO4/BiOCl,which were synthesized by a hydrothermal method.We compared systematically the photocatalytic activity of bismuth-based catalyst and TiO2(P25) for the degradation of PFOA under 254 nm UV light.Further,the physiochemical and structural properties of the catalysts were studied by scanning electron microscopy (SEM),Raman spectroscopy, X-ray powder diffraction (XRD) and energy dispersive spectrometer (EDS).

    The experimental section, including chemicals, photocatalysts preparation (synthesis of BiOCl, BiPO4,and BiPO4/BiOCl), characterization, photocatalytic degradation experiment, and analysis can be found in Supporting information.

    Fig.1.XRD patterns of BiOCl, BiPO4, BiPO4/BiOCl, and TiO2.

    The purity and crystal phase identification of synthesized catalysts were studied by X-Ray powder diffraction(XRD)(Fig.1).The XRD patterns of BiOCl specifies the good crystallinity with properly indexed diffraction peaks to the tetragonal crystal structure (JCPDS file No.06-0249) [21].It can be observed that there are three strong peaks(001),(101)and(102)at 2θ values of 12.01°, 25.96°and 33.56°, respectively.BiPO4sample exhibits the diffraction peaks that are well indexed to a monoclinic phase,which matches with the standard JCPDS file No.80-209 [32].The diffraction peaks at 2θ values of 19.01°, 21.33°, 27.14°, 29.07°and 31.17°coordinated well with the 011,111,200,120,and 012 crystal planes of BiPO4respectively[33].Diffraction peaks of BiPO4/BiOCl exhibit the co-existence of BiOCl and BiPO4, which can be further supported by later study of SEM, EDS, RAMAN, and UV-vis diffraction reflection spectroscopy (UV-vis DRS).In the XRD pattern of TiO2(P25), a chiefly anatase phase appears (JCPDS file No.21-1272)and some rutile phase is identified(JCPDS file No.21-1276).The diffraction peak at 110 confirms the co-existence of anatase and rutile phase in TiO2.No impurity peak was detected in all samples, indicating the high purity and the emergence of all strong peaks specifies the good crystallinity of all samples.

    The structural morphology and elemental mapping of prepared photocatalysts BiOCl,BiPO4,BiPO4/BiOCl,and TiO2(P25)are shown inFig.2.The BiOCldisplays a huge quantityofassembledsheets with a smooth surface (Fig.2a) and further confirmed that BiOCl was grown with(Bi2O2)layer structure enclosed by double halogen(Cl)atoms according to the literature [30].Fig.2b displays the leading signals of only Bi, O and Cl indicate the basic elements of BiOCl catalyst in the EDS spectrum,which means the product is pure[34].BiPO4depicting the rod-like elongated microcrystal structures with varying length ranges as spotted in Fig.2c[35].The EDS spectrum of BiPO4(Fig.2d)presents the signals of Bi,O and P offerings the main components of photocatalyst and no other element was detected[36].Heterojunction of BiPO4/BiOCl possesses the morphological characteristic of both BiOCl and BiPO4.Simply there were many elongated rods and assembled sheets mixed together,representing the successful formation of heterojunction consistent with the SEM result of BiOCl and BiPO4(Fig.2e).It can be seen that (Fig.2f) the heterojunctionofBiPO4/BiOCl presents the dominant signalsofBi,O,Cland Pshowing the mixedelement composition of BiOCl and BiPO4.TiO2(P25)sample shows the nanoporous morphology,as in Fig.2g while the mass spectrum of commercial TiO2(P25)manifest a signal of C,Ti and O can be recognized,signifying that the TiO2comprises of organic impurity and titanium(Fig.2h).

    Fig.S1 (Supporting information) demonstrates the particles size distribution of prepared photocatalysts BiOCl and BiPO4.The BiOCl shows the highest particle size ratio of 35% in the range of 0.8-1.2 μm(Fig.S1a)while this ratio was 27%in BiPO4(Fig.S1b).It could be seen that the distribution curves fit well the Gaussian function with R2values of 0.94 and 0.83 for BiOCl and BiPO4,indicating that the size distribution of these two samples was consistent with a normal distribution.

