• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-assembly of L-tryptophan on Cu(111)studied by low-temperature scanning tunneling microscopy

    2020-01-14 07:55:50QingXueYjieZhngRuoningLiChoLiLiChenyngYunShiminHouYongfengWng
    Chinese Chemical Letters 2019年12期

    Qing Xue,Yjie Zhng,Ruoning Li,Cho Li,N Li,Chenyng Yun,Shimin Hou,b,*,Yongfeng Wng,c,*

    a Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China

    b Peking University Information Technology Institute (Tianjin Binhai), Tianjin 300450, China

    c Beijing Academy of Quantum Information Sciences, Beijing 100193, China

    Keywords:

    Scanning tunneling microscopy

    Tryptophan

    Self-assembly

    Surface science

    Hexamer

    ABSTRACT

    The self-assembly of L-tryptophan on Cu(111)is investigated by an ultrahigh vacuum scanning tunneling microscope (STM) at 4.4 K.When deposited onto the substrate at around 120 K with a coverage of 0.1 monolayer, molecular trimers, tetramers, hexamers, and chains coexist on Cu(111).Then almost all molecules self-assemble into chiral hexamers after being annealed at room temperature.When increasing molecular coverage to the full layer,a new type of chain is observed on the surface.Based on the high-resolution STM images at sub-molecular level,we suggest that the L-tryptophan molecules are present in neutral, zwitterionic or anionic states in these structures.

    Structures of biomolecules play important roles in functions of living organism.They are usually characterized by X-ray diffraction, nuclear magnetic resonance and cryo-transmission electron microscopy.These methods either average signals from a large number of molecules or can only characterize large biomolecules,like protein.Scanning probe microscopy is a powerful tool to investigate molecules at single-atom level and is capable to invested small biomolecules.Various amino acids such as glycine[1-4], alanine [5-7], serine [8], methionine [9-11]and lysine[12,13]have been intensively studied on surfaces [14].

    Tryptophan contains an α-amino group, an α-carboxylic acid group, and an indole functional group (-C8H6N).Therefore,tryptophan molecules can interact with each other through many types of interactions.Its crystal structure is obtained only until 2012 [15].Recently, the adsorption and self-assembly of Ltryptophan molecules on Cu(100), Cu(111), and HOPG have been investigated by scanning tunneling microscopy (STM) [16,17].In these studies, L-tryptophan molecules were evaporated on surfaces which were kept at room temperature.In this case, molecules could diffuse freely on surfaces and formed various ordered patterns.If the substrate is at lower temperature during deposition, the molecular diffusion will be reduced and new molecular structures may be formed.

    In this work, we deposit tryptophan molecules on Cu(111) at 120 K and observe three types of molecular clusters and two kinds of chains.Their structures are characterized by STM operated at 5 K with sub-molecular resolution.

    The experiments are performed in an ultra-high vacuum STM(base pressure: 5×10-9Pa) at liquid Helium temperature.The single-crystalline Cu(111)substrate is prepared by repeated Ar-ion sputtering at 500 V and annealing at 673 K.The cut Pt/Ir tips are first annealed in vacuum and then softly dipped into Cu(111).LTryptophan(Sigma Aldrich)is thermally sublimated from a homemade Ta boat onto the Cu(111) substrate.During deposition, the sample is held at 120 K.The samples are measured at 5 K and STM images are slightly smoothed using software WSxM.

    The amino acids are present in neutral,zwitterionic or anionic states on surfaces[18,19].Compared to the neutral form in the gas phase,amino acids tend to adopt zwitterionic states,with protons transferred from the carboxylic group to the amino group,in solids or in solutions [19,20].Anionic forms are obtained through the deprotonation of carboxylic groups on reactive substrates.In crystal,the L-tryptophan molecule is at the zwitterionic state with a positively charged amino group (R-NH3+) and a negatively charged carboxylate group (R-COO-).It has two types of configurations according to the previous crystallography study[15], which are displayed in Fig.1 and labeled as 1 and 2,respectively.Surface adsorption can generate additional chirality[21,22].Enantiomers δ can be obtained by flipping enantiomers λ with a 180 degree along the direction perpendicular to the substrate.Therefore, there are four types of enantiomers on Cu(111), as shown in Fig.1.Considering the three chemical forms, Ltryptophan molecules adsorb on surfaces in twelve configurations in total, which will be used to interpret the molecular selfassembled structures on Cu(111).

