• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Unit J-clean Rings

    2016-05-05 03:27:00SHENHongdiCHENHuanyin
    關鍵詞:阿貝爾結論杭州

    SHEN Hongdi, CHEN Huanyin

    (School of Science, Hangzhou Normal University, Hangzhou 310036, China)

    On UnitJ-clean Rings

    SHEN Hongdi, CHEN Huanyin

    (School of Science, Hangzhou Normal University, Hangzhou 310036, China)

    An elementa∈Rright (left) unitJ-clean if there is a unitu∈Rsuch thatau(ua) isJ-clean. A ringRis called right (left) unitJ-clean if each element is right (left) unitJ-clean. In this paper, we get the results that everyJ-clean ring is unitJ-clean, every unitJ-clean is unit clean and every 2-good ring is unit clean but the converse of all the three conclusions are not true. Further, we prove that for a unitJ-clean ringRis 2-good if and only if 1=u+vfor someu,v∈U(R). Also whenRis an abelian ring,Iis an ideal ofRandI?J(R), thenRis unitJ-clean if and only if (1)R/Iis unitJ-clean. (2)Idempotents lift moduloJ(R).

    J-clean ring; unitJ-clean ring; idempotent; Jacobson radical

    1 Introduction

    In [1] the author introduce unit clean rings. A ringRis clean if every elementa∈Rcan be written in the form ofa=e+uwhereeis an idempotent anduis a unit. This concept was extended to unit clean ring in [1]. An elementa∈Rright (left) unit clean if there is a unitu∈Rsuch thatau(ua) is clean. A ringRis called right (left) unit clean if each element is right (left) unit clean. Many properties of such rings are studied in[1]. Inspired by this article and combining the notion ofJ-clean (A ring is calledJ-clean if each elementa∈Rcan be written in the form ofa=e+jwhereeis an idempotent andjis a Jacobson radical. ) We call an elementa∈Rright (left) unitJ-clean if there is a unitu∈Rsuch thatau∈R(ua∈R) isJ-clean. A ringRis called right (left) unitJ-clean if each element is right (left) unitJ-clean.

    In this article we also use some related notion such as n-good ring and so on. We call a ringRis a n-good ring if each elementa∈Rcan be presented asa=u1+u2+u3+……+unwhereui∈U(R) for each 1≤i≤n,i∈Z. An elementr∈Ris called unit regular if there exists a unituinRsuch thatrur=r.

    In this paper, we get the results that everyJ-clean ring is unitJ-clean, every unitJ-clean is unit clean and every 2-good ring is unit clean but the converse of all the three conclusions are not true. Further, we prove that for a unitJ-clean ringRis 2-good if and only if 1=u+vfor someu,v∈U(R). Also whenRis an abelian ring,Iis an ideal ofRandI?J(R), thenRis unitJ-clean if and only if (1)R/Iis unitJ-clean (2)Idempotents lift moduloJ(R).

    Throughout this paper, all rings are associative rings with an identity.Id(R) denotes the idempotents ofR,J(R) denotes the Jacobson radical ofR,U(R) denotes the unit ofR, Ureg(R) represents the unit regular elements and we useTn(R) to stand for the ring of alln×nupper triangular matrices over a ringR.

    2 Equivalent Characterizations

    Definition 1 A ringRis called a right (left) unitJ-clean ring if for every elementa∈Rthere is a unitu∈Rsuch thatau=e+j(ua=e+j) wheree∈Id(R) andj∈J(R).

    Lemma 1 An elementa∈Ris right unitJ-clean if and only if it is left unitJ-clean, and then we call it unitJ-clean.

    Proof Letabe a right unitJ-clean element then there exists a unitusuch thatau=e+jwheree∈Id(R) andj∈J(R). Thusa=eu-1+ju-1. We letc=eu-1, thencu=e,cucu=cu,cuc=c, we multiplyuby the left then we get the result thatucuc=uc, thusucis also an idempotent, we note it byf, soc=u-1f,a=c+ju-1=u-1f+ju-1,ua=f+uju-1wheref∈Id(R) anduju-1∈J(R) we can see that it is left unitJ-clean.

    The converse can be proved in a similar way.

    In [1] The following simple fact is known, we include a proof for readers’ convenience.