    Raman spectra were recorded to analyze the local structure and vibrational characteristics of prepared samples (BiOCl, BiPO4,BiPO4/BiOCl, and (P25) TiO2) are shown in Fig.3.Optically active Raman mode was assumed by following the works of Fateley et al.[37]and Cao et al.[38]as denoted in Eq.1:

    Here“g”presents the active mode of Raman while“u”displays the IR(Infra-Red)active mode of Raman[39].Raman spectra of BiOCl show three strong peaks at 57.75,145 and 199.45 cm-1and a weak peak at 394.07 cm-1(Fig.3a).The strong peak at 57.75 cm-1ascribed to A1ginternal stretching mode of Bi-Cl, the peak at 199.45 cm-1assigned to the Eginternal stretching mode of Bi-Cl and masked by 145 cm-1.The peak at 145 cm-1is due to A1ginternal stretching mode of Bi-Cl.Moreover,the weak peak at 394.07 cm-1comes from Egand B1gmodes of Raman which was formed by the oxygen atoms motion [33].

    Fig.3.Raman spectra of the synthesized photocatalysts: (a) BiOCl, (b) BiPO4, (c) BiPO4/BiOCl, (d) TiO2.

    Notably, the Raman peaks for BiPO4at 200 and 300 cm-1was attributed to Bi-O symmetric bending vibration, although the others peak in spectrum belongs to the symmetric and antisymmetric stretching modes of the PO4tetrahedron.The spectrum peaks at 450-600 cm-1were observed due to the v4bending modes of PO4, peaks at 380-450 cm-1and 950-1100 cm-1were credited to the v1symmetric and v3antisymmetric stretching modes of the PO4respectively as presented in Fig.3b[40].Raman spectrum of BiOCl/BiPO4shows the characteristics of both catalyst BiOCl and BiPO4(Fig.3c)while the Raman spectra of TiO2particles presents a set of peaks at 138.4, 392.53, 510.83 and 635.92 cm-1were due to the major anatase phase along with the weak peak of minor rutile phase at 446 cm-1as illustrated in Fig.3d [41].

    The optical properties of photocatalysts were examined by UVvis DRS (Fig.4a).The absorption band of BiOCl appears at about 361 nm[42],and BiPO4could only respond to the deep UV region at about 277 nm [43].The heterojunction of BiPO4/ BiOCl shows the edge band of both photocatalysts at 361 and 277 nm.TiO2shows absorption band at 400 nm representing the effective absorption to near visible light to UV range and bandgap was calculated by the Tauc plot (Fig.4b).Further, the band edge potential of catalysts(Fig.4c),was assessed by using the bandgap and geometric mean of constituent elements electronegativity inconsistency with the literature [44].

    Fig.4.(a) UV-vis absorption spectrum, (b) the Tauc plot, (c) band gap energies and band edge potentials of photocatalysts.

    Fig.5.(a) PFOA degradation with bismuth-based catalysts and reference TiO2 (P25) photocatalyst under 254 nm UV light, (b) PFOA degradation efficiency, (c) apparent reaction rate constants for PFOA degradation,(d) removal ratio of fluoride(F-)and formic acid concentration during PFOA degradation after 60 min.Reaction conditions:[PFOA]= 20 ppm, [catalyst]= 0.05 g of each.All experiments were repeated three times at the natural pH of PFOA solution and the average data is presented here.