    Fig.1.Vertical and lateral views of two configurations of zwitterionic L-tryptophan molecules labeled as 1 and 2.When adsorbed on surface, each of them has two chiral footprints labeled as δ and λ.Color code:cyan(C),white(H),red(O),blue(N).

    After the thermal deposition of L-tryptophan and subsequent annealing at 120 K, the Cu(111) surface is covered by a series of different shaped clusters and one-dimensional (1D) dimer chains at a coverage of 0.1 ML, as shown in Fig.2a.The obvious standing waves around the self-assembled structures reveal strong scattering of the surface-state electrons from the molecules [23,24],which prohibits the aggregation of molecular clusters.The dimer chains and clusters emerged alone <1 1> orientations corresponding to 3-fold symmetry of the Cu(111) surface.

    To gain further insight, high-resolution STM images of the supramolecular L-tryptophan structures are measured.Detailed structures of a trimer and tetramer are displayed in Figs.2b and d.For molecules with configurations of 1λ and 2δ,the amino and αcarboxylic acid group groups point to vacuum and the indole group lies flat on Cu(111).These two parts should appear differently in STM images.In contrast, 2λ and 1δ tryptophan molecules would show only one pronounced feature close in images.According to these considerations,molecular models of the trimer and tetramer are presented in Figs.2c and e,where intermolecular interactions are maximized mainly through O...H...N hydrogen bonds.We suggest these molecules are at the zwitterionic state which enhances the interaction between tryptophan molecules.When arriving at the cold Cu(111) substrate, the neutral tryptophan molecules might change to the zwitterionic state.Both trimer and tetramer contain configurations 1 and 2 and orientations λ and δ.The proposed molecular models are suggested after considering all possible combinations of configurations and orientations.Besides,tryptophan dimer chains and hexamers are also observed and will be discussed below in detail.

    The high-resolution STM image of a dimer chain is amino acid molecules have been demonstrated by Yitamben et al.when Lmethionine molecules were adsorbed on Cu(111) [25].A clear difference is that one had an unambiguous bright protrusion at the molecular end.Interestingly,each dimer in the chain contains two different molecules.The configuration 1λ is consistent with the molecular STM images in the chain(Fig.3a).A stable chain can not be obtained by using only the zwitterionic chemical state for tryptophan molecules to explain the supramolecular structures.It gets stabilized when assuming that the molecule with the dotted end is at the neutral state.The models of twelve molecules are superimposed on the right part of the STM image shown in Fig.3a,which is magnified in Fig.3b to get a clear picture about intermolecular interaction.Two chains are connected through O...H...O hydrogen bonds between carboxyl and carboxylate groups (Fig.3c).Along the chain direction, tryptophan molecules interact with each other through O...H...N hydrogen bonds(Fig.3d).

    Fig.2.Self-assembly for 0.1 ML coverage of the amino acid L-tryptophan on Cu(111)surface at low temperature.(a)STM image(V=0.5 V,I=40 pA)of L-tryptophan on Cu(111)with the coverage of 0.1 ML after being annealed at 120 K.(b,c) High-resolution STM image of a trimer (3×3 nm2, V=1 V, I=20 pA) and its molecular model.(d,e) Highresolution STM image of a tetramer(3.6×3.6 nm2,V=0.1 V,I=20 pA)and its molecular model.The three white arrows at the right-down corner in(a)indicate the substrate<1 1 0>direction.

    Fig.3.(a) Close-up STM image (14.3×3.6 nm2, V = 50 mV, I=20 pA) of a double chain with twelve molecular models superimposed on the image.We label the zwitterionic state as Z and the anionic state as N.(b) Detailed molecular models shown in(a).(c)A molecular dimer containing two molecules from different chains where the main interaction is O...H...O hydrogen bond.(d) A molecular dimer containing two molecules from a same chain where the main interaction is O...H...N hydrogen bond.In molecular models,hydrogen bonds are indicated by dashed lines.

