• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CdS nanocrystallites sensitized ZnO nanorods with plasmon enhanced photoelectrochemical performance

    2020-01-14 07:55:52LiCaiYuanchangDuXiangjiuGuanShaohuaShen
    Chinese Chemical Letters 2019年12期

    Li Cai,Yuanchang Du,Xiangjiu Guan,Shaohua Shen

    International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU),Xi'an 710049, China

    Keywords:

    ZnO nanorods

    Plasmonic Ag nanoparticles

    CdS nanocrystallites

    Photoelectrochemical water splitting

    Synergistic effect

    ABSTRACT

    A novel architecture of CdS/ZnO nanorods with plasmonic silver (Ag) nanoparticles deposited at the interface of ZnO nanorods and CdS nanocrystallites, was designed as a photoanode for solar hydrogen generation,with photocurrent density achieving 4.7 mA/cm2 at 1.6 V(vs.RHE),which is 8 and 1.7 times as high as those of pure ZnO and CdS/ZnO nanorod films,respectively.Additionally,with optical absorption onset extended to~660 nm,CdS/Ag/ZnO nanorod film exhibits significantly increased incident photo-tocurrent efficiency(IPCE)in the whole optical absorption region,reaching 23.1%and 9.8%at 400 nm and 500 nm, respectively.The PEC enhancement can be attributed to the one-dimensional ZnO nanorod structure maintained for superior charge transfer, and the extended visible-light absorption of CdS nanocrystallites.Moreover, the incorporated plasmonic Ag nanoparticles could further promote the interfacial charge carrier transfer process and enhance the optical absorption ability,due to its excellent plasmon resonance effect.

    Photoelectrochemical (PEC) water splitting has now become a promising technique to convert solar energy into hydrogen energy[1,2], since Fujishima and Honda first reported the solar water splitting by a titanium dioxide(TiO2)electrode[3].During the past several decades,semiconductor-based oxide materials have played an important role in solar energy conversion for water decontamination and water splitting reactions [4-6].Among the developed semiconductor materials,zinc oxide(ZnO)has been brought to the forefront for its high electronic conductivity,nontoxicity,and low cost for production purposes [7-9].Especially, one-dimensional ZnO nanostructures, such as nanowires, nanorods and nanotubes[10-13], have been designed in order to boost the PEC efficiency,for the one-dimensional structures induced superior charge transfer ability.However, the optical absorption only in the ultraviolent light region caused by its wide band gap (~3.2 eV)limits the PEC efficiency of ZnO.To tackle this drawback, large amounts of attempts have been taken to activate optical absorption of ZnO in visible light region,such as noble metal deposition[14],ion doping [15,16], and semiconductor coupling [17], etc.

    Thereinto,coupling ZnO with a narrow band gap semiconductor has attracted increasing attentions.For example,CdS has been well demonstrated in the literatures to efficiently photosensitize ZnO to extend the absorption edge into visible light region[18-20].For the suitable band gap (2.4 eV) of CdS, the obtained CdS/ZnO heterostructures could significantly extend the photo-response range to visible light region.Meanwhile, their well-matched energy band structures could promote the separation of photogenerated electron-hole pairs, which results in significant PEC enhancement, especially in the visible light region.

    An alternative strategy that has been successfully employed to improve the PEC performance is to use the noble metals, such as silver (Ag) and gold (Au) to decorate semiconductor photoelectrodes[21,22].Due to the excellent localized surface plasmonic resonance(LSPR)effect of these noble metals,which is a coherent oscillation of the surface electrons excited by electromagnetic radiation [23], plasmon enhanced PEC activity was explained by direct electron transfer (DET) and plasmon resonant energy transfer (PRET) [24,25].When the plasmonic metal is excited by the incident photons with plasmonic oscillation matched frequency, the DET process could occur with hot electrons transferring from the plasmonic metal to the semiconductor, while the PRET process could excite electron-hole pairs on the surface of semiconductor and promote the charge carrier separation in the semiconductor by transferring energy from plasmonic metal to semiconductor through the local electromagnetic field [26].For example, Zhang et al.[27]reported that Au nanoparticles (NPs)decorated ZnO nanorod arrays showed enhanced visible light ability through LSPR, and the PEC activity under visible light illumination was improved due to the DET process.Chen et al.[28]demonstrated that Au@SiO2core/shell NPs decorated TiO2nanorod arrays showed remarkable enhancement in PEC water splitting which can be related to the PRET process promoting charge carrier separation through the local electromagnetic field.

    Herein, we designed a novel sandwiched photoanode architecture of visible-light-responsive CdS nanocrystallites coated on ZnO nanorods (NRs) with Ag NPs deposited at the interface of CdS and ZnO to take advantage of the preeminent charge transfer characteristics of uniform one-dimensional ZnO NRs, the remarkable visible-light absorption ability of CdS nanocrystallites, and the LSPR effect of Ag NPs for extending light absorption range and promoting the charge carrier separation in the semiconductor.In contrast to pure ZnO,CdS/Ag/ZnO film demonstrated wide optical absorption range up to~660 nm and the photocurrent density was increased up to 4.7 mA/cm2at 1.6 V vs.RHE.This sandwiched structure provides an alternative opportunity to combine the synergistic effect between plasmonic NPs and heterostructure semiconductors for efficient solar water splitting.

    The sandwiched architecture of CdS/Ag/ZnO NRs was fabricated via a three-step process of hydrothermal growth of ZnO NRs, spin-coating for Ag NPs deposition and SILAR for CdS nanocrystallites coating, as schemed in Fig.1a ( Details can be found in Experimental section in Supporting information).In the hydrothermal step, ZnO NRs in hexagonal section shape were grown uniformly on FTO substrates, as shown in Fig.1b, with diameter around 60~120 nm and length up to 3 μm.Through a simple spin-coating process, Ag NPs with approximate size of dozens of nanometers were deposited on the surface of ZnO NRs(Fig.1c).The obtained Ag/ZnO film was then coated by CdS nanocrystallites via the SILAR process.As shown in Fig.1d, CdS nanocrystallites were evenly dispersed on the surface of Ag/ZnO NRs, to form a sandwiched CdS/Ag/ZnO NR structure with rough surface.Given the almost complete coverage of the outmost CdS layer,Ag NPs could be hardly tracked in the CdS/Ag/ZnO NRs from SEM image (Fig.1d).

    To see the shape and morphology of as-synthesized samples more clearly, TEM and HRTEM characterizations were further taken (Fig.2).It can be clearly seen that ZnO NRs show a parallel fringe spacings of 0.26 nm (Fig.2a), which is related to the (002)planes of wurtzite ZnO [29].Through a spin-coating process, Ag NPs of ca.20 nm in diameter were successfully deposited on the surface of ZnO NRs(Fig.S1 in Supporting information).The parallel fringe spacings of 0.236 nm further confirm the existence of metallic Ag (Fig.2b, inset).As shown in Fig.S2 (Supporting information) and Fig.2b, a~20 nm thick layer of CdS nanocrystallites with average size of~5 nm was uniformly deposited on the surface of ZnO NRs via SILAR process.The lattice spacings were measured to be 0.331 nm, which are consistent with the (002)plane of wurtzite CdS [30].From the elemental mapping of sandwiched CdS/Ag/ZnO( Figs.2c-f),one can easily observe that Ag NPs were embedded in the CdS layer, locating at the interface of ZnO NRs and CdS overlayer.

    The structures of all samples were characterized by X-ray diffraction (XRD).Fig.S3 (Supporting information) illustrates the XRD patterns of ZnO,Ag/ZnO,CdS/ZnO,and CdS/Ag/ZnO films.All the diffraction peaks can be well indexed to the standard diffraction patterns of wurtzite CdS and wurtzite ZnO [31,32].No XRD patterns of Ag NPs were detected,mainly due to the small size and low concentration of Ag NPs.To further investigate the crystal structure, all the samples were characterized by Raman spectra.As shown in Fig.3a, one can see five obvious peaks.The two peaks located near 300 and 602 cm-1were related to the active modes of LO and 2LO,respectively,confirming the wurtzite structure of the deposited CdS overlayer [33].The other three peaks at 436,580 and 980 cm-1are the characteristics of wurtzite ZnO, corresponding to the E2 (high) vibrational, silent B1 (high),and 2TO (transverse-optical) modes, respectively [29,34].

    Chemical state and surface atomic compositions of the obtained films were confirmed by XPS analysis with results shown in Figs.3b-d.The high resolution XPS spectra of Zn 2p of pure ZnO and CdS/ZnO samples depict two major peaks at 1021.6 eV and 1044.6 eV, corresponding to Zn 2p3/2and Zn 2p1/2[35], respectively.The Zn 2p positions of the Ag/ZnO and CdS/Ag/ZnO samples were shifted by about 0.4 eV towards lower binding energy, as compared with the corresponding value of pure ZnO (Fig.3b).Meanwhile,the Ag 3d5/2position of the Ag/ZnO sample(367.4 eV)(Fig.3c)was shifted by about 0.8 eV towards lower binding energy compared with the corresponding value of pure metallic Ag(368.2 eV)[36].These remarkable shifts of Zn 2p and Ag 3d binding energies suggest an interaction between Ag and ZnO nanocrystals at the microstructural level [37].It is physically well known that when metal and semiconductor are brought together,Fermi levels will be realigned.In the case of Ag/ZnO, the corresponding Fermi levels of Ag and ZnO need to adjust to the same level,when they are contacting with each other.Therefore, some free electrons in Ag would transfer to ZnO, resulting in the higher valence of Ag and then the shift of the Ag 3d peak towards lower binding energy[38].In comparison,the binding energy of Ag 3d for CdS/Ag/ZnO sample is 0.6 eV higher than that of Ag/ZnO sample,which is much closer to the corresponding value of pure metallic Ag.This shift might be caused by the electron transfer among the three components.The Cd 3d5/2and Cd 3d3/2peaks were found at the binding energy of 404.9 eV and 411.6 eV(Fig.3d),respectively,evidencing the Cd2+in CdS [39].

    Fig.1.(a) Scheme for the fabrication process of CdS/Ag/ZnO NRs on the FTO substrate.SEM images of (b) pure ZnO, (c) Ag/ZnO, (d) CdS/Ag/ZnO.

    Fig.2.TEM and HRTEM images of (a) pure ZnO, (b) CdS/Ag/ZnO; (c-f) elemental mappings of CdS/Ag/ZnO.

    Fig.3.(a)Raman spectra of pure ZnO,Ag/ZnO,CdS/ZnO,and CdS/Ag/ZnO NRs;XPS spectra for pure ZnO,Ag/ZnO,CdS/ZnO,and CdS/Ag/ZnO NRs:(b)Zn 2p,(c)Ag 3d,(d)Cd 3d.

    Fig.4.(a)UV-vis absorption spectra and(b)photoluminescence spectra of pure ZnO,Ag/ZnO,CdS/ZnO,and CdS/Ag/ZnO NRs;(c) Spatial distribution of electromagnetic field for CdS/ZnO and CdS/Ag/ZnO.

    To investigate the optical characteristics of the as-fabricated films, the UV-vis absorption spectra and photoluminescence (PL)spectra were collected.As shown in Fig.4a, the ZnO NRs show a strong absorption below 380 nm, which matches its band gap of 3.2 eV.After Ag NPs decoration, the obtained Ag/ZnO film shows optical absorption onset red shifted to~660 nm, with an absorption shoulder at around 420 nm, which corresponds well to the LSPR absorption of Ag NPs[40].It can be clearly seen that the absorption onset of ZnO NRs deposited with CdS nanocrystallites extends to 530 nm, which can be assigned to the characteristic absorption of CdS (Eg=2.4 eV).With both Ag NPs and CdS nanocrystallites deposited on ZnO NRs, the obtained CdS/Ag/ZnO film shows further enhanced optical absorption in visible light region, due to the synergistic effect of LSPR effect of Ag NPs and narrow band gap of CdS.PL spectra were collected to investigate the charge carrier transfer ability of the obtained films (Fig.4b).The spectrum of pure ZnO consists of two emission components:a narrow UV peak at around 380 nm,which is assigned to near-band edge exciton emission, and a broad visible peak around 590 nm,which is correlated with deep level emission from intrinsic and extrinsic defects[41].Compared with pure ZnO film,both the two PL peaks of Ag/ZnO film show intensities greatly decreased.The PRET enhanced charge carrier separation caused by Ag NPs loading might contribute to the UV emission depression [42], while the decrease in visible light peak intensity should be related to the passivation effect of Ag NPs which reduces the surface states or structural defects of ZnO [43,44].For the CdS/ZnO film, the decrease in both the UV and visible peak intensities could be traced to the promotion charge carrier separation due to the wellmatched band structures of CdS and ZnO.A new peak standing out at around 500 nm in the spectrum of CdS/ZnO can be assigned to the band gap transition of CdS nanocrystallites [37].In the PL spectrum of CdS/Ag/ZnO film, the more attenuation in PL peak at around 380 nm and the PL quenching at around 500 nm indicate the more increased charge separation efficiency in CdS/Ag/ZnO due to the synergistic effect of PRET process of plasmonic Ag NPs and heterostructure configured by CdS and ZnO.The decreased PL peak at around 590 nm might be caused by the combined passivation effect of Ag NPs and CdS nanocrystallites.In order to more clearly identify the effect of Ag NPs in CdS/Ag/ZnO NRs on charge carrier transfer ability, we performed finite-difference time domain(FDTD) simulations to calculate the spatial distribution of electromagnetic field intensity of CdS/ZnO films with and without Ag NPs (Fig.4c).It can be noted that the electromagnetic field density at the interface of Ag/ZnO and Ag/CdS in CdS/Ag/ZnO is much stronger than that of the CdS/ZnO interface without Ag NPs.This enhancement in electromagnetic field density could promote the charge carrier transfer from CdS nanocrystallites to Ag NPs and then from Ag NPs to ZnO NRs.As a result,the electron-hole pairs at the interface of CdS/ZnO are separated more efficiently,which will benefit the enhancement in PEC performance.The obtained optical properties and FDTD results indicate that the CdS/Ag/ZnO NRs present extended photo-response range,strong optical absorbance and excellent charge carrier transfer and separation due to the synergistic effects of Ag NPs and CdS nanocrystallites.

    Fig.5.(a)Current-potential(I-V)curves of pure ZnO,Ag/ZnO,CdS/ZnO and CdS/Ag/ZnO NRs under solar simulator irradiation,(b)IPCE curves of pure ZnO,Ag/ZnO,CdS/ZnO and CdS/Ag/ZnO NRs.

    The PEC activity of the prepared CdS/Ag/ZnO sandwiched structure was investigated in detail as a photoanode under simulated solar light illumination.As shown in Fig.5a, the photocurrent density of Ag/ZnO photoanode is slightly improved after Ag NPs loading, while the photocurrent density of CdS/ZnO photoanode is much higher than that of pure ZnO.Moreover, the photocurrent density of CdS/Ag/ZnO photoanode is significantly improved as compared to those of other three photoanodes.The photocurrent density of CdS/Ag/ZnO photoanode reaches 4.7 mA/cm2at 1.6 V vs.RHE,which is around 8 times,7.3 times and 1.7 times as high as that of pure ZnO, Ag/ZnO and CdS/ZnO photoanodes, respectively.This might be due to the synergistic effect of Ag NPs and CdS nanocrystallites.To further investigate the wavelength dependent photo-response, we performed the IPCE tests on all samples (Fig.5b).The ZnO photoanode exhibits PEC activity only in the UV region, consisting with the optical absorption of ZnO limited in the UV region(Fig.4a).The decoration of Ag NPs on ZnO NRs increased the IPCE values slightly in both UV and visible light region.The IPCE enhancement of Ag/ZnO photoanode in UV region can be assigned to the PRET effect of Ag NPs, which promotes the charge carrier separation, while enhancement in visible light region can be ascribed to the extended optical absorption due to the LSPR effect of Ag NPs,with hot electrons injected from Ag NPs to ZnO NRs via DET process.For the CdS/ZnO photoanode,the photo-response range of IPCE is extended to ca.530 nm and the IPCE values are greatly enhanced, in accordance with the extended optical absorption region of CdS/ZnO.The CdS/Ag/ZnO photoanode exhibits PEC activity in the photo-response range as far as~660 nm,consisting well with the optical absorption spectrum of CdS/Ag/ZnO.In the region of λ <530 nm, the IPCE enhancement of CdS/Ag/ZnO photoanode as compared with CdS/ZnO photoanode should be related to the promoted charge carrier separation at the CdS/ZnO interface (Fig.4b), as triggered by the strong electromagnetic density introduced by plasmonic Ag NPs(Fig.4c).In addition,the IPCE enhancement of CdS/Ag/ZnO photoanode in photo-response region from 530 nm to 660 nm can be related to the extended optical absorption of Ag NPs and the DET process.

    Based on the previous analysis, the enhanced PEC activity of CdS/Ag/ZnO photoanode should be attributed to the synergistic effect of plasmonic Ag NPs and CdS nanocrystallites for the improved optical absorption in visible light as well as the promoted charge carrier separation efficiency.As indicated by the optical absorption spectra, ZnO could only be excited under UV light illumination (Fig.6a).For Ag/ZnO NRs (Fig.6b), Ag NPs could slightly increase PEC activity by (i) extending the optical absorption range through the LSPR effect, as indicated by the UV-vis spectra (Fig.4a) and (ii) promoting charge carrier separation via PRET, as verified by PL spectra (Fig.4b).For CdS/ZnO NRs (Fig.6c), CdS nanocrystallites could significantly expand the photo-response range to 530 nm for its narrow band gap(Fig.4a) and enhance the charge carrier separation efficiency for the well-matched type II band structure alignment between ZnO and CdS (Fig.4b, Fig.S4 and Table S1 in Supporting information).Therefore, the PEC performance of CdS/ZnO photoanode was remarkably enhanced in UV and visible light region as compared with that of pure ZnO photoanode.The sandwiched CdS/Ag/ZnO photoanode displays significantly increased PEC performances in both UV and visible light region as compared with pure ZnO, Ag/ZnO and CdS/ZnO photoanodes, which can be ascribed to the synergistic effect of Ag NPs and CdS nanocrystallites in improving optical absorption property and enhancing charge carrier separation efficiency(Fig.6d).On one hand,due to the LSPR effect of Ag NPs and narrow band gap of CdS, the photo-response range of CdS/Ag/ZnO could be effectively extended to~660 nm.On the other hand,the type II band structure alignment between CdS and ZnO facilitates the charge carrier separation.Moreover, the introduction of Ag NPs in the heterostructure accelerates the charge carrier separation at the interface of CdS and ZnO more efficiently due to the PRET effect of Ag NPs.

    Fig.6.Schematics of charge carrier transfer processes in (a) ZnO, (b) Ag/ZnO, (c)CdS/ZnO, (d) CdS/Ag/ZnO.

    In summary, CdS nanocrystallites sensitized ZnO NRs with plasmonic Ag NPs decoration was fabricated via a spin-coating and SILAR two-step process for PEC solar hydrogen generation.The obtained sandwiched CdS/Ag/ZnO NRs exhibited quite high PEC activity, with photocurrent density achieving 4.7 mA/cm2at 1.6 V vs.RHE,which is 8 and 1.7 times as high as those of pure ZnO and CdS/ZnO NRs, respectively.Furthermore, with optical absorption onset extended to~660 nm, the IPCE of CdS/Ag/ZnO photoanode reaches 23.1% and 9.8% at 400 nm and 500 nm, respectively.The PEC enhancement can be attributed to the one-dimensional ZnO NR structure maintained for superior charge transfer, and the extended visible-light absorption of CdS nanocrystallites.Moreover, the incorporated plasmonic Ag NPs could further promote the interfacial charge carrier transfer process and enhance the optical absorption ability,due to its excellent plasmon resonance effect.This study provides an effective strategy to design heterostructured photoelectrodes for efficient solar hydrogen conversion by synergistically extending visible light absorption and improving photogenerated charge carrier separation.

    Acknowledgments

    The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No.51672210)and the National Key Research and Development Program of China(No.2018YFB1502003).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2019.07.020.

    精品福利观看| 夜夜爽天天搞| 精品一品国产午夜福利视频| 三上悠亚av全集在线观看| 九色亚洲精品在线播放| xxxhd国产人妻xxx| 久久午夜综合久久蜜桃| 亚洲情色 制服丝袜| 精品国内亚洲2022精品成人 | 老鸭窝网址在线观看| 免费看十八禁软件| 欧美亚洲 丝袜 人妻 在线| 波多野结衣一区麻豆| 久久午夜亚洲精品久久| 精品久久久久久电影网| 精品午夜福利视频在线观看一区 | 女性被躁到高潮视频| 亚洲综合色网址| 看免费av毛片| 99热网站在线观看| 午夜精品久久久久久毛片777| 国产av精品麻豆| 国产精品免费一区二区三区在线 | 丰满迷人的少妇在线观看| 青青草视频在线视频观看| 黄色毛片三级朝国网站| 一本大道久久a久久精品| 国产精品1区2区在线观看. | 国产1区2区3区精品| 精品久久久精品久久久| 国产精品国产高清国产av | 丝袜在线中文字幕| 国产男靠女视频免费网站| 日韩欧美一区视频在线观看| 宅男免费午夜| 久久精品人人爽人人爽视色| 女性生殖器流出的白浆| 狠狠狠狠99中文字幕| 十八禁人妻一区二区| 操出白浆在线播放| 一区二区三区乱码不卡18| 久久精品国产a三级三级三级| 亚洲精品美女久久av网站| 欧美亚洲 丝袜 人妻 在线| 久久久久精品国产欧美久久久| 久久久久网色| 另类亚洲欧美激情| tocl精华| 免费在线观看日本一区| 韩国精品一区二区三区| 久久中文字幕一级| 婷婷丁香在线五月| 久久久久久久久免费视频了| 亚洲av片天天在线观看| 成人18禁在线播放| 大码成人一级视频| 老司机福利观看| 热99re8久久精品国产| 波多野结衣一区麻豆| 超色免费av| aaaaa片日本免费| 欧美国产精品一级二级三级| 我的亚洲天堂| 老司机亚洲免费影院| 免费观看人在逋| 又大又爽又粗| 无人区码免费观看不卡 | 一区二区三区激情视频| 十八禁网站网址无遮挡| 国产精品秋霞免费鲁丝片| 日日摸夜夜添夜夜添小说| 女人被躁到高潮嗷嗷叫费观| 亚洲九九香蕉| 大码成人一级视频| 麻豆乱淫一区二区| 捣出白浆h1v1| 亚洲人成伊人成综合网2020| 在线观看免费高清a一片| 老熟妇仑乱视频hdxx| 老汉色av国产亚洲站长工具| av福利片在线| 丰满少妇做爰视频| 国产在线观看jvid| 久久中文字幕人妻熟女| 久久久久国产一级毛片高清牌| 两性午夜刺激爽爽歪歪视频在线观看 | 狂野欧美激情性xxxx| 一本综合久久免费| 日本欧美视频一区| 最近最新免费中文字幕在线| 欧美成人免费av一区二区三区 | 久久精品国产亚洲av高清一级| 无遮挡黄片免费观看| 欧美日韩精品网址| tocl精华| av又黄又爽大尺度在线免费看| 久久久精品94久久精品| 怎么达到女性高潮| 久久精品亚洲精品国产色婷小说| 老司机亚洲免费影院| 午夜视频精品福利| 日韩精品免费视频一区二区三区| 在线天堂中文资源库| 亚洲一码二码三码区别大吗| 日韩有码中文字幕| 亚洲欧洲精品一区二区精品久久久| 9191精品国产免费久久| 黄网站色视频无遮挡免费观看| 在线观看人妻少妇| 男女床上黄色一级片免费看| 亚洲七黄色美女视频| 国产国语露脸激情在线看| 久久久精品94久久精品| 夜夜骑夜夜射夜夜干| 免费在线观看影片大全网站| 人妻 亚洲 视频| 老司机影院毛片| 久久精品亚洲av国产电影网| 成人三级做爰电影| 99国产精品99久久久久| 在线观看免费视频日本深夜| 免费少妇av软件| 久久国产精品大桥未久av| 精品熟女少妇八av免费久了| 熟女少妇亚洲综合色aaa.| 精品国内亚洲2022精品成人 | 2018国产大陆天天弄谢| 中文字幕高清在线视频| 国产亚洲一区二区精品| 日韩 欧美 亚洲 中文字幕| 精品国产乱码久久久久久男人| 免费不卡黄色视频| xxxhd国产人妻xxx| 色老头精品视频在线观看| 狠狠精品人妻久久久久久综合| 精品一品国产午夜福利视频| 在线天堂中文资源库| 亚洲精品自拍成人| 1024视频免费在线观看| 麻豆国产av国片精品| 在线播放国产精品三级| 久久影院123| 亚洲专区字幕在线| 天天躁夜夜躁狠狠躁躁| 日韩欧美一区视频在线观看| 狠狠婷婷综合久久久久久88av| 午夜老司机福利片| 高潮久久久久久久久久久不卡| 女人爽到高潮嗷嗷叫在线视频| 国产无遮挡羞羞视频在线观看| 精品一区二区三卡| 国产精品自产拍在线观看55亚洲 | 免费在线观看完整版高清| 母亲3免费完整高清在线观看| 操美女的视频在线观看| 日日爽夜夜爽网站| 国产在视频线精品| 国产精品香港三级国产av潘金莲| 国产熟女午夜一区二区三区| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| 极品人妻少妇av视频| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区三| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 天天影视国产精品| 嫁个100分男人电影在线观看| 亚洲色图综合在线观看| 少妇精品久久久久久久| 69精品国产乱码久久久| 又黄又粗又硬又大视频| 中文字幕人妻丝袜一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 一二三四在线观看免费中文在| 亚洲成av片中文字幕在线观看| 亚洲伊人久久精品综合| 亚洲午夜精品一区,二区,三区| 国产不卡av网站在线观看| 亚洲人成电影免费在线| 777久久人妻少妇嫩草av网站| 精品人妻熟女毛片av久久网站| 久久久精品国产亚洲av高清涩受| 亚洲成人免费电影在线观看| 极品教师在线免费播放| 亚洲国产欧美在线一区| 真人做人爱边吃奶动态| 婷婷成人精品国产| 色94色欧美一区二区| 一进一出抽搐动态| 黄色a级毛片大全视频| 在线观看66精品国产| 亚洲国产毛片av蜜桃av| 亚洲男人天堂网一区| 久久精品成人免费网站| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区乱码不卡18| 国产深夜福利视频在线观看| 十八禁网站免费在线| 在线观看免费日韩欧美大片| 黄色丝袜av网址大全| 国产精品一区二区精品视频观看| 久久精品aⅴ一区二区三区四区| 亚洲av第一区精品v没综合| 亚洲人成伊人成综合网2020| 黄色毛片三级朝国网站| 久久久久久久大尺度免费视频| 亚洲第一av免费看| 亚洲九九香蕉| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人 | 久久午夜亚洲精品久久| 狂野欧美激情性xxxx| 男男h啪啪无遮挡| 久久久久久免费高清国产稀缺| 丝袜在线中文字幕| 黄片小视频在线播放| 99riav亚洲国产免费| 在线播放国产精品三级| 侵犯人妻中文字幕一二三四区| 欧美精品高潮呻吟av久久| 99国产综合亚洲精品| 日本wwww免费看| 在线观看免费高清a一片| 亚洲全国av大片| av有码第一页| 亚洲人成电影免费在线| 国精品久久久久久国模美| 12—13女人毛片做爰片一| 国产精品九九99| 国产成人av教育| 午夜日韩欧美国产| 少妇被粗大的猛进出69影院| av又黄又爽大尺度在线免费看| 美女视频免费永久观看网站| 一边摸一边抽搐一进一小说 | 久久人人97超碰香蕉20202| 欧美在线一区亚洲| 国产在视频线精品| 成人亚洲精品一区在线观看| 久久人妻av系列| 女人高潮潮喷娇喘18禁视频| 久久香蕉激情| 一边摸一边做爽爽视频免费| 天堂中文最新版在线下载| 日本av手机在线免费观看| 久久国产精品男人的天堂亚洲| 久久香蕉激情| 丰满饥渴人妻一区二区三| 一夜夜www| 国产99久久九九免费精品| avwww免费| 亚洲人成电影免费在线| 精品国产亚洲在线| av网站免费在线观看视频| 大片免费播放器 马上看| 1024香蕉在线观看| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 午夜老司机福利片| 欧美 日韩 精品 国产| 51午夜福利影视在线观看| 免费久久久久久久精品成人欧美视频| 美女国产高潮福利片在线看| 男人舔女人的私密视频| 久久精品人人爽人人爽视色| 黄色片一级片一级黄色片| 久久影院123| 国产精品98久久久久久宅男小说| 亚洲视频免费观看视频| 国产av又大| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 亚洲第一欧美日韩一区二区三区 | 成年动漫av网址| 18在线观看网站| 窝窝影院91人妻| 99国产极品粉嫩在线观看| 天堂中文最新版在线下载| 国产成人啪精品午夜网站| 97人妻天天添夜夜摸| 99在线人妻在线中文字幕 | www.精华液| 另类精品久久| 中文字幕另类日韩欧美亚洲嫩草| 国产aⅴ精品一区二区三区波| 亚洲成人免费av在线播放| 男人操女人黄网站| 天堂俺去俺来也www色官网| 男女下面插进去视频免费观看| 精品高清国产在线一区| 国产欧美亚洲国产| 日本av手机在线免费观看| 国产免费av片在线观看野外av| 首页视频小说图片口味搜索| 极品少妇高潮喷水抽搐| 热99re8久久精品国产| 亚洲精品在线美女| 久久精品亚洲av国产电影网| 亚洲五月色婷婷综合| 久久精品国产亚洲av高清一级| 大片免费播放器 马上看| 一本一本久久a久久精品综合妖精| 91麻豆av在线| 亚洲欧美色中文字幕在线| 操出白浆在线播放| 中文字幕制服av| 国产精品偷伦视频观看了| a级毛片黄视频| 香蕉丝袜av| 精品高清国产在线一区| 大香蕉久久网| 免费一级毛片在线播放高清视频 | 热re99久久国产66热| 中文字幕人妻丝袜一区二区| 国产在线精品亚洲第一网站| 人妻 亚洲 视频| 婷婷丁香在线五月| 亚洲国产毛片av蜜桃av| 交换朋友夫妻互换小说| 国产老妇伦熟女老妇高清| 极品教师在线免费播放| 欧美日韩国产mv在线观看视频| 19禁男女啪啪无遮挡网站| 欧美精品av麻豆av| 久久久欧美国产精品| 欧美另类亚洲清纯唯美| 国产又色又爽无遮挡免费看| 2018国产大陆天天弄谢| 日韩精品免费视频一区二区三区| 亚洲精品国产一区二区精华液| 色在线成人网| 亚洲成国产人片在线观看| 嫩草影视91久久| 最黄视频免费看| 动漫黄色视频在线观看| 欧美成狂野欧美在线观看| 在线观看免费视频日本深夜| 18在线观看网站| 国产精品98久久久久久宅男小说| 亚洲精华国产精华精| av不卡在线播放| 午夜福利在线免费观看网站| 亚洲av片天天在线观看| 精品久久久久久久毛片微露脸| 丁香六月欧美| 久久久国产精品麻豆| 国产av国产精品国产| 中文字幕人妻丝袜一区二区| 精品国产乱子伦一区二区三区| 久久久欧美国产精品| 午夜成年电影在线免费观看| 国产主播在线观看一区二区| 久久久精品94久久精品| kizo精华| 黄片播放在线免费| 国产欧美日韩精品亚洲av| 欧美大码av| 热99久久久久精品小说推荐| av一本久久久久| 国产精品香港三级国产av潘金莲| 午夜久久久在线观看| 午夜福利欧美成人| svipshipincom国产片| 男女无遮挡免费网站观看| 91麻豆av在线| 国产高清激情床上av| 国产亚洲欧美精品永久| 午夜福利乱码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 精品视频人人做人人爽| 亚洲国产中文字幕在线视频| 热99久久久久精品小说推荐| 两个人看的免费小视频| 人人妻人人爽人人添夜夜欢视频| 免费在线观看日本一区| 日韩熟女老妇一区二区性免费视频| 日日夜夜操网爽| 国产欧美亚洲国产| 王馨瑶露胸无遮挡在线观看| 久久中文字幕人妻熟女| 欧美性长视频在线观看| 久久久久久久久久久久大奶| 国产精品亚洲一级av第二区| 桃红色精品国产亚洲av| 国产一区二区三区视频了| 亚洲色图 男人天堂 中文字幕| 国产一区二区三区视频了| tocl精华| 成人国产一区最新在线观看| 久久久久久亚洲精品国产蜜桃av| 国产在线一区二区三区精| 亚洲人成伊人成综合网2020| 日韩成人在线观看一区二区三区| 中文字幕色久视频| 日韩 欧美 亚洲 中文字幕| 大片电影免费在线观看免费| avwww免费| 黑人猛操日本美女一级片| 久久精品国产亚洲av香蕉五月 | 欧美精品亚洲一区二区| 亚洲一区二区三区欧美精品| 亚洲成人免费电影在线观看| 免费观看a级毛片全部| 悠悠久久av| 免费在线观看黄色视频的| 伊人久久大香线蕉亚洲五| 午夜老司机福利片| 日韩成人在线观看一区二区三区| 午夜久久久在线观看| 日韩欧美一区二区三区在线观看 | 中文字幕高清在线视频| 欧美日韩亚洲综合一区二区三区_| 午夜福利视频精品| 少妇裸体淫交视频免费看高清 | 精品欧美一区二区三区在线| 考比视频在线观看| 淫妇啪啪啪对白视频| www.999成人在线观看| 一级毛片女人18水好多| 精品久久久久久久毛片微露脸| 一区二区三区乱码不卡18| 精品免费久久久久久久清纯 | 成年动漫av网址| 久久久久精品国产欧美久久久| 亚洲av美国av| 亚洲精品av麻豆狂野| 国产精品一区二区在线观看99| 咕卡用的链子| 国产成人精品久久二区二区91| 亚洲精品一卡2卡三卡4卡5卡| 超色免费av| 丝袜在线中文字幕| 日本撒尿小便嘘嘘汇集6| 自线自在国产av| 亚洲人成电影免费在线| 另类精品久久| 久久久久久久精品吃奶| 精品一区二区三区av网在线观看 | 亚洲九九香蕉| 精品少妇久久久久久888优播| 国产主播在线观看一区二区| 热re99久久国产66热| 精品人妻在线不人妻| 18禁裸乳无遮挡动漫免费视频| 亚洲专区中文字幕在线| 免费人妻精品一区二区三区视频| 欧美日韩精品网址| a级毛片在线看网站| 在线观看www视频免费| 久9热在线精品视频| 老熟女久久久| 欧美成人免费av一区二区三区 | 岛国毛片在线播放| 一区二区三区乱码不卡18| 国产福利在线免费观看视频| 午夜两性在线视频| 99精品久久久久人妻精品| 精品亚洲乱码少妇综合久久| 高清av免费在线| 1024香蕉在线观看| 国产免费视频播放在线视频| 一夜夜www| 一级a爱视频在线免费观看| 国产黄频视频在线观看| www.自偷自拍.com| 亚洲第一欧美日韩一区二区三区 | 少妇的丰满在线观看| 国产精品香港三级国产av潘金莲| 黄片播放在线免费| 大陆偷拍与自拍| 9热在线视频观看99| 久久性视频一级片| 精品亚洲乱码少妇综合久久| 美女扒开内裤让男人捅视频| 天堂动漫精品| 成人永久免费在线观看视频 | 妹子高潮喷水视频| aaaaa片日本免费| 国产淫语在线视频| 国产在线精品亚洲第一网站| 老司机影院毛片| 激情在线观看视频在线高清 | 怎么达到女性高潮| 91av网站免费观看| 一级黄色大片毛片| 欧美精品一区二区免费开放| 大型黄色视频在线免费观看| av网站在线播放免费| 日韩欧美三级三区| 午夜日韩欧美国产| 老鸭窝网址在线观看| 国产成人欧美| 一本色道久久久久久精品综合| 一区二区日韩欧美中文字幕| 日韩欧美免费精品| 亚洲专区国产一区二区| 国产极品粉嫩免费观看在线| 国产日韩欧美在线精品| 久久久久久久久免费视频了| 久久中文字幕人妻熟女| 亚洲五月色婷婷综合| 99热国产这里只有精品6| 丁香欧美五月| 人人澡人人妻人| 露出奶头的视频| 欧美日韩av久久| 亚洲熟女精品中文字幕| 欧美精品高潮呻吟av久久| 91大片在线观看| 性高湖久久久久久久久免费观看| 757午夜福利合集在线观看| 国产色视频综合| 国产日韩欧美亚洲二区| 搡老乐熟女国产| 成人亚洲精品一区在线观看| 777久久人妻少妇嫩草av网站| 麻豆国产av国片精品| 少妇精品久久久久久久| 国产精品一区二区免费欧美| 久久中文字幕一级| 黄网站色视频无遮挡免费观看| 国产麻豆69| 一区福利在线观看| 啦啦啦视频在线资源免费观看| 狠狠狠狠99中文字幕| 建设人人有责人人尽责人人享有的| 精品久久久久久电影网| 他把我摸到了高潮在线观看 | 交换朋友夫妻互换小说| 国产高清视频在线播放一区| 久久久久国产一级毛片高清牌| 欧美黄色片欧美黄色片| 亚洲专区字幕在线| 久久九九热精品免费| 免费黄频网站在线观看国产| 亚洲情色 制服丝袜| 香蕉丝袜av| 激情视频va一区二区三区| 日本vs欧美在线观看视频| 精品人妻在线不人妻| 在线观看免费高清a一片| 老鸭窝网址在线观看| 天天躁夜夜躁狠狠躁躁| 欧美国产精品一级二级三级| 91成年电影在线观看| 老熟妇乱子伦视频在线观看| 国产精品美女特级片免费视频播放器 | 午夜福利在线观看吧| 91字幕亚洲| 成人三级做爰电影| 国产免费av片在线观看野外av| 亚洲欧洲日产国产| 欧美黄色片欧美黄色片| 成人精品一区二区免费| 麻豆av在线久日| 亚洲精品在线观看二区| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| 国产精品 欧美亚洲| 多毛熟女@视频| 每晚都被弄得嗷嗷叫到高潮| 波多野结衣一区麻豆| 伊人久久大香线蕉亚洲五| 亚洲免费av在线视频| 国产一区有黄有色的免费视频| 亚洲综合色网址| 久久精品aⅴ一区二区三区四区| 久久ye,这里只有精品| 亚洲av美国av| 啦啦啦视频在线资源免费观看| 叶爱在线成人免费视频播放| 久久精品亚洲熟妇少妇任你| 男女下面插进去视频免费观看| 精品少妇一区二区三区视频日本电影| 亚洲色图 男人天堂 中文字幕| 好男人电影高清在线观看| 十分钟在线观看高清视频www| 亚洲第一av免费看| 国产片内射在线| 日本精品一区二区三区蜜桃| 久久国产亚洲av麻豆专区| 日韩欧美免费精品| 欧美精品亚洲一区二区| 两性夫妻黄色片| 国产精品影院久久| 亚洲国产欧美在线一区| 国产不卡av网站在线观看| 亚洲 欧美一区二区三区| 老司机影院毛片| 亚洲一区中文字幕在线| 黄片大片在线免费观看| 91字幕亚洲| 亚洲第一欧美日韩一区二区三区 | 大陆偷拍与自拍| 欧美精品亚洲一区二区| 亚洲熟女精品中文字幕| 老熟女久久久| 黄片播放在线免费| 国产精品久久久久久人妻精品电影 | 亚洲av日韩在线播放| 中文字幕制服av| 国产精品一区二区在线不卡| 国产免费福利视频在线观看| 伊人久久大香线蕉亚洲五| 成人18禁高潮啪啪吃奶动态图| 亚洲七黄色美女视频| 黑人巨大精品欧美一区二区蜜桃| 国产在线精品亚洲第一网站| 交换朋友夫妻互换小说| 国产日韩欧美亚洲二区| 99精品在免费线老司机午夜| 国产黄色免费在线视频| 搡老岳熟女国产|