    The photocatalytic performance of the prepared catalysts was evaluated by the degradation and defluorination ratio of PFOA under 254 nm UV light as shown in Fig.5.BiOCl exhibited the highest photocatalytic performance as compared to BiPO4/BiOCl,BiPO4,and TiO2(P25), while the direct photolysis (without photocatalyst) of PFOA was negligible after the first 15 min as observed in Fig.5a.It has been reported in the literature that direct photolysis of PFOA is highly dependent on reaction intermediates[45,46].The concentration of intermediates (carboxylic acids)increase with time which effects on degradation, implying that PFOA undergoes a chain reaction for the removal of CF2unit.Therefore, this could be the reason for the slow photolytic degradation of PFOA after the first 15 min.The degradation efficiency of PFOA was about 99.99%, 66.05% and 55.29% for bismuth-based photocatalysts, TiO2,and control experiment after 45 min, respectively (Fig.5b).Notably, the time for complete degradation of PFOA over the BiOCl was only about 30 min,which was much shorter than the corresponding bismuth-based catalysts.Photocatalytic activity of the reference catalyst TiO2(P25)was less as compared to bismuth-based catalysts under the same reaction condition.The photocatalysts activity order for PFOA degradation was without photocatalysts <TiO2(P25) <BiPO4<BiPO4/BiOCl <BiOCl ( Figs.5a and b).The PFOA degradation rate constant was calculated by first decay model order(-ln(C/C0)=kt),where C0is the initial concentration of PFOA, C is the final PFOA concentration after the reaction, “t” and “k” is the rate constant.Fig.5c demonstrates the degradation rate constant of PFOA by BiOCl,BiPO4,and BiPO4/BiOCl catalysts were 0.09297,0.06384 and 0.05282 min-1,which was almost 6,4 and 3 times higher than TiO2(P25) while 9, 6 and 5 times higher than without the catalyst respectively.In addition, the intermediates formation and mineralization process during PFOA degradation reaction were monitored through IC.Fig.5d shows the generation of inorganic fluoride (F-) and formate ions concentration during the degradation reaction, proved the efficient photocatalytic degradation of PFOA.The F-ion concentration in BiOCl, BiPO4,and BiPO4/BiOCl reaction system was more significant as compared to TiO2(P25)and without photocatalyst.The main intermediates in PFOA degradation were formate and F-ions which rapidly reached their maximum concentration after 60 min of photodegradation reaction,indicating the direct C--F bond cleavage in PFOA[16].On the basis of all above-mentioned results, PFOA could be effectively degraded by bismuth-based photocatalysts under UV light irradiation.

    The probable explanation for the higher photocatalytic performance of bismuth-based catalysts is mainly attributed to their wide band gap.Bismuth-based catalysts have more positive valence band potential as compare to TiO2(P25) [47].The photogenerated holes of bismuth-based catalysts exhibit stronger oxidation ability,resulting in higher activity for PFOA degradation.Bismuth-based catalysts also possess a high adsorption capacity for pollutants.It can be seen that (Fig.5a), the amount of PFOA adsorbed by bismuth-based catalysts was higher than TiO2(P25)due to the presence of specific binding sites and oxygen vacancies which tightly bound the PFOA on bismuth-based catalysts.The higher adsorption capacity of PFOA on bismuth-based catalyst could be one reason for the more efficient PFOA photocatalytic degradation.

    Fig.6.The reusability and stability test of bismuth-based catalysts for PFOA removal after 60 min.Error bars presents the standard deviation of three times repeated experiments and after each cycle,the catalysts were filtered,washed with deionized water and dried.

    However, BiOCl exhibited the highest photoactivity among other bismuth-based catalysts,primarily due to its unique intrinsic layered structure which provides a driving force for promoting the charge separation.The more positive valence band potential,PFOA adsorption and unique morphology of bismuth-based catalysts could benefit the adsorption of pollutant (PFOA) and subsequent reactions that can promote the degradation rate in the bismuthbased photocatalytic system.Moreover, the reusability test was conducted to check the stability of bismuth-based catalysts(Fig.6).After four times of consecutive cycles,the bismuth-based catalysts showed exceptional performance for PFOA removal suggesting that they were very stable for real applications, especially in wastewater treatment.

    In summary, we successfully presented the photocatalytic performance of bismuth-based photocatalysts in comparison with TiO2(P25) for significant degradation of highly persistent organic acid PFOA under UV irradiation.Bismuth-based photocatalysts showed an efficient photocatalytic performance for PFOA degradation.BiOCl shows 99.99% degradation of PFOA within 30 min while the other two photocatalysts (BiPO4and BiPO4/BiOCl)degrade it within 45 min.All bismuth-based catalysts were synthesized by hydrothermal method and the catalysts structure,purity and crystallinity were analyzed by using different characterization techniques.This work provides a significant method for persistent organic pollutant removal in wastewater.