    When annealing at room temperature, tryptophan hexamers dominate the surface (Fig.4a).The hexamers adsorb along the <1 1> orientations (Fig.4b), same as the dimer chains, which indicates a strong interaction between tryptophan and Cu(111).All hexamers have the same molecular arrangement, reflecting unneglected intermolecular interactions in hexamers.Additional chirality can be generated through surface adsorption of tryptophan molecules.Because of the certain interaction between the chiral tryptophan and Cu(111), all hexamers are in the same chirality.A high-resolution STM image of a hexamer and its molecular models are displayed in Figs.4c and d, respectively.As shown in the model, O...H...N hydrogen bonds between tryptophan molecules are the main driving force for the formation of hexamers.The detailed statistical diagram of various tryptophan supramolecular structures is shown in Fig.4e.It indicates that 88.4% of molecules form hexamers.The structural evolution of tryptophan from double chains to hexamers originates from a subtle balance of molecule-substrate and intermolecular interactions.We suggest that all molecules in hexamers are at the anionic state for the following two reasons.On the one hand,other similar amino acids such as glycine[1-3],alanine[5,6]and serine[8]are all proved to be the anionic form when adsorbed on Cu surfaces at room temperature.On the other hand, tryptophan molecules can diffuse freely to some extent on Cu(111) at low coverages at room temperature to reach the energetically stable anionic state via deprotonation.It should be noted that the hexamer is surrounded by positively charged hydrogen atoms,which prohibits the aggregation of hexamers.In addition,the longrange intermolecular interactions induced by the interference of surface state electrons further stabilize the dispersed hexamers.

    Fig.4.(a,b) Large-scale (180×180 nm2, V=1 V, I=20 pA) and high-resolution(14.4×14.4 nm2, V = 5 mV, I=200 pA) STM images of homochiral L-tryptophan hexamers on Cu(111) at low coverage (~0.2 ML) after being annealed at room temperature.The three white arrows in the down-right corners of STM images(a,b)indicate the substrate <1 1 0>direction.(c,d)Magnified STM image(3.1×2.9 nm2,V=1 V, I=20 pA) and its molecular model.(e) Statistical diagram of various Ltryptophan supramolecular structures on Cu(111) at low coverage after being annealed at room temperature.

    Fig.5.(a)STM image(14.4×14.4 nm2,V=1 V,I=20 pA)of L-tryptophan on Cu(111)with the coverage of 1 ML after being annealed at room temperature.Three black arrows indicate the substrate <1 1 0>direction.(b) High-resolution STM image measured at constant-height mode (3.6×3.6 nm2, V = 5 mV, I=60 pA) revealing two species of L-tryptophan.The blue and yellow calabash-shape curves mark the neutral (labeled as N) and anionic (labeled as A) molecules, respectively.(c)Molecular model for four dimers shown in the previous STM image (b).

    Interestingly, a second type of dimer chain (Fig.5a) is experimentally observed when the coverage is increased to 1 ML and the sample is annealed at room temperature.The highresolution STM image measured at constant-height mode(Fig.5b)reveals that the dimer chain is also composed of two species of molecules, which are marked by blue and yellow calabash-shape curves.According to their appearance in STM images, we suggest all molecules in the chains adopt the 1λ configuration.One kind of species should be at the anionic state rather than zwitterionic form because of the relatively high annealing temperature.To maximize intermolecular interactions, another kind of species should be at the neutral state.After comparing molecular heights in STM images, the bright and dark tryptophan molecules are at the anionic and neutral states, respectively.The molecular model of four dimers in the chain is shown in Fig.5c.The existence of neutral molecules at room temperature might be caused by the competition between intermolecular interaction and molecule-substrate interaction.The stronger molecular interaction reduces the impact of the substrate and makes some molecules in the neutral form.In addition, tryptophan molecules can not diffuse freely at this high coverage, which decreases the possibility of the dehydrogenation process.

    In summary, we investigate the self-assembly of L-tryptophan molecules on the Cu(111) surface by an ultrahigh vacuum lowtemperature scanning tunneling microscope.At low coverages,tryptophan molecules form trimers, tetramers, hexamers, and chains after annealing the sample at around 120 K.Further increasing the annealing temperature to 300 K leads to a clear supramolecular structure conversion to hexamers.They are dispersed on the substrate because of the repulsion from molecular peripheral hydrogen atoms and the long-range intermolecular interactions induced by the interference of surface state electrons.At high coverages, a different type of chain is observed when the sample is annealed at room temperature because of a subtle balance between intermolecular and molecule-substrate interactions.According to high-resolution STM images with the resolution of sub-molecular level,we suggest that the L-tryptophan molecules are present in neutral, zwitterionic or anionic states in these structures.