    Lemma 2 An elementa∈Ris unit regular if and only if it can be written in the form ofa=euwheree∈Id(R) andu∈U(R).

    Proof Letabe unit regular thenaua=awhereuis a unit. We imply thatau=eis an idempotent by the formula given in the front. Thusa=eu-1wheree∈Id(R) andu-1∈U(R). If we assume thata=eu, thenau-1=eand thusau-1au-1=au-1. Multiplying on the right byugives us thatau-1a=aandais unit regular.

    Theorem 1 A ringRis unitJ-clean if and only if every elementainRcan be written in the form ofa=r+jwherer∈Ureg (R) andj∈J(R).

    Proof LetRbe a unitJ-clean ring then for every elementa∈Rthere exists a unitusuch thatau=e+jwheree∈Id(R) andj∈J(R). Thena=eu-1+ju-1whereeu-1∈Ureg(R) by Lemma 2 andju-1∈J(R). Conversely, if for every elementa∈R,a=r+jwherer∈Ureg(R) andj∈J(R), thena=eu+jsinceris an unit regular element and it can be replaced byeufor some idempotenteand some unituby Lemma 2. Soau-1=e+ju-1whereeis an idempotent andju-1belongs to Jacobson radical. Thus we get the result thatRis unitJ-clean.

    Example 1 EveryJ-clean ring is unitJ-clean, but the converse is not true.

    Proof It is obvious that everyJ-clean ring is unitJ-clean as we can just takeu=1. However the converse is not true. We take a division ring which is not isomorphic to Z2. As we all know that in a division ring idempotents are only 0 and 1 and there is only one element 0 in the Jacobson radical. So there must be some elements can not be presented as the form ofa=e+jwheree∈Id(R) andj∈J(R) if there are more than two elements in a division ring. More clearly, Z3is a division ring and 2∈Z3can not be written in the form ofe+jsince 0+0=0 and 1+0=1. Cheerly, we find that every division ring is unitJ-clean. Ifa∈Randa=0,au=0+0 whereuis a unit and 0 is both idempotent and Jacobson radical. On the other hand ifa≠0, thenamust be a unit, thus we can writeain the form thataa-1=1+0 wherea-1is a unit and 1∈Id(R), 0∈J(R). So we get the result.

    Theorem 2 Every unitJ-clean ring is unit clean.

    Proof For any elementa∈R,a-1=r+jwherer∈Ureg(R) andj∈J(R) sinceRis unitJ-clean. Thena=r+1+jwherer∈Ureg(R) and (1+j)∈U(R), thus it is unit clean by [1,Lemma5.2].

    However, the converse is not true. [1,Proposition5.3] gave out an example that is unit clean but not clean, now we will rewrite the example here and give the proof that it is unit clean but also not unitJ-clean.

    Example 2 LetRbe an indecomposable commutative ring. IfRhas exactly two maximal ideals and 2 is a unit inR, thenRis unit clean but not unitJ-clean.

    Proof Firstly, we will show it is unit clean. We noteM1andM2to represent two maximal ideals separately. For any elementa∈Rwe have four cases. (1)ais a unit, (2)a∈M1∩M2=J(R), (3)a∈M1M2and (4)a∈M2M1.

    In the first case, we writea=0+asinceais a unit.

    In the second case, we know that 1-av=ufor someuandvinU(R) sinceais in Jacobson radical, that isav=1-uwhere 1∈Id(R) and -u∈U(R), soais unit clean.

    In the third case,a∈M1M2, thena+1 anda-1 are not belonging toM1. Since otherwise, 1 and -1 would be elements ofM1. If botha+1 anda-1 ∈M2, then (a+1)+(a-1)=2a∈M2. Thusa∈M2since 2 is a unit, a contradiction. So eithera+1 ora-1 is a unit, thusa=-1+u,a·(-1)=1-uora=1+u, it is obvious thatais unit clean.

    Since the third and fourth cases are symmetric, we can prove the fourth case in the same way.

    Next we will show that it is not unitJ-clean. We assume it is unitJ-clean, then for any elementainRwe can write it in the form ofa=eu+j. SinceRis an indecomposable commutative ring, the only idempotents we have are 0 and 1, thusa=0+jora=u+jthat isais either a Jacobson radical or a unit, we get thatRis local, a contradiction. SoRis not a unitJ-clean ring.