    Acknowledgments

    The authors gratefully acknowledge financial support from Ministry of Science and Technology of the People's Republic of China (Nos.2016YFE0112200 and 2016YFC0202700), National Natural Science Foundation of China(Nos.21507011,21677037 and 21607027), and Natural Science Foundation of Shanghai (Nos.19ZR1471200,17ZR1440200).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2019.07.058.

    午夜精品在线福利| 国产精品无大码| 99久久中文字幕三级久久日本| 久久6这里有精品| 啦啦啦啦在线视频资源| 国产精品99久久久久久久久| 久久久午夜欧美精品| 色哟哟·www| 99久国产av精品国产电影| 中文字幕人妻熟人妻熟丝袜美| 色综合色国产| 久久久成人免费电影| 日日摸夜夜添夜夜爱| 亚洲精品456在线播放app| 国产亚洲精品av在线| 91午夜精品亚洲一区二区三区| 天堂√8在线中文| 午夜免费激情av| 女的被弄到高潮叫床怎么办| 精品一区二区三区av网在线观看| 俄罗斯特黄特色一大片| 国产一区二区亚洲精品在线观看| 欧美激情在线99| 一级毛片我不卡| 国产成人aa在线观看| 一卡2卡三卡四卡精品乱码亚洲| 一级av片app| 99热这里只有是精品在线观看| 国产视频内射| 美女高潮的动态| 麻豆av噜噜一区二区三区| 校园春色视频在线观看| 亚洲久久久久久中文字幕| 高清毛片免费看| 99久久成人亚洲精品观看| 亚洲天堂国产精品一区在线| 国产 一区 欧美 日韩| 啦啦啦韩国在线观看视频| 亚洲在线自拍视频| 色5月婷婷丁香| 在线天堂最新版资源| 久久久久久久久大av| 亚洲精品久久国产高清桃花| 精品久久久久久久久久免费视频| 日韩一本色道免费dvd| 精品久久国产蜜桃| 国产亚洲欧美98| 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| 岛国在线免费视频观看| 一本精品99久久精品77| 麻豆久久精品国产亚洲av| 亚洲av成人av| 成人av在线播放网站| 亚洲丝袜综合中文字幕| 人人妻人人澡欧美一区二区| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 亚洲中文字幕一区二区三区有码在线看| 在线免费观看的www视频| 午夜免费激情av| 亚洲人成网站高清观看| 国产女主播在线喷水免费视频网站 | 校园人妻丝袜中文字幕| 亚洲欧美精品综合久久99| 国产成人freesex在线 | 精品久久久久久久人妻蜜臀av| 中文字幕av成人在线电影| 亚洲精品国产成人久久av| 99热全是精品| 老熟妇乱子伦视频在线观看| 五月玫瑰六月丁香| a级毛色黄片| 伦精品一区二区三区| 搡老岳熟女国产| 欧美在线一区亚洲| 精品一区二区三区av网在线观看| av天堂在线播放| 一个人免费在线观看电影| 亚洲欧美精品综合久久99| 国产精品一区二区三区四区免费观看 | 能在线免费观看的黄片| av在线亚洲专区| 美女大奶头视频| 欧美zozozo另类| 亚洲精品乱码久久久v下载方式| 变态另类成人亚洲欧美熟女| 国产黄a三级三级三级人| 狂野欧美白嫩少妇大欣赏| 欧美日本视频| 久久精品久久久久久噜噜老黄 | a级毛片a级免费在线| 午夜老司机福利剧场| 国产男人的电影天堂91| 国产黄片美女视频| 99久久久亚洲精品蜜臀av| 在线观看66精品国产| 国产成人freesex在线 | 欧美在线一区亚洲| 男人和女人高潮做爰伦理| 能在线免费观看的黄片| 高清毛片免费看| 国产精品一区二区免费欧美| 午夜日韩欧美国产| 国语自产精品视频在线第100页| 日本五十路高清| 亚洲欧美成人综合另类久久久 | 成人亚洲精品av一区二区| 小蜜桃在线观看免费完整版高清| 插逼视频在线观看| 亚洲美女黄片视频| 亚洲熟妇熟女久久| 听说在线观看完整版免费高清| 丝袜美腿在线中文| 欧美色视频一区免费| 国产精品一二三区在线看| 真实男女啪啪啪动态图| 欧美最黄视频在线播放免费| 国产午夜精品论理片| 午夜福利在线观看免费完整高清在 | 亚洲国产精品国产精品| 久久久久精品国产欧美久久久| 日韩欧美国产在线观看| 亚洲av中文字字幕乱码综合| 精品久久久久久久人妻蜜臀av| 又黄又爽又免费观看的视频| 熟女电影av网| 国产 一区精品| 国产亚洲91精品色在线| 日韩av在线大香蕉| 成人av在线播放网站| 如何舔出高潮| 联通29元200g的流量卡| 免费av不卡在线播放| 久久久午夜欧美精品| 亚洲18禁久久av| 夜夜爽天天搞| 干丝袜人妻中文字幕| 美女被艹到高潮喷水动态| 日本免费一区二区三区高清不卡| 久久久久久久久大av| 精品午夜福利在线看| 男女啪啪激烈高潮av片| 九九久久精品国产亚洲av麻豆| 国产亚洲91精品色在线| 久久久精品94久久精品| 中国国产av一级| 日韩高清综合在线| 亚洲精品456在线播放app| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区免费观看 | 亚洲欧美精品自产自拍| 国产不卡一卡二| 我要搜黄色片| 亚洲国产色片| 欧美中文日本在线观看视频| 国产欧美日韩精品一区二区| 三级男女做爰猛烈吃奶摸视频| 18禁黄网站禁片免费观看直播| 激情 狠狠 欧美| 成年av动漫网址| 不卡一级毛片| 99国产精品一区二区蜜桃av| 天堂av国产一区二区熟女人妻| 亚洲自拍偷在线| 亚洲高清免费不卡视频| 国产精品不卡视频一区二区| 国产成年人精品一区二区| 久久精品国产亚洲网站| 亚洲国产高清在线一区二区三| 国产精品爽爽va在线观看网站| 亚洲久久久久久中文字幕| 国产成人精品久久久久久| 俄罗斯特黄特色一大片| 精品久久久噜噜| 午夜影院日韩av| 日韩高清综合在线| 免费看光身美女| 亚洲av免费在线观看| 欧美色欧美亚洲另类二区| 波野结衣二区三区在线| 我要搜黄色片| 99久久精品一区二区三区| 18禁黄网站禁片免费观看直播| 最近手机中文字幕大全| 国内精品一区二区在线观看| 91久久精品国产一区二区三区| 免费黄网站久久成人精品| 免费在线观看影片大全网站| 69av精品久久久久久| 成人一区二区视频在线观看| 久久精品国产自在天天线| 好男人在线观看高清免费视频| 国产午夜精品论理片| 国产精品免费一区二区三区在线| 精品日产1卡2卡| 1000部很黄的大片| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线观看播放| 久久久久久久久久黄片| 色av中文字幕| 欧美又色又爽又黄视频| 好男人在线观看高清免费视频| 久久久久久久久久成人| 亚洲熟妇中文字幕五十中出| 色尼玛亚洲综合影院| 男人舔奶头视频| 欧美成人一区二区免费高清观看| 免费看光身美女| 免费高清视频大片| 欧美国产日韩亚洲一区| 人人妻,人人澡人人爽秒播| videossex国产| 亚洲欧美成人精品一区二区| 亚洲熟妇熟女久久| 午夜福利成人在线免费观看| 婷婷精品国产亚洲av在线| 亚洲国产精品成人综合色| 久久久久精品国产欧美久久久| 日日摸夜夜添夜夜添av毛片| 国产三级中文精品| 22中文网久久字幕| 久久这里只有精品中国| 国产精品人妻久久久影院| 美女内射精品一级片tv| 女的被弄到高潮叫床怎么办| 欧美+日韩+精品| 日本与韩国留学比较| 亚洲精品粉嫩美女一区| 国产成人影院久久av| 