    Acknowledgments

    This work is supported by the Ministry of Science and Technology( Nos.2018YFA0306003, 2017YFA0205003) and National Natural Science Foundation of China ( No.21972002).DFT calculations are carried out on TianHe-1A at National Supercomputer Center in Tianjin and supported by High-performance Computing Platform of Peking University.

    欧美性猛交╳xxx乱大交人| 亚洲三级黄色毛片| 亚洲欧美日韩高清在线视频| 天堂av国产一区二区熟女人妻| 中文资源天堂在线| 欧美日本亚洲视频在线播放| 亚洲一级一片aⅴ在线观看| 日日摸夜夜添夜夜爱| 亚洲一区高清亚洲精品| 欧美绝顶高潮抽搐喷水| 少妇人妻一区二区三区视频| 久久99热这里只有精品18| 免费观看人在逋| 亚洲va在线va天堂va国产| 国产成人a∨麻豆精品| 久久精品国产亚洲网站| 亚洲国产日韩欧美精品在线观看| 国产av在哪里看| 欧美一区二区国产精品久久精品| 秋霞在线观看毛片| 日韩成人伦理影院| 深夜a级毛片| 国产精品爽爽va在线观看网站| 狠狠狠狠99中文字幕| 夜夜夜夜夜久久久久| 看黄色毛片网站| 一区二区三区高清视频在线| 一级毛片电影观看 | 国产精品电影一区二区三区| 老熟妇仑乱视频hdxx| 亚洲精品色激情综合| 在线观看午夜福利视频| 亚洲天堂国产精品一区在线| 寂寞人妻少妇视频99o| av免费在线看不卡| 国产精品嫩草影院av在线观看| 乱码一卡2卡4卡精品| 国产精品1区2区在线观看.| 欧美日韩精品成人综合77777| 免费观看人在逋| 欧美3d第一页| 网址你懂的国产日韩在线| 最新中文字幕久久久久| 最后的刺客免费高清国语| 亚洲国产精品国产精品| 国产黄片美女视频| 丰满人妻一区二区三区视频av| 一边摸一边抽搐一进一小说| 日韩大尺度精品在线看网址| 男人舔奶头视频| 成人特级av手机在线观看| 国产伦一二天堂av在线观看| eeuss影院久久| 日本a在线网址| 一级av片app| 亚洲无线观看免费| 亚洲自拍偷在线| 成人漫画全彩无遮挡| 99热全是精品| 久久亚洲国产成人精品v| 国产av在哪里看| 欧美一区二区亚洲| 亚洲av电影不卡..在线观看| 人妻制服诱惑在线中文字幕| 嫩草影视91久久| 丰满乱子伦码专区| 一进一出抽搐动态| 少妇的逼水好多| 大型黄色视频在线免费观看| 九九热线精品视视频播放| 欧美xxxx性猛交bbbb| 精品久久久久久久人妻蜜臀av| 22中文网久久字幕| 黄色视频,在线免费观看| 在线看三级毛片| 国产亚洲精品av在线| av在线观看视频网站免费| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| 成人永久免费在线观看视频| 国产伦精品一区二区三区视频9| 91在线精品国自产拍蜜月| 亚洲av电影不卡..在线观看| 日本-黄色视频高清免费观看| 高清日韩中文字幕在线| 国产黄色视频一区二区在线观看 | 日本在线视频免费播放| 在线a可以看的网站| 一进一出好大好爽视频| 亚洲欧美日韩高清专用| 成人综合一区亚洲| 自拍偷自拍亚洲精品老妇| 免费观看人在逋| 亚洲av不卡在线观看| 黄色配什么色好看| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 免费av观看视频| 亚洲美女黄片视频| 六月丁香七月| 欧美潮喷喷水| eeuss影院久久| 亚洲五月天丁香| 又爽又黄a免费视频| 在线天堂最新版资源| 国产一区亚洲一区在线观看| 麻豆乱淫一区二区| 人人妻人人澡人人爽人人夜夜 | 欧美成人精品欧美一级黄| 亚洲国产精品合色在线| 国产精品国产三级国产av玫瑰| 久久久色成人| 国产亚洲精品av在线| 久久国产乱子免费精品| 日本欧美国产在线视频| 亚洲性久久影院| 一a级毛片在线观看| 综合色av麻豆| 此物有八面人人有两片| 人妻制服诱惑在线中文字幕| 1000部很黄的大片| 国产精品人妻久久久影院| 午夜老司机福利剧场| 国产av一区在线观看免费| .国产精品久久| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品乱码久久久v下载方式| 成人精品一区二区免费| 成年女人看的毛片在线观看| 亚洲精品色激情综合| 亚洲最大成人手机在线| 亚洲人成网站高清观看| 变态另类成人亚洲欧美熟女| 无遮挡黄片免费观看| 亚洲一级一片aⅴ在线观看| 色播亚洲综合网| 午夜精品在线福利| 亚洲第一电影网av| 中文资源天堂在线| 日韩人妻高清精品专区| 久久久久久伊人网av| 精品久久国产蜜桃| 欧美在线一区亚洲| 桃色一区二区三区在线观看| 亚洲中文日韩欧美视频| 亚洲av五月六月丁香网| 神马国产精品三级电影在线观看| 亚洲成人中文字幕在线播放| 国产高清视频在线观看网站| 69av精品久久久久久| 久久久色成人| 欧美3d第一页| 亚洲中文日韩欧美视频| 亚洲成人av在线免费| 午夜福利高清视频| 欧美bdsm另类| 床上黄色一级片| 欧美性感艳星| 欧美性感艳星| 好男人在线观看高清免费视频| 色视频www国产| 成人美女网站在线观看视频| 日日摸夜夜添夜夜添小说| 国产探花极品一区二区| 日本免费一区二区三区高清不卡| 日韩中字成人| 99九九线精品视频在线观看视频| 国产亚洲精品久久久com| 欧美高清性xxxxhd video| 亚洲av五月六月丁香网| 日韩精品有码人妻一区| 成人无遮挡网站| 午夜精品国产一区二区电影 | 国产精品一及| 久久久精品欧美日韩精品| 欧美zozozo另类| 久久久久性生活片| 国产精品一区二区免费欧美| 国产精品乱码一区二三区的特点| 国产乱人视频| 麻豆国产97在线/欧美| 日韩亚洲欧美综合| 国产又黄又爽又无遮挡在线| 成人高潮视频无遮挡免费网站| 12—13女人毛片做爰片一| www.色视频.com| 99国产精品一区二区蜜桃av| 美女高潮的动态| 在线播放无遮挡| 日韩人妻高清精品专区| 精品乱码久久久久久99久播| 18禁在线无遮挡免费观看视频 | 日产精品乱码卡一卡2卡三| 国国产精品蜜臀av免费| 好男人在线观看高清免费视频| 一本精品99久久精品77| 白带黄色成豆腐渣| 男人舔女人下体高潮全视频| 搡老妇女老女人老熟妇| 久久精品国产亚洲网站| 国产激情偷乱视频一区二区| avwww免费| 成人性生交大片免费视频hd| 国产老妇女一区| 久久久久久大精品| 又黄又爽又刺激的免费视频.| 日日啪夜夜撸| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 色综合站精品国产| 国产 一区 欧美 日韩| 亚洲av中文av极速乱| 久久午夜福利片| 在线国产一区二区在线| 99久久中文字幕三级久久日本| 秋霞在线观看毛片| 我的老师免费观看完整版| 男女之事视频高清在线观看| 国产精品电影一区二区三区| 日韩制服骚丝袜av| 夜夜夜夜夜久久久久| 你懂的网址亚洲精品在线观看 | 我的女老师完整版在线观看| 欧美成人免费av一区二区三区| 12—13女人毛片做爰片一| 欧美在线一区亚洲| 免费av观看视频| 国产精品免费一区二区三区在线| 免费黄网站久久成人精品| 精品人妻偷拍中文字幕| 嫩草影院入口| 亚洲国产日韩欧美精品在线观看| 国产精品人妻久久久影院| 如何舔出高潮| 免费看a级黄色片| 国产精华一区二区三区| 少妇高潮的动态图| or卡值多少钱| 一级毛片aaaaaa免费看小| 最新中文字幕久久久久| 免费看日本二区| 国产高清视频在线播放一区| 美女内射精品一级片tv| 精品少妇黑人巨大在线播放 | 少妇丰满av| 欧美xxxx性猛交bbbb| 精品不卡国产一区二区三区| 综合色丁香网| 日韩在线高清观看一区二区三区| 麻豆国产97在线/欧美| 亚洲图色成人| 精华霜和精华液先用哪个| 在线免费十八禁| 人人妻人人澡人人爽人人夜夜 | 国产精品电影一区二区三区| 99热网站在线观看| 蜜桃亚洲精品一区二区三区| av天堂在线播放| 美女cb高潮喷水在线观看| 免费看光身美女| 九色成人免费人妻av| 九九爱精品视频在线观看| 99国产极品粉嫩在线观看| 亚洲av免费高清在线观看| 看免费成人av毛片| 男女之事视频高清在线观看| 亚洲无线观看免费| 噜噜噜噜噜久久久久久91| 国产高清三级在线| 久久这里只有精品中国| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看| 岛国在线免费视频观看| 欧美+日韩+精品| 久久久久久国产a免费观看| 午夜久久久久精精品| 久久国产乱子免费精品| 欧美丝袜亚洲另类| 国内精品美女久久久久久| 丝袜美腿在线中文| 亚洲欧美成人精品一区二区| 亚洲精品粉嫩美女一区| 老师上课跳d突然被开到最大视频| 深夜a级毛片| 欧美xxxx性猛交bbbb| 国产午夜福利久久久久久| 久久韩国三级中文字幕| 大香蕉久久网| 两个人视频免费观看高清| 国产亚洲精品综合一区在线观看| 国产精品日韩av在线免费观看| 日韩欧美国产在线观看| 搡女人真爽免费视频火全软件 | 久久久久久九九精品二区国产| 99riav亚洲国产免费| 亚洲国产精品合色在线| 狠狠狠狠99中文字幕| 亚洲欧美成人精品一区二区| 亚洲最大成人av| 人妻丰满熟妇av一区二区三区| 日韩欧美一区二区三区在线观看| 欧美成人免费av一区二区三区| av在线观看视频网站免费| 国产人妻一区二区三区在| 你懂的网址亚洲精品在线观看 | 国产精品女同一区二区软件| 国产亚洲精品av在线| 色哟哟·www| 99热这里只有是精品50| av免费在线看不卡| 老女人水多毛片| 草草在线视频免费看| 免费看av在线观看网站| 久久人人精品亚洲av| 午夜激情欧美在线| 悠悠久久av| 国产精华一区二区三区| 国产老妇女一区| 色播亚洲综合网| 不卡视频在线观看欧美| 日韩欧美免费精品| 亚洲无线观看免费| 国产精品爽爽va在线观看网站| 国产精品电影一区二区三区| 亚洲精品粉嫩美女一区| av专区在线播放| 亚洲av成人av| 淫妇啪啪啪对白视频| 精品一区二区免费观看| 国产91av在线免费观看| 看非洲黑人一级黄片| 色视频www国产| 日日啪夜夜撸| 桃色一区二区三区在线观看| 99国产极品粉嫩在线观看| 国产成人aa在线观看| 日本黄大片高清| 欧美成人一区二区免费高清观看| 在线观看66精品国产| 国产成人a∨麻豆精品| 欧美激情久久久久久爽电影| 超碰av人人做人人爽久久| 真人做人爱边吃奶动态| 国产成人福利小说| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 国产色婷婷99| 床上黄色一级片| 中文字幕久久专区| 女生性感内裤真人,穿戴方法视频| 丝袜喷水一区| 99国产极品粉嫩在线观看| 一级毛片我不卡| 国产精品不卡视频一区二区| 久久这里只有精品中国| 亚洲成a人片在线一区二区| 亚洲av中文av极速乱| 国产片特级美女逼逼视频| 伊人久久精品亚洲午夜| 久久人人爽人人爽人人片va| 日韩大尺度精品在线看网址| 少妇的逼好多水| 黄色欧美视频在线观看| 波多野结衣高清作品| 日本一本二区三区精品| АⅤ资源中文在线天堂| 赤兔流量卡办理| 亚洲无线在线观看| 搡老熟女国产l中国老女人| 成人漫画全彩无遮挡| 欧美日本视频| 综合色丁香网| 国产精品一区二区三区四区免费观看 | 晚上一个人看的免费电影| 日本色播在线视频| 午夜精品国产一区二区电影 | 波多野结衣高清作品| 国产成人a区在线观看| 国产精品免费一区二区三区在线| 人妻丰满熟妇av一区二区三区| 国产亚洲91精品色在线| 成人精品一区二区免费| 久久综合国产亚洲精品| 免费看光身美女| 亚洲欧美日韩卡通动漫| 亚洲专区国产一区二区| 午夜福利视频1000在线观看| 成人av一区二区三区在线看| 一级黄片播放器| 人人妻人人澡欧美一区二区| 国产精品伦人一区二区| 日韩精品有码人妻一区| 国产 一区 欧美 日韩| 亚洲av免费在线观看| 国内精品久久久久精免费| 久久精品影院6| 国产av麻豆久久久久久久| 日日撸夜夜添| 蜜桃亚洲精品一区二区三区| 精品人妻偷拍中文字幕| 97超级碰碰碰精品色视频在线观看| 2021天堂中文幕一二区在线观| 成年免费大片在线观看| 3wmmmm亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频| 一级毛片aaaaaa免费看小| 亚洲无线在线观看| 不卡视频在线观看欧美| 一区二区三区免费毛片| 亚洲一区二区三区色噜噜| 成人av在线播放网站| 国产三级中文精品| 老司机午夜福利在线观看视频| 最新中文字幕久久久久| 真实男女啪啪啪动态图| 久久人人爽人人爽人人片va| 日韩在线高清观看一区二区三区| 亚洲七黄色美女视频| 精品福利观看| 男人和女人高潮做爰伦理| 两个人的视频大全免费| 免费在线观看成人毛片| 成人三级黄色视频| 久久久久精品国产欧美久久久| 国产精品国产三级国产av玫瑰| 啦啦啦观看免费观看视频高清| 色综合站精品国产| 国产成人freesex在线 | 欧美+亚洲+日韩+国产| 99热这里只有是精品在线观看| 一级a爱片免费观看的视频| 51国产日韩欧美| 亚洲一区二区三区色噜噜| 午夜免费激情av| 亚洲第一区二区三区不卡| 日本a在线网址| 亚洲精品一卡2卡三卡4卡5卡| 免费观看的影片在线观看| 国产免费一级a男人的天堂| 国产黄色视频一区二区在线观看 | av天堂中文字幕网| 99在线视频只有这里精品首页| 亚洲激情五月婷婷啪啪| 女的被弄到高潮叫床怎么办| 国产蜜桃级精品一区二区三区| 亚洲在线自拍视频| 欧美性猛交黑人性爽| 国产免费男女视频| 嫩草影院入口| 91久久精品电影网| 国产单亲对白刺激| 久久久久久久久大av| 国产探花在线观看一区二区| 一级毛片久久久久久久久女| 亚洲精品一卡2卡三卡4卡5卡| 99久国产av精品国产电影| 男女啪啪激烈高潮av片| 特大巨黑吊av在线直播| 久久久久久久久大av| 免费人成在线观看视频色| 我要看日韩黄色一级片| 日韩精品中文字幕看吧| 69人妻影院| 伊人久久精品亚洲午夜| 最后的刺客免费高清国语| 成人毛片a级毛片在线播放| 亚洲最大成人中文| 天天躁日日操中文字幕| 亚洲中文字幕一区二区三区有码在线看| 国产精品美女特级片免费视频播放器| 欧美日韩在线观看h| 国产精品永久免费网站| 色哟哟·www| 国产精品99久久久久久久久| 一区二区三区免费毛片| 天天躁夜夜躁狠狠久久av| 一级av片app| 国产精品久久久久久精品电影| 欧美一级a爱片免费观看看| 噜噜噜噜噜久久久久久91| 婷婷亚洲欧美| 久久久国产成人免费| 国产男靠女视频免费网站| 精品久久久久久成人av| 国产国拍精品亚洲av在线观看| 免费av观看视频| 少妇猛男粗大的猛烈进出视频 | 亚洲av成人av| 欧美人与善性xxx| 精品久久久久久久末码| 男女啪啪激烈高潮av片| 亚洲久久久久久中文字幕| 亚洲精品色激情综合| 在线播放无遮挡| 国产三级中文精品| 午夜福利成人在线免费观看| 国产男人的电影天堂91| 欧美日韩国产亚洲二区| 午夜老司机福利剧场| 又粗又爽又猛毛片免费看| 成人亚洲精品av一区二区| 在线免费观看的www视频| 人人妻人人看人人澡| 狠狠狠狠99中文字幕| 日本-黄色视频高清免费观看| 国产日本99.免费观看| 99久久精品热视频| 亚洲中文日韩欧美视频| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 嫩草影院新地址| 老熟妇乱子伦视频在线观看| 禁无遮挡网站| 国产三级在线视频| 国产 一区 欧美 日韩| 亚洲av.av天堂| 国产高清三级在线| 有码 亚洲区| 国内精品一区二区在线观看| 好男人在线观看高清免费视频| 深夜a级毛片| 国产精品一区二区免费欧美| 综合色丁香网| 永久网站在线| 亚洲精品456在线播放app| 亚州av有码| 国产成人一区二区在线| 国产精品久久久久久av不卡| 国产乱人视频| 直男gayav资源| 91久久精品国产一区二区三区| 网址你懂的国产日韩在线| 国产美女午夜福利| 久久婷婷人人爽人人干人人爱| 啦啦啦韩国在线观看视频| 嫩草影院新地址| 三级国产精品欧美在线观看| 精品午夜福利视频在线观看一区| 国产国拍精品亚洲av在线观看| 看免费成人av毛片| 成人性生交大片免费视频hd| 日本 av在线| 亚洲中文日韩欧美视频| 在线观看午夜福利视频| 人人妻人人澡欧美一区二区| 十八禁国产超污无遮挡网站| 18禁在线播放成人免费| 国产极品精品免费视频能看的| 少妇人妻精品综合一区二区 | h日本视频在线播放| 偷拍熟女少妇极品色| 国产午夜精品论理片| 日韩成人av中文字幕在线观看 | 日韩强制内射视频| 亚洲精华国产精华液的使用体验 | 日本a在线网址| 婷婷亚洲欧美| 欧美成人一区二区免费高清观看| 国产精品久久久久久久电影| 老司机影院成人| 日韩一本色道免费dvd| 国产亚洲欧美98| 久久精品国产自在天天线| 高清毛片免费看| 亚洲一级一片aⅴ在线观看| 欧美最黄视频在线播放免费| or卡值多少钱| 日韩,欧美,国产一区二区三区 | 在线观看av片永久免费下载| 亚洲成a人片在线一区二区| 97人妻精品一区二区三区麻豆| 国产成人a区在线观看| 69人妻影院| 久久久久久九九精品二区国产| 日本三级黄在线观看| 亚洲性夜色夜夜综合| 国产午夜福利久久久久久| 99久国产av精品| 国产黄a三级三级三级人| 黄色日韩在线| 麻豆精品久久久久久蜜桃| 亚洲自偷自拍三级| 伦理电影大哥的女人| 中文字幕精品亚洲无线码一区| 色吧在线观看| 日韩,欧美,国产一区二区三区 | 美女cb高潮喷水在线观看| 搡老岳熟女国产| av专区在线播放| 中国美女看黄片| 深夜a级毛片| 国产精品野战在线观看| 日韩欧美精品免费久久| 亚洲精品日韩av片在线观看| 看片在线看免费视频| 俺也久久电影网| 97人妻精品一区二区三区麻豆| 国产伦精品一区二区三区四那| 久久久久国内视频| 18禁黄网站禁片免费观看直播| 99久久精品一区二区三区| 97热精品久久久久久| 成人三级黄色视频| 国产在线男女| 国产亚洲av嫩草精品影院| 最新中文字幕久久久久| 久久亚洲国产成人精品v| 欧美色视频一区免费| 国产蜜桃级精品一区二区三区| 成人永久免费在线观看视频| 国产人妻一区二区三区在| 国产私拍福利视频在线观看| 看免费成人av毛片| 99热全是精品|