    Theorem 3 Every 2-good ringRis a unit clean ring.

    Proof For any elementa∈R,a=u+vwhereu,v∈U(R), thenau-1=1+vu-1where 1 is an idempotent andvu-1is a unit, so it is unit clean.

    From the preceding result, we may ask that if every 2-good ring is unitJ-clean? If we can find a 2-good ring that is not unitJ-clean then we give out another example that a ring is unit clean but not unitJ-clean.

    Example 3 In [2,Propsition 6] the author give the result that a proper matrix ring over an elementary divisor ring is 2-good. Every Euclidean domain proper matrix rings are strongly 2-good. We takeR=M2(Z) for instance. As we all know that Z is an Euclidean domain, soR=M2(Z) is 2-good. HoweverR/J(R)?R(J(R)=0) is not regular of course not unit regular whileR/J(R) is unit regular is a necessary condition for a unitJ-clean ring. Thus we solve the problem.

    Lemma 3 Every unit regular ring in which 1 is the sum of two units is a 2-good ring.

    Proof We get the result in [5].

    Theorem 4 LetRbe a unitJ-clean ring. Then the following are equivalent:

    (1)Ris 2-good;

    (2)1=u+vfor someu,v∈U(R).

    Proof (1)?(2) It is obvious.

    Corollary 1 LetRbe a unitJ-clean ring and 2∈U(R), then R is 2-good.

    Also,wecanprovethiscorollarybyTheorem4, 1=1/2+1/2where1/2isaunit,sowegetit.

    Theorem5Inalocalringeveryunitregularelementiseitheraunitor0.

    ProofForanyelementa∈Ureg(R),ifa∈U(R),thenitisaunit,ifa∈J(R),thena=eu, au-1=e∈J(R).Thuswegetthate=0sinceidempotentinJacobsonradicalmustbe0.Soa=0u=0.

    Proposition1LetRbeaunitJ-cleanringthenanyelementa∈J(R)canbepresenteduniquelyasa=0+awhere0∈Ureg(R)anda∈J(R).

    ProofForanyelementa∈J(R), a=eu+jsinceRisaunitJ-cleanring.Thenau-1=e+ju-1, e=au-1-ju-1∈J(R)sincebothau-1andju-1belongtoJacobsonradical,soe=0anda=0u+j=0+jistheuniquepresentationofa.

    Proposition2EveryhomomorphicimageofaunitJ-cleanringisunitJ-clean.

    Theorem6LetRbeanabelianring. IisanidealofRandI?J(R).ThenRisunitJ-cleanifandonlyif(1)R/IisunitJ-clean; (2)IdempotentsliftmoduloJ(R).

    ProofR/IisthehomomorphicimagineofR,soitisunitJ-cleansinceRisunitJ-cleanbyProposition2.

    Corollary2LetRbeanabelianring.ThenRisunitJ-cleanifandonlyif

    (1)R/J(R)isunitJ-clean; (2)IdempotentsliftmoduloJ(R).

    ProofItisobviousbyTheorem6.

    Corollary3LetRbeanabelianring.ThenRisunitJ-cleanifandonlyif

    (1)R/J(R)isunitregular; (2)IdempotentsliftmoduloJ(R).

    ProofOnedirectionisobvious. R/J(R)isunitregularsinceRisunitJ-clean.WehaveproveIdempotentsliftmoduloJ(R)byTheorem6.

    Conversely,if(1)and(2)hold.AsweknowunitregularringisunitJ-cleanwecangettheresultbyCorollary2.

    Itisobviousthatabovethreeconclusionsarerightforcommunicativering.

    Theorem7LetRbeaunitJ-cleanringwithtwomaximalideals,thenRmustcontainnontrivialidempotent.

    ProofForanyelementa∈R, a=eu+jforsomee∈Id(R), u∈U(R)andj∈J(R)sinceRisaunitJ-cleanring.Ifa∈J(R), a=eu+j, eu=a-j, e=(a-j)u-1∈J(R),sowegete=0.Ifa∈U(R) a=eu+j, eu=a-j, e=(a-j)u-1∈U(R),thene=1.Ifa∈M1M2, a=eu+j,nowweassumethateisatrivialidempotent,ife=0,thena=j∈J(R),acontradiction.ife=1,thena=u+j∈U(R),alsoacontradiction.Wegettheresultthatemustbeanontrivialidempotent.Wecandiscussa∈M2M1inasimilarway.

