• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient activation of peroxymonosulfate by hollow cobalt hydroxide for degradation of ibuprofen and theoretical study

    2020-01-14 07:54:58MingfengMaLongChenJingzhuZhaoWenLiuHaodongJi
    Chinese Chemical Letters 2019年12期

    Mingfeng Ma,Long Chen,Jingzhu Zhao,,Wen Liu,d,e,Haodong Ji,d,*

    a State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

    b University of Chinese Academy of Sciences, Beijing 100049, China

    c The Key Laboratory of Water and Sediment Science, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

    d The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing 100871, China

    e Beijing Engineering Research Center for Advanced Wastewater Treatment, Peking University, Beijing 100871, China

    Keywords:

    Cobalt hydroxid

    Pharmaceuticals

    Peroxymonosulfate

    Activation

    DFT calculation

    ABSTRACT

    Hollow microsphere structure cobalt hydroxide (h-Co(OH)2) was synthesized via an optimized solvothermal-hydrothermal process and applied to activate peroxymonosulfate (PMS) for degradation of a typical pharmaceutically active compound, ibuprofen (IBP).The material characterizations confirmed the presence of the microscale hollow spheres with thin nanosheets shell in h-Co(OH)2,and the crystalline phase was assigned to α-Co(OH)2.h-Co(OH)2 could efficiently activate PMS for radicals production, and 98.6% of IBP was degraded at 10 min.The activation of PMS by h-Co(OH)2 was a pHindependent process, and pH 7 was the optimum condition for the activation-degradation system.Scavenger quenching test indicated that the sulfate radical (SO4· -) was the primary reactive oxygen species for IBP degradation, which contributed to 75.7%.Fukui index (f -) based on density functional theory (DFT) calculation predicted the active sites of IBP molecule for SO4· - attack, and then IBP degradation pathway was proposed by means of intermediates identification and theoretical calculation.The developed hollow Co(OH)2 used to efficiently activate PMS is promising and innovative alternative for organic contaminants removal from water and wastewater.

    Recent years, as a class of emerging contaminants, pharmaceuticals and personal care products (PPCPs), such as antidepressants, antibiotics and anti-inflammatories, have drawn extensive concerns[1-3].PPCPs are widely detected in water and wastewater matrix and show high potential toxicity risks to aquatic life/human beings [1-3].Nonsteroidal anti-inflammatory drugs(NAIDS) are one of the most widely available and consumed pharmaceuticals with 70 million annual prescriptions in the world[4-6].Ibuprofen (2-[3-(2-methylpropyl)phenyl]propanoic acid,IBP), which belongs to a class of NAIDS, has been reported that its mean concentration in ground,surface and drinking water is up to 0.024,0.24 μg/L and 5-25 ng/L,respectively[7-9].Although the detected concentration of IBP is low, it still holds unexpected toxicity to eco-system and human health [10].Moreover, the conventional treatment technologies for drinking water, such as coagulation, sedimentation, filtration and disinfection, are not efficient and suitable to remove IBP at low concentration levels[11].Thus, it is urgent to develop efficient strategies for IBP removal.

    Heterogenous catalysis using functional materials has been widely applied for organics removal[12-16],especially the radicalinvolved processes.Although the hydroxyl radical(·OH,E0=+1.8-2.7 V)exhibits strong power to oxidize organics,the sulfate radical(SO4·-,E0=+2.5-3.1 V)has some unique and innovative potentials,i.e.,higher selectivity,longer radical half-life(30-40 μs for SO4·-and 1 μs for·OH)and wider pH application range[17,18].Previous works developed many technologies to activate peroxymonosulphate (PMS, HSO5-) and persulphate (PS, S2O82-) for generating sulfate radicals, such as degradation of p-nitrophenol by mFe/Cuair-PS activation system [13], dye pollutants degradation by CuFe2O4@GO-PMS activation system [19], organic pollutants removal by sponge of cobalt heterostructures-PMS [20].The Co-modified materials have been believed the most efficient heterogeneous or homogeneous catalysts to activate PMS or PS[21].

    The overall goal of this study was to develop and test the effectiveness of a hollow structure Co(OH)2material to activate PMS for ibuprofen degradation.The specific objectives were to:1)develop an optimized solvothermal-hydrothermal method to prepare the hollow Co(OH)2,2)investigate the removal efficiencies of IBP by various PMS activation systems, 3) reveal the IBP degradation mechanism and radical attacking function based on degradation intermediate/products identification and computational chemistry analysis, 4) assess the effects of water chemistry conditions including pH and PMS concentration, and 5) elucidate the underlying PMS efficient activation mechanism through material characterizations.

    All chemicals used in this work were of analytical grade or higher.Details related to the chemicals are provided in Text S1(Supporting information).Hollow structure cobalt hydroxide (h-Co(OH)2) were prepared through a modified solvothermalhydrothermal method [22].Specifically, 10 mmol/L (2.9105 g)Co(NO3)2·6H2O was dissolved in 60 mL isopropanol and then 16 mL glycerin was added.The mixture was magnetically stirred for 30 min to completely dissolved and then transferred into a Teflon reactor with stainless steel coating,heated at 180°C for 6 h to complete solvothermal reaction.After cooling to the room temperature,the pink precipitates were washed with ethanol for 3 times to remove the residuals anions and oven-dried at 60°C for 12 h to obtain alkoxy cobalt microspheres (s-CoA).Another hydrothermal reaction was initiated then.0.5 g s-CoA was dissolved in 80 mL deionized (DI) water, and the solution was transferred to the Teflon reactor and heated at 160°C for 3 h.After cooling, the light green precipitates were washed with DI water for 3 times and dried at 60°C for 12 h.Finally,the hollow structure cobalt hydroxide were ground and collected.For comparison,neat Co(OH)2was also prepared via a conventional precipitation method (Test S2 in Supporting information) and labeled as p-Co(OH)2.

    Batch kinetic experiments were carried out to test the effectiveness of h-Co(OH)2for IBP degradation after PMS activation.The initial IBP concentration was fixed at 10 μmol/L.In a typical PMS activation system, 0.2 mmol/L PMS and solution pH were adjusted to 7.0 using diluted HClO4(0.1 mmol/L) or NaOH (0.1 mmol/L).The mixture was then magnetically stirred at 300 rpm, and the heterogeneous catalytic reaction was initiated by adding 0.2 g/L cobalt material.At pre-determined time, 1 mL sample was collected and immediately filtrated via a 0.22 μm polytetrafluoroethylene(PTFE)membrane,which was pre-filled with 0.1 mL of 0.2 mmol/L Na2SO3solution to quench the residual PMS-induced radicals.Control tests were conducted without any catalysts (estimate the degradation by PMS) or without PMS (quantify the adsorption by materials) but under otherwise identical conditions.IBP concentration in the filtrate was measured by a high-performance liquid chromatography (HPLC) system (Agilent 1260 Infinity, USA).The intermediates and products after IBP degradation were analyzed on a high-performance liquid chromatography-mass spectroscopy system (HPLC-MS, HP 1100 LC-MSnTrap SL System, Agilent).The details are shown in the Text S3 (Supporting information).

    For pH effect, the solution pH was adjusted from 3 to 11.To quantify the contributions of different reactive oxygen species(ROS) to IBP degradation, scavengers including tert-butanol (tBA)or ethanol (2 mmol/L) was added before reaction to quench hydroxyl radical (·OH) and all radicals, respectively.

    To evaluate the regioselectivity of generated radicals in the heterogeneous catalytic process for IBP molecules attacking,Fukui function (f-) based on the density functional theory (DFT)calculation was applied.Details on DFT calculation are presented in the Text S4 (Supporting information).

    The materials were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD).Meanwhile, the surface area and pore size distribution of the materials were obtained by the Brunauer-Emmett-Teller (BET) and the Barrett-Joyner-Halenda(BJH) method (Text S5 in Supporting information).

    Fig.1 depicts the TEM images of h-Co(OH)2.Unlike the p-Co(OH)2prepared by directly conventional precipitation method,which generally exhibits broken and uneven flat platelets in the 100-500 nm range in size[23],h-Co(OH)2was observed as hollow structure (Fig.1a) and totally transformed into aggregated nanosheet-shell-like clusters after solvothermal-hydrothermal reaction (Fig.1b).In addition, h-Co(OH)2were microscale hollow spheres(Fig.1b),in which consist of the center holes of~1 μm and thin nanosheets shell of~10 nm (Figs.1c and d).TEM analysis indicated that the nanosheets-shell had crystalline characteristic(Fig.1d), which is further confirmed by the XRD analysis.In addition, the h-Co(OH)2with hollow structure exhibits larger specific surface area (132.36 m2/g) and total pore volume(0.57 cm3/g) than that of the p-Co(OH)2(23.9 m2/g and 0.088 cm3/g) [24](Table S1, Figs.S1 and S2 in Supporting information), suggesting efficient interaction with PMS for its activation by h-Co(OH)2.

    Fig.2 presents XRD patterns of p-Co(OH)2and h-Co(OH)2.For conventional p-Co(OH)2,four distinct peaks at 19.1°,32.5°,38°and 51.4°appeared and assigned to the crystalline plane (001), (100),(101) and (102) of β-Co(OH)2, respectively (JCPDS 00-030-0443)[23,25,26].However, all the significant characteristic peaks belonged to α-Co(OH)2in the h-Co(OH)2spectra, as 9.5°, 17.8°,33.7°and 59.5°peaks were assigned to the(003),(006),(012)and(113) crystalline plane of α-Co(OH)2(JCPDS 00-046-0605),respectively[23,27].It is indicated that different crystalline phase formed for h-Co(OH)2compared with conventional p-Co(OH)2due to the solvothermal-hydrothermal method.In addition, the different Co(OH)2phases can contribute to the distinct crystalline plane (reactive sites) to active PMS and result in the different removal efficiency of IBP.

    Fig.S3 (Supporting information) shows XPS spectra of p-Co(OH)2and h-Co(OH)2.For these two materials, the significant peaks of and O 1s in the survey spectra (Fig.S3a) indicated the similar element composition.In the high resolution of Co 2p spectra (Fig.S3b), the two group peaks at 781.1 and 796.8 eV for both materials are attributed to Co2+in Co(OH)2[23,26].The existence of satellite vibration peaks near 786.2 eV and 802.6 eV for Co 2p3/2and Co 2p1/2confirms the formation of Co3+due to surface oxidation [28,29].

    Fig.1.TEM images of h-Co(OH)2.Scale bars:2 μm(a),1 μm(b),50 nm(c),20 nm(d).

    Fig.2.XRD patterns of p-Co(OH)2 and h-Co(OH)2.

    Fig.3 shows the removal of IBP by PMS activated by h-Co(OH)2or p-Co(OH)2.Control tests indicated that almost no removal(<0.3%)of IBP by PMS direct degradation.Moreover,the adsorption of IBP by both h-Co(OH)2and p-Co(OH)2was negligible(<0.2%),it is because the inorganic structure of Co(OH)2is not sufficient to absorb organic compounds, which is consistent with previous reports [30,31].However, rapid and high degradation (83.6% and 98.6%)of IBP was observed within 10 min for both p-Co(OH)2and h-Co(OH)2with PMS, respectively, indicating the observed IBP degradation can be solely contributed to the efficient PMS activation by h-Co(OH)2or p-Co(OH)2.The pseudo-first order kinetic model is used to interpret the kinetic data(Eq.(1))[32-34]:

    where C0and Ctare the IBP concentrations (μmol/L) at time 0 and t(min)in aqueous phase,respectively;and k1is the first-order rate constant (min-1).

    Fig.S4(Supporting information)shows the linear model fitting to IBP degradation in the heterogenous catalysis systems with PMS and Co(OH)2, and Table S2 (Supporting information) summarizes the best-fitted parameters.The pseudo-first order kinetic model can well describe the kinetic data(R2>0.966).In addition,the rate constant (k1) increased from 0.195 min-1for p-Co(OH)2to 0.428 min-1for h-Co(OH)2, by 2.2 times, indicating higher reactivity of h-Co(OH)2for PMS activation.It can be attributed to the different morphology and crystalline phases as aforementioned(Figs.1 and 2).Therefore,in the following experiments and characterizations, h-Co(OH)2was focused.The mechanism on activation of PMS by Co(OH)2for radicals production and organics degradation can be summarized as Eqs.(2)-(10) [30,31,35,36]:

    The formation of CoOH+, which has been reported as the key cobalt species to activate PMS[31]as shown in Eq.(2),which is the rate-limiting step for radical production[37].After decomposition of PMS to generate SO4·-, the CoOH+will transfer into CoO+(Eq.(3)) and then further react with H+to produce Co3+(Eq.(4)).PMS can also consume Co3+to regenerate Co2+(Eq.(5)), which is the critical process to maintain the chain reactions at a relative low cobalt concentration [38].And then the regenerated Co2+can either quench the SO4·-(Eq.(6)) or reproduce the most efficient activation specie CoOH+for reactivating PMS (Eq.(7)).It is worth noting that the generated SO4·-also can be captured by H2O or OH-for formation of·OH(Eqs.(8) and(9)),which is also a strong radical for organics degradation.The generated sulfate radicals will further attack the active sites of IBP molecules for its degradation or mineralization (Eq.(10)).

    Fig.3.IBP removal kinetics in various systems(a)and effects of pH on IBP degradation by h-Co(OH)2 activated PMS(b).(Initial IBP=10 μmol/L,material dosage=0.2g/L,PMS concentration = 0.2mmol/L, initial pH 7.0).

    Fig.4.Effects of reactive species for IBP removal by h-Co(OH)2 activated PMS.(Initial IBP=10 μmol/L;material dosage=0.2 g/L;PMS concentration=0.2 mmol/L;initial pH=7.0; ethanol, tBA and NaN3 concentration = 2 mmol/L).

    Fig.3b presents the effect of pH on IBP degradation in the PMS catalytic system.Increasing pH from 3 to 7 increased the k1value from 0.059 min-1to 0.428 min-1, and the removal efficiency increased from to 44.2%to 98.6%after 10 min reaction.At low pH,PMS with a pKaof 9.4 exists in the form of H2SO5[39], and the formation of key cobalt species CoOH+is inhibited due to acid condition[40,41],so low efficiency is obtained.While at higher pH,SO4·-will react with OH-to form·OH (Eq.(9)), which has low oxidation capacity compared to SO4·-at alkaline conditions[42].Therefore,pH 7 is the optimum pH for PMS activation and then IBP degradation in this system.

    Leaching of Co ion into solution during the reaction was also evaluated (Table S3 in Supporting information).It is found that only 2.36% of Co was dissolved into solution at pH 7 after 10 min,because the Co species transformation cycle shown in Eqs.(2)-(7).In addition,it is worth noting that the PMS activation reaction by h-Co(OH)2is a self-sacrificing process,so reusability of the catalyst in this advanced oxidation process is generally limited[29,31,43].In the future, developing new catalysts or new strategies to ensure the metal cycle is the key issues for this area.

    To further identify the contributions of main radicals involved in the IBP degradation, classical scavenger quenching tests were conducted.Ethanol [33,44]and tBA [45-47]was applied as the scavenger of·OH and all radicals including·OH and SO4·-,respectively(Fig.4).Table S2 lists the rate constant(k1)by for IBP degradation in the presence of various scavengers.After tBA and ethanol added, IBP removal was inhibited, as the k1value decreased from 0.428 min-1(without scavenger) to 0.261 min-1and 0.020 min-1, respectively (Table S2).In addition, for the catalytic system using h-Co(OH)2at 10 min,·OH contributed 6.3%while SO4·-contributed 75.7% to the IBP removal, respectively.Luo et al.[29]and Yun et al.[48]have mentioned the singlet oxygen(1O2)may dominate the non-radical oxidation process in the PMS activation.Thus, another quenching test for1O2was conducted using NaN3.However,the contribution of1O2was negligible(<2%),which was not the primary reactive species in this activation system.Therefore, the dominant mechanism for the IBP removal by PMS after h-Co(OH)2activation in this study is radical-driven processes due to SO4·-,and·OH demonstrated a less contribution.The details on radical attacking mechanism will be discussed in the following paragraph based on the DFT computational analysis.

    SO4·-and·OH are the primary attack reactive oxygen species in this system, and both of them are classified as a kind of electrophilic radicals, which are more likely to attack the sites that can readily lose electron [49].Therefore, Fukui index (f-)indicating electrophilic attack is considered and Figs.5a and b displays the distribution of f-values on IBP molecule.Fig.5c presents the proposed IBP degradation pathway based on intermediates identification.Higher f-value of site on IBP molecule means more easily to lose an electron and be attacked by SO4·-and·OH.The C3 (f-=0.193) and C6 (f-=0.196) show highest f-values, which are the most active site on IBP.It is consistent with the MS detection intermediates as the formation of products B and C due to the C--C bond cleavage caused by radical attacking(Fig.5c).Moreover,·OH addition pathway was also found for the formation of products D and E.Product F was further generated after E or C was attacked by·OH.Finally, low molecular weight organic compounds and mineralization products (CO2, H2O and CO32-) formed after deep oxidation by the radicals.Total organic carbon (TOC) test indicated 25.2% of organic C was mineralized during IBP removal by h-Co(OH)2activated PMS (Fig.S5 in Supporting information).

    This study developed an optimized solvothermal-hydrothermal method for preparation of hollow structure Co(OH)2,which could efficiently activate PMS for ibuprofen degradation.TEM and XRD confirmed the synthesized h-Co(OH)2maintained microscale hollow spheres with thin nanosheets shell, and is assigned to α-Co(OH)2crystalline phase.Compared with conventional p-Co(OH)2, the PMS activation activity of h-Co(OH)2was significantly enhanced as well as the IBP removal efficiency.The rate constant(k1),interpreted by the pseudo-first order kinetic model,increased from 0.195 min-1for p-Co(OH)2to 0.428 min-1for h-Co(OH)2.After PMS activation by h-Co(OH)2, the formed·OH and SO4·-contributed to 6.3% and 75.7% to IBP degradation respectively,indicating the SO4·-played the dominant role.DFT calculation indicated that the sites of IBP molecule with high Fukui index(f-)was preferred to be attacked by the two produced electrophilic radicals.The hollow structure Co(OH)2is a promising material for PMS activation, which shows great potential in efficient organic contaminants removal from water and wastewater.

    Fig.5.Chemical structure of IBP(a),natural population analysis(NPA)charges and Fukui index(f-)of IBP(b)and degradation pathway of IBP in the PMS activation system(c).

    Acknowledgments

    This work was partially supported by the National Natural Science Foundation of China (Nos.21906001 and 51721006).This work is supported by MOE Key Laboratory of Resources and Environmental Systems Optimization (NCEPU).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2019.09.031.

    国产亚洲一区二区精品| 日本av手机在线免费观看| 国产免费一级a男人的天堂| 人妻制服诱惑在线中文字幕| 国产一区二区三区av在线| 国产一区亚洲一区在线观看| 一级毛片我不卡| 欧美日韩亚洲高清精品| 亚洲国产日韩一区二区| 精品人妻视频免费看| 噜噜噜噜噜久久久久久91| 一二三四中文在线观看免费高清| 成年av动漫网址| 国产一区二区三区综合在线观看 | 国产精品人妻久久久影院| 精品久久久久久久末码| av黄色大香蕉| 亚洲电影在线观看av| 日韩精品有码人妻一区| av卡一久久| 中文字幕亚洲精品专区| 三级经典国产精品| www.色视频.com| 国产成人免费无遮挡视频| 欧美3d第一页| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| 丰满乱子伦码专区| 日本黄色片子视频| 亚洲在久久综合| 国产精品偷伦视频观看了| 夫妻午夜视频| 久久久久性生活片| 成人高潮视频无遮挡免费网站| 91aial.com中文字幕在线观看| 综合色av麻豆| 男人和女人高潮做爰伦理| 免费黄频网站在线观看国产| 身体一侧抽搐| 一级毛片电影观看| 建设人人有责人人尽责人人享有的 | 狂野欧美白嫩少妇大欣赏| 国产色婷婷99| 久久精品人妻少妇| 狂野欧美激情性xxxx在线观看| 51国产日韩欧美| 可以在线观看毛片的网站| 日本黄大片高清| 国产成人91sexporn| 大片免费播放器 马上看| 九九爱精品视频在线观看| 国产精品一区二区三区四区免费观看| 亚洲伊人久久精品综合| 日韩亚洲欧美综合| 18+在线观看网站| 久久久午夜欧美精品| 欧美少妇被猛烈插入视频| 日韩 亚洲 欧美在线| 国产一区有黄有色的免费视频| 在线天堂最新版资源| 最近最新中文字幕免费大全7| 一区二区三区乱码不卡18| 亚洲av在线观看美女高潮| av天堂中文字幕网| 欧美精品国产亚洲| 日韩一区二区三区影片| 岛国毛片在线播放| 免费电影在线观看免费观看| 国产人妻一区二区三区在| 大又大粗又爽又黄少妇毛片口| 国内精品美女久久久久久| 国产男人的电影天堂91| 男人爽女人下面视频在线观看| 欧美97在线视频| 国产女主播在线喷水免费视频网站| 亚洲怡红院男人天堂| 高清午夜精品一区二区三区| 国产精品不卡视频一区二区| 最近2019中文字幕mv第一页| av线在线观看网站| 一个人看视频在线观看www免费| 亚洲精品自拍成人| 精品午夜福利在线看| 少妇猛男粗大的猛烈进出视频 | 成年女人看的毛片在线观看| 视频区图区小说| 校园人妻丝袜中文字幕| 在线免费观看不下载黄p国产| 男女无遮挡免费网站观看| 亚洲人成网站高清观看| 亚洲精品中文字幕在线视频 | 亚洲av国产av综合av卡| 日韩欧美精品v在线| 综合色丁香网| 国产91av在线免费观看| 人妻夜夜爽99麻豆av| 色哟哟·www| 最近2019中文字幕mv第一页| 国产精品一区二区三区四区免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久国内精品自在自线图片| 18+在线观看网站| 亚洲欧美精品专区久久| 久久6这里有精品| 九九爱精品视频在线观看| 一级毛片黄色毛片免费观看视频| 在线观看三级黄色| 性色av一级| 亚洲欧美日韩东京热| 一区二区av电影网| 精品人妻熟女av久视频| 看免费成人av毛片| 国产伦精品一区二区三区视频9| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| av播播在线观看一区| 亚洲aⅴ乱码一区二区在线播放| 99久久人妻综合| 亚洲电影在线观看av| 九色成人免费人妻av| 99热全是精品| 成人亚洲精品一区在线观看 | 成人漫画全彩无遮挡| 蜜桃亚洲精品一区二区三区| 欧美xxⅹ黑人| 亚洲av一区综合| 午夜精品国产一区二区电影 | 欧美激情在线99| 亚洲图色成人| 熟女电影av网| 舔av片在线| 久热久热在线精品观看| 精品国产一区二区三区久久久樱花 | 国产黄频视频在线观看| 好男人视频免费观看在线| 免费黄频网站在线观看国产| 亚洲真实伦在线观看| 最近中文字幕高清免费大全6| 亚洲美女搞黄在线观看| 在线观看av片永久免费下载| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av天美| 免费观看在线日韩| 超碰av人人做人人爽久久| 蜜桃久久精品国产亚洲av| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| 国产日韩欧美亚洲二区| 2022亚洲国产成人精品| 一级毛片我不卡| 久热这里只有精品99| 深夜a级毛片| 能在线免费看毛片的网站| 精品一区二区三卡| 欧美bdsm另类| 好男人在线观看高清免费视频| 97超碰精品成人国产| 黄片wwwwww| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 亚洲自拍偷在线| 男男h啪啪无遮挡| 国产日韩欧美在线精品| 欧美日韩在线观看h| 六月丁香七月| 中文资源天堂在线| 亚洲av免费在线观看| 久久久久国产精品人妻一区二区| 波野结衣二区三区在线| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av蜜桃| 亚洲电影在线观看av| 激情 狠狠 欧美| 国产91av在线免费观看| 婷婷色麻豆天堂久久| 午夜福利视频精品| 欧美高清成人免费视频www| 欧美bdsm另类| 久久久久性生活片| 国产成人精品久久久久久| 亚洲最大成人av| 精品99又大又爽又粗少妇毛片| av在线蜜桃| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久| 亚洲精品日韩在线中文字幕| 最近手机中文字幕大全| 伊人久久精品亚洲午夜| 亚洲av福利一区| 久久99热6这里只有精品| 一个人看的www免费观看视频| 在线观看三级黄色| 如何舔出高潮| 身体一侧抽搐| 亚洲色图综合在线观看| 联通29元200g的流量卡| 欧美日韩视频精品一区| 亚洲四区av| 91狼人影院| 免费电影在线观看免费观看| 啦啦啦啦在线视频资源| 亚洲av欧美aⅴ国产| 69人妻影院| 国产日韩欧美在线精品| 成人国产麻豆网| 久久久久精品性色| 色网站视频免费| 日韩强制内射视频| 国产色婷婷99| 国内揄拍国产精品人妻在线| 建设人人有责人人尽责人人享有的 | 特级一级黄色大片| 2018国产大陆天天弄谢| 久久人人爽人人片av| 白带黄色成豆腐渣| 18禁在线播放成人免费| 成年女人在线观看亚洲视频 | 亚洲在线观看片| 亚洲自拍偷在线| 男人和女人高潮做爰伦理| 天天一区二区日本电影三级| 亚洲欧洲日产国产| 久久精品国产亚洲av天美| 男女啪啪激烈高潮av片| 春色校园在线视频观看| 高清视频免费观看一区二区| 九色成人免费人妻av| 国产精品蜜桃在线观看| freevideosex欧美| 在线 av 中文字幕| 99久久九九国产精品国产免费| 九色成人免费人妻av| 蜜桃久久精品国产亚洲av| 午夜日本视频在线| 国产精品熟女久久久久浪| 欧美日本视频| 中国三级夫妇交换| 亚洲图色成人| 久久99蜜桃精品久久| 亚洲欧美清纯卡通| av福利片在线观看| 69av精品久久久久久| 国产午夜精品一二区理论片| 午夜激情久久久久久久| 最近最新中文字幕大全电影3| 中文欧美无线码| 在现免费观看毛片| 一级毛片黄色毛片免费观看视频| 男男h啪啪无遮挡| 国产精品不卡视频一区二区| 国国产精品蜜臀av免费| 国产精品麻豆人妻色哟哟久久| 免费观看a级毛片全部| 亚洲成人久久爱视频| 欧美区成人在线视频| 99九九线精品视频在线观看视频| 亚洲av中文字字幕乱码综合| 久久久国产一区二区| 国产在线一区二区三区精| 汤姆久久久久久久影院中文字幕| 精品人妻熟女av久视频| av在线蜜桃| 18禁在线无遮挡免费观看视频| 免费看不卡的av| 爱豆传媒免费全集在线观看| 精品人妻一区二区三区麻豆| 99热国产这里只有精品6| 亚洲欧美一区二区三区国产| 欧美日韩综合久久久久久| 欧美日韩视频高清一区二区三区二| 免费人成在线观看视频色| 99热国产这里只有精品6| 日韩一区二区三区影片| 91午夜精品亚洲一区二区三区| 久久久久九九精品影院| 亚洲经典国产精华液单| 国产精品精品国产色婷婷| 国产成人a区在线观看| 久久久久精品久久久久真实原创| 欧美 日韩 精品 国产| 国产爱豆传媒在线观看| 色婷婷久久久亚洲欧美| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 白带黄色成豆腐渣| 免费观看无遮挡的男女| 久久久久久久久久成人| 久久久精品欧美日韩精品| 成人美女网站在线观看视频| 国产成人免费观看mmmm| 丝瓜视频免费看黄片| 久久99蜜桃精品久久| 亚洲成人久久爱视频| 亚洲第一区二区三区不卡| av卡一久久| 伊人久久精品亚洲午夜| 日本av手机在线免费观看| 午夜视频国产福利| 日本猛色少妇xxxxx猛交久久| 国产综合懂色| 我的女老师完整版在线观看| 久久久久久久久久久丰满| 街头女战士在线观看网站| 人妻少妇偷人精品九色| 久久久久久九九精品二区国产| 午夜老司机福利剧场| 九草在线视频观看| 欧美激情在线99| 色5月婷婷丁香| 一级a做视频免费观看| 高清毛片免费看| 国产极品天堂在线| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| 一区二区三区乱码不卡18| 色综合色国产| 毛片一级片免费看久久久久| 亚洲色图av天堂| 嫩草影院新地址| 亚洲国产精品999| 精品久久国产蜜桃| 亚洲人成网站高清观看| 亚洲国产欧美在线一区| av在线老鸭窝| 亚洲一级一片aⅴ在线观看| 亚洲精品乱码久久久v下载方式| 97人妻精品一区二区三区麻豆| 久久人人爽人人片av| 精品人妻偷拍中文字幕| 狂野欧美激情性bbbbbb| 亚洲精品亚洲一区二区| 99热全是精品| av播播在线观看一区| 一级黄片播放器| 边亲边吃奶的免费视频| 精品人妻熟女av久视频| 成人毛片60女人毛片免费| 亚洲精品国产av成人精品| 成人亚洲欧美一区二区av| 国产免费视频播放在线视频| 三级经典国产精品| 国产精品久久久久久av不卡| 国产欧美亚洲国产| 国产成人a∨麻豆精品| 黄色一级大片看看| 国产成人免费无遮挡视频| 亚洲欧美日韩东京热| 午夜免费鲁丝| 免费看光身美女| 免费大片18禁| 日本熟妇午夜| 亚洲欧美日韩卡通动漫| 一个人看的www免费观看视频| 91久久精品国产一区二区成人| 十八禁网站网址无遮挡 | 97在线视频观看| 欧美潮喷喷水| 国产精品爽爽va在线观看网站| 国产午夜精品一二区理论片| 舔av片在线| 欧美老熟妇乱子伦牲交| 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 久久99热这里只频精品6学生| 内射极品少妇av片p| 观看美女的网站| 亚洲性久久影院| 久久综合国产亚洲精品| 免费大片黄手机在线观看| 久久97久久精品| 国产一区二区三区综合在线观看 | 直男gayav资源| 菩萨蛮人人尽说江南好唐韦庄| 日本三级黄在线观看| 日本wwww免费看| 亚洲精品一区蜜桃| 爱豆传媒免费全集在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲av福利一区| 男人添女人高潮全过程视频| 精品久久国产蜜桃| 91精品一卡2卡3卡4卡| 国产高清国产精品国产三级 | 成人黄色视频免费在线看| 亚洲精品中文字幕在线视频 | 久久女婷五月综合色啪小说 | 亚洲欧美日韩东京热| 亚洲色图综合在线观看| 一级毛片黄色毛片免费观看视频| 日韩免费高清中文字幕av| 日本-黄色视频高清免费观看| 日本欧美国产在线视频| 中文天堂在线官网| 秋霞在线观看毛片| 日韩欧美精品v在线| 晚上一个人看的免费电影| 国内揄拍国产精品人妻在线| 国产综合懂色| 有码 亚洲区| 日韩一区二区视频免费看| av一本久久久久| 久久久欧美国产精品| 在线观看国产h片| 高清视频免费观看一区二区| 91久久精品国产一区二区成人| 久久女婷五月综合色啪小说 | 国产精品一区二区三区四区免费观看| 国模一区二区三区四区视频| 大话2 男鬼变身卡| 秋霞在线观看毛片| 美女主播在线视频| av线在线观看网站| 国产男人的电影天堂91| 免费看不卡的av| 青青草视频在线视频观看| 久久精品国产亚洲av涩爱| 亚洲,一卡二卡三卡| 伦理电影大哥的女人| 亚洲精品影视一区二区三区av| 国产老妇女一区| 国产精品嫩草影院av在线观看| 亚洲av欧美aⅴ国产| 少妇熟女欧美另类| 黄片wwwwww| 97在线人人人人妻| 欧美精品国产亚洲| 国产综合精华液| 亚洲,欧美,日韩| 亚洲国产精品成人综合色| 欧美最新免费一区二区三区| 好男人在线观看高清免费视频| 亚洲激情五月婷婷啪啪| 极品教师在线视频| 美女国产视频在线观看| 日韩电影二区| 久久综合国产亚洲精品| 亚洲成色77777| 午夜福利视频1000在线观看| 亚洲精品乱码久久久久久按摩| 三级国产精品片| 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆| 九色成人免费人妻av| 熟女av电影| 久久6这里有精品| 精品国产一区二区三区久久久樱花 | 91在线精品国自产拍蜜月| .国产精品久久| 五月天丁香电影| 午夜日本视频在线| 狠狠精品人妻久久久久久综合| www.色视频.com| 欧美一级a爱片免费观看看| 激情五月婷婷亚洲| 国产成人freesex在线| 毛片一级片免费看久久久久| 身体一侧抽搐| 啦啦啦啦在线视频资源| 国产成人91sexporn| 联通29元200g的流量卡| 视频中文字幕在线观看| av天堂中文字幕网| 国产美女午夜福利| 97人妻精品一区二区三区麻豆| 国产乱人偷精品视频| 亚洲国产欧美在线一区| 亚洲无线观看免费| 国产精品久久久久久av不卡| 两个人的视频大全免费| 天堂俺去俺来也www色官网| 视频区图区小说| 精品久久久噜噜| 国产精品爽爽va在线观看网站| 黄色配什么色好看| 国产精品嫩草影院av在线观看| 免费高清在线观看视频在线观看| 狠狠精品人妻久久久久久综合| 午夜福利视频精品| 精品国产露脸久久av麻豆| 水蜜桃什么品种好| 少妇丰满av| 成人美女网站在线观看视频| 99九九线精品视频在线观看视频| 国产高清不卡午夜福利| 狂野欧美激情性bbbbbb| 在线观看一区二区三区| 国产成人a区在线观看| 亚洲av电影在线观看一区二区三区 | 久久精品综合一区二区三区| www.av在线官网国产| 久久久久九九精品影院| 国产亚洲5aaaaa淫片| 狠狠精品人妻久久久久久综合| 精品午夜福利在线看| 亚洲无线观看免费| 亚洲va在线va天堂va国产| 精品人妻偷拍中文字幕| 国产91av在线免费观看| 亚洲内射少妇av| 亚洲在久久综合| 婷婷色综合www| 日产精品乱码卡一卡2卡三| 日本三级黄在线观看| 有码 亚洲区| 九草在线视频观看| 国产片特级美女逼逼视频| 少妇人妻一区二区三区视频| 久久久a久久爽久久v久久| 亚洲最大成人av| 欧美最新免费一区二区三区| 少妇 在线观看| 3wmmmm亚洲av在线观看| 精品一区二区三卡| 一区二区三区四区激情视频| 成年女人看的毛片在线观看| 欧美3d第一页| 亚洲精品色激情综合| 日韩成人伦理影院| 一级毛片我不卡| 国产极品天堂在线| av在线app专区| 亚洲最大成人av| 三级男女做爰猛烈吃奶摸视频| 国产 精品1| 精品国产三级普通话版| 美女被艹到高潮喷水动态| 久久6这里有精品| 边亲边吃奶的免费视频| 欧美极品一区二区三区四区| 麻豆国产97在线/欧美| 久久鲁丝午夜福利片| 日本欧美国产在线视频| 精华霜和精华液先用哪个| 国产一区有黄有色的免费视频| 青青草视频在线视频观看| 肉色欧美久久久久久久蜜桃 | 亚洲综合色惰| 亚洲国产精品999| 男插女下体视频免费在线播放| 国产精品国产三级专区第一集| 久久精品国产亚洲av天美| 精品一区在线观看国产| 精品国产一区二区三区久久久樱花 | 大香蕉97超碰在线| 国产一区二区三区av在线| 国产日韩欧美在线精品| 亚洲色图综合在线观看| 久久久久久九九精品二区国产| 熟妇人妻不卡中文字幕| 一级毛片电影观看| 99精国产麻豆久久婷婷| 国产69精品久久久久777片| 日韩三级伦理在线观看| 99re6热这里在线精品视频| 国产精品熟女久久久久浪| 亚洲精品成人久久久久久| 国产淫语在线视频| 欧美成人a在线观看| 亚洲一区二区三区欧美精品 | 久久ye,这里只有精品| 国产男女超爽视频在线观看| 国产乱来视频区| 18禁裸乳无遮挡动漫免费视频 | 亚洲综合精品二区| 久久99蜜桃精品久久| 亚洲在线观看片| 欧美激情在线99| 亚洲精品乱码久久久久久按摩| 精品人妻一区二区三区麻豆| 久久综合国产亚洲精品| 国产免费一级a男人的天堂| 精品99又大又爽又粗少妇毛片| 欧美少妇被猛烈插入视频| 精品国产一区二区三区久久久樱花 | 国产片特级美女逼逼视频| 在线观看一区二区三区| 午夜免费男女啪啪视频观看| 插阴视频在线观看视频| 国产 一区精品| av专区在线播放| 欧美成人一区二区免费高清观看| av播播在线观看一区| 中文字幕久久专区| 六月丁香七月| 国产精品成人在线| 激情 狠狠 欧美| 欧美三级亚洲精品| 久久久久久久国产电影| 亚洲最大成人av| 亚洲欧美一区二区三区黑人 | 成人二区视频| 精品久久国产蜜桃| 99视频精品全部免费 在线| 一级av片app| 久久久久久久午夜电影| 高清午夜精品一区二区三区| 麻豆乱淫一区二区| 亚洲国产欧美在线一区| 久久久久久久久久久免费av| 国产精品一二三区在线看| 黑人高潮一二区| 岛国毛片在线播放| 国产乱来视频区| 国产成人精品婷婷| 亚洲成色77777| 女人被狂操c到高潮| 国产av不卡久久| 国产高清不卡午夜福利| 亚洲精品456在线播放app| 欧美另类一区| 亚洲电影在线观看av| 亚洲人成网站在线播| 在线观看国产h片| 永久免费av网站大全| 亚洲图色成人|