亚洲国产精品久久男人天堂| 久久鲁丝午夜福利片| 午夜福利在线在线| 国产亚洲91精品色在线| 美女cb高潮喷水在线观看| 日本一本二区三区精品| 你懂的网址亚洲精品在线观看 | 国产在视频线在精品| av中文乱码字幕在线| 亚洲va在线va天堂va国产| 91狼人影院| 十八禁网站免费在线| 亚洲欧美精品综合久久99| 午夜福利高清视频| 男插女下体视频免费在线播放| 久久精品国产亚洲av涩爱 | 三级毛片av免费| 在线观看免费视频日本深夜| 亚洲欧美日韩卡通动漫| 国产精品亚洲美女久久久| 国产精品一区二区三区四区久久| 精品人妻一区二区三区麻豆 | 最近2019中文字幕mv第一页| 人妻夜夜爽99麻豆av| 男女视频在线观看网站免费| 久久久久国产网址| 观看美女的网站| 国产欧美日韩精品一区二区| 国产男人的电影天堂91| 国产精品久久电影中文字幕| www日本黄色视频网| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线播放欧美日韩| 嫩草影院入口| 亚洲av五月六月丁香网| av在线播放精品| 免费av观看视频| 国产伦精品一区二区三区视频9| 99riav亚洲国产免费| 午夜福利视频1000在线观看| 狠狠狠狠99中文字幕| 午夜精品国产一区二区电影 | 久久精品国产清高在天天线| 国产精华一区二区三区| 国产成人a区在线观看| 1000部很黄的大片| 丰满人妻一区二区三区视频av| 国产精品嫩草影院av在线观看| 亚洲欧美日韩高清在线视频| 国产黄片美女视频| 精品午夜福利在线看| 国产美女午夜福利| 中国美白少妇内射xxxbb| 深夜a级毛片| 午夜福利在线观看吧| 十八禁国产超污无遮挡网站| 成人毛片a级毛片在线播放| 久久久精品94久久精品| av专区在线播放| 男女做爰动态图高潮gif福利片| 精品欧美国产一区二区三| 99在线视频只有这里精品首页| 美女cb高潮喷水在线观看| 国内精品久久久久精免费| 在线天堂最新版资源| 亚洲国产欧美人成| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲美女久久久| 精品国产三级普通话版| 亚洲五月天丁香| 午夜精品国产一区二区电影 | 卡戴珊不雅视频在线播放| 一本精品99久久精品77| 欧美一区二区精品小视频在线| 乱人视频在线观看| 蜜桃久久精品国产亚洲av| 国产亚洲精品久久久久久毛片| 亚洲内射少妇av| 干丝袜人妻中文字幕| 波多野结衣高清无吗| 99在线视频只有这里精品首页| 插逼视频在线观看| 男人的好看免费观看在线视频| 亚洲av五月六月丁香网| 天天躁日日操中文字幕| 欧美最新免费一区二区三区| 欧美成人一区二区免费高清观看| 成人亚洲欧美一区二区av| 免费人成视频x8x8入口观看| 国产白丝娇喘喷水9色精品| 搡老妇女老女人老熟妇| 亚洲最大成人中文| 丝袜美腿在线中文| 国产黄片美女视频| 午夜福利在线观看吧| 欧美不卡视频在线免费观看| 一个人观看的视频www高清免费观看| 日韩国内少妇激情av| 深爱激情五月婷婷| 国产探花极品一区二区| 成人午夜高清在线视频| 白带黄色成豆腐渣| 久久午夜福利片| 一个人看的www免费观看视频| 狠狠狠狠99中文字幕| 欧美绝顶高潮抽搐喷水| av在线播放精品| 搞女人的毛片| 欧美激情在线99| 天天一区二区日本电影三级| 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 69av精品久久久久久| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 国产精品亚洲美女久久久| 成人漫画全彩无遮挡| 人人妻人人看人人澡| 成年女人永久免费观看视频| 18+在线观看网站| 亚洲精品国产成人久久av| 亚洲av中文字字幕乱码综合| 亚洲最大成人av| 国产精品人妻久久久久久| 亚洲精品国产成人久久av| 亚洲av中文字字幕乱码综合| 嫩草影院精品99| 亚洲精华国产精华液的使用体验 | 免费在线观看成人毛片| 亚洲真实伦在线观看| 少妇人妻精品综合一区二区 | 色吧在线观看| 午夜福利在线观看吧| 国产精品亚洲美女久久久| av卡一久久| 国产在线男女| 99久久精品热视频| 99热这里只有是精品在线观看| 夜夜看夜夜爽夜夜摸| 69人妻影院| av专区在线播放| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲网站| 午夜福利在线观看免费完整高清在 | 亚洲av二区三区四区| 床上黄色一级片| 内地一区二区视频在线| 国产三级在线视频| 一本一本综合久久| 日日摸夜夜添夜夜添av毛片| 日本精品一区二区三区蜜桃| 精品久久久久久成人av| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线av高清观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产高清在线一区二区三| 欧美性猛交黑人性爽| 又爽又黄无遮挡网站| 亚洲经典国产精华液单| 最近视频中文字幕2019在线8| 尤物成人国产欧美一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲一级一片aⅴ在线观看| 女人被狂操c到高潮| 两个人的视频大全免费| 国产精品久久视频播放| 国产欧美日韩精品一区二区| 久久婷婷人人爽人人干人人爱| 干丝袜人妻中文字幕| 91午夜精品亚洲一区二区三区| 久久韩国三级中文字幕| 99久久精品一区二区三区| 国内揄拍国产精品人妻在线| 久99久视频精品免费| 看十八女毛片水多多多| 国产黄a三级三级三级人| 干丝袜人妻中文字幕| 国产精品亚洲一级av第二区| 天美传媒精品一区二区| 亚洲人成网站高清观看| 国产一区二区在线观看日韩| 中国美女看黄片| 日韩在线高清观看一区二区三区| 成人国产麻豆网| 少妇人妻精品综合一区二区 | 国产激情偷乱视频一区二区| 深夜a级毛片| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 精品乱码久久久久久99久播| 久久人人爽人人爽人人片va| 午夜福利成人在线免费观看| 亚洲激情五月婷婷啪啪| 色播亚洲综合网| 看片在线看免费视频| 国产高清激情床上av| 99在线视频只有这里精品首页| 伊人久久精品亚洲午夜| 欧美一区二区国产精品久久精品| 亚洲国产精品国产精品| 午夜福利18| 一进一出抽搐动态| 91狼人影院| 国产成人91sexporn| 99热全是精品| 搞女人的毛片| 久久久久久国产a免费观看| 精品人妻一区二区三区麻豆 | 日韩三级伦理在线观看| 成年女人毛片免费观看观看9| 亚洲高清免费不卡视频| 黄色配什么色好看| 日本一二三区视频观看| 熟女电影av网| 亚洲婷婷狠狠爱综合网| 国产在线男女| 国产毛片a区久久久久| 国产一区二区亚洲精品在线观看| 亚洲av成人精品一区久久| 久久99热这里只有精品18| 欧美3d第一页| 欧美一区二区精品小视频在线| 午夜福利视频1000在线观看| 人人妻人人澡人人爽人人夜夜 | 变态另类丝袜制服| 国产在视频线在精品| avwww免费| 人妻久久中文字幕网| 中文字幕av成人在线电影| 日韩亚洲欧美综合| 夜夜看夜夜爽夜夜摸| 一区二区三区免费毛片| 老熟妇乱子伦视频在线观看| 国产黄色小视频在线观看| 搡老熟女国产l中国老女人| 69av精品久久久久久| 亚洲国产高清在线一区二区三| 日韩 亚洲 欧美在线| 日本色播在线视频| 国产高清三级在线| av在线天堂中文字幕| h日本视频在线播放| 久久午夜亚洲精品久久| 蜜臀久久99精品久久宅男| 精品久久久久久成人av| 国产国拍精品亚洲av在线观看| 国产午夜精品论理片| 亚洲精品影视一区二区三区av| 麻豆久久精品国产亚洲av| 色视频www国产| 菩萨蛮人人尽说江南好唐韦庄 | 最近的中文字幕免费完整| 日本色播在线视频| 国产成人a区在线观看| 中文字幕熟女人妻在线| 免费av不卡在线播放| 午夜爱爱视频在线播放| 午夜影院日韩av| 最新在线观看一区二区三区| 两个人的视频大全免费| 3wmmmm亚洲av在线观看| 如何舔出高潮| 国产高清激情床上av| 别揉我奶头 嗯啊视频| 婷婷六月久久综合丁香| 国产91av在线免费观看| 美女免费视频网站| 国产视频内射| 99国产极品粉嫩在线观看| 51国产日韩欧美| 亚洲av中文av极速乱| 一进一出抽搐动态| 男女啪啪激烈高潮av片| 欧美xxxx性猛交bbbb| 男人舔奶头视频| 精品无人区乱码1区二区| 亚洲av中文av极速乱| 秋霞在线观看毛片| 亚洲真实伦在线观看| 日本黄色片子视频| 午夜影院日韩av| 久久久国产成人精品二区| 久久国产乱子免费精品| 极品教师在线视频| 一a级毛片在线观看| 成年av动漫网址| 草草在线视频免费看| 亚洲国产精品国产精品| 国产私拍福利视频在线观看| 久久久精品大字幕| 国产av不卡久久| av专区在线播放| 成人二区视频| 此物有八面人人有两片| 在线观看午夜福利视频| 亚洲丝袜综合中文字幕| 亚洲精品粉嫩美女一区| 免费一级毛片在线播放高清视频| 亚洲国产欧美人成| 成人精品一区二区免费| 舔av片在线| 日韩国内少妇激情av| 成人午夜高清在线视频| 免费无遮挡裸体视频| 97热精品久久久久久| 国产精品久久久久久久电影| 国内精品宾馆在线| 12—13女人毛片做爰片一| 一进一出抽搐动态| av在线观看视频网站免费| 又爽又黄无遮挡网站| 欧美bdsm另类| 久久精品国产亚洲av天美| 免费不卡的大黄色大毛片视频在线观看 | 亚洲激情五月婷婷啪啪| 亚洲国产精品国产精品| 成人漫画全彩无遮挡| 成人特级黄色片久久久久久久| 亚洲一区高清亚洲精品| 五月玫瑰六月丁香| 久久久久国产精品人妻aⅴ院| 国产精品一区www在线观看| 久久亚洲精品不卡| 免费av观看视频| 一本久久中文字幕| 日本色播在线视频| 亚洲丝袜综合中文字幕| 六月丁香七月| 人人妻人人澡欧美一区二区| 亚洲av成人精品一区久久| 亚洲七黄色美女视频| ponron亚洲| 亚洲第一电影网av| 免费看美女性在线毛片视频| 亚洲一区二区三区色噜噜| 亚洲av电影不卡..在线观看| 欧美性猛交黑人性爽| 欧美区成人在线视频| 成人鲁丝片一二三区免费| 免费高清视频大片| h日本视频在线播放| 国产日本99.免费观看| 国产精品,欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品成人久久小说 | 国模一区二区三区四区视频| 亚洲美女黄片视频| 免费人成在线观看视频色| 亚洲五月天丁香| 亚洲乱码一区二区免费版| 免费观看精品视频网站| 男女视频在线观看网站免费| av中文乱码字幕在线| 欧美一级a爱片免费观看看| 亚洲国产精品成人综合色| 久久久午夜欧美精品| 国产在线精品亚洲第一网站| 91在线精品国自产拍蜜月| 在线观看av片永久免费下载| 午夜久久久久精精品| 最近中文字幕高清免费大全6| 日本免费一区二区三区高清不卡| 国产在视频线在精品| 嫩草影院新地址| 日韩av不卡免费在线播放| 丝袜喷水一区| 丝袜美腿在线中文| av在线观看视频网站免费| 中文字幕久久专区| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩无卡精品| 国产伦精品一区二区三区四那| 插阴视频在线观看视频| 3wmmmm亚洲av在线观看| 欧美潮喷喷水| 一夜夜www| 国产熟女欧美一区二区| 亚洲综合色惰| 蜜桃久久精品国产亚洲av| 国产成年人精品一区二区| 波多野结衣巨乳人妻| 综合色丁香网| 国产高清不卡午夜福利| 人妻少妇偷人精品九色| av中文乱码字幕在线|