    LetP(R)betheprimeradicalofR,i.e.,theintersectionofallprimeideals.ItisobviousthatP(R)?J(R)sinceeverymaximalidealisprimeideal.

    Definition2AringRiscalledaunitP-cleanifforeveryelementa∈Rthereisaunitu∈Rsuchthatau=e+p (ua=e+p)wheree∈Id(R)andp∈P(R).

    Theorem8AringRisunitP-cleanifandonlyifeveryelementainRcanbewrittenintheformofa=r+pwherer∈Ureg(R)andp∈P(R).

    ProofLetRbeaunitP-cleanringthenforeveryelementa∈Rthereexistsaunitusuchthatau=e+pwheree∈Id(R)andp∈P(R).Thena=eu-1+pu-1whereeu-1∈Ureg(R)byLemma2andpu-1∈P(R).Conversely,ifforeveryelementa∈R, a=r+pwherer∈Ureg(R)andp∈P(R),thena=eu+psincerisaunitregularelementanditcanbereplacedbyeuforsomeidempotenteandsomeunitubyLemma2.Soau-1=e+pu-1whereeisanidempotentandpu-1belongstoP(R).ThuswegettheresultthatRisunitP-clean.

    Theorem9LetRbearing.ThenRisunitP-cleanifandonlyif

    (1)P(R)=J(R); (2)RisunitJ-clean.

    ProofAsweallknowthatP(R)?J(R),whatweshoulddoistoprovethatJ(R)?P(R).Foranyelementa∈J(R),wehavea=eu+psinceRisunitP-clean.Thuseu=a-p∈J(R)sincea∈J(R)andp∈P(R)?J(R),thene∈J(R), e=0.Wegeta=p∈P(R), J(R)?P(R), J(R)=P(R).AsP(R)?J(R),itisobviousthatunitP-cleanisunitJ-clean.

    Conversely,assumethat(1)and(2)hold.Theconclusionisobvious.

    Theorem10AringRisunitP-cleanifandonlyifR/P(R)isunitregular.

    ProofOnedirectionisobvious.

    Theorem11Everyabelianπ-regularringisunitJ-cleanring.

    ProofIn[3,Lemma5]weknowthatinabelianπ-regularringNil(R)=J(R)andbyCorollary1wegetthateveryelementxinitcanbewriteintheformofx=eu+wwheree∈Id(R), u∈U(R)andw∈Nil(R),thenwegettheresult.

    3 Related Rings

    Inthissection,wefurtherconsiderunitJ-cleannessforvariousrelatedrings.

    Theorem12 ∏RiisafiniteunitJ-cleanifandonlyifeveryRiisunitJ-clean.

    ProofOnedirectionisobvioussinceeveryRiisthehomomorphicimageof∏Ri.

    OntheotherhandifeveryRiisunitJ-clean,thenforanyelement(a1,a2,a3……an)∈∏Riforsomen∈Z,thenai=ri+jiwhereri∈Ureg(Ri)andji∈J(Ri),thus(a1,a2,a3……an)=(r1,r2,r3……rn)+(j1,j2,j3……jn)where(r1,r2,r3……rn)∈Ureg(∏Ri)and(j1,j2,j3……jn)∈J(∏Ri),so∏RiisunitJ-clean.

    Theorem13 R[[x]]isunitJ-cleanifandonlyifRisunitJ-clean.

    ProofOnedirectionisobvioussinceRisthehomomorphicimageofR[[x]].

    OntheotherhandifRisunitJ-clean,thenforanyelementa0+a1x+a2x2+……∈R[[x]],thena0=r0+j0wherer0∈Ureg(R)andj0∈J(R),thus(a0+a1x+a2x2+……=r0+j0+a1x,a2x2……where(r0∈Ureg(R[[x]])andj0+a1x+a2x2+……∈J(R[[x]]),sinceJ(R[[x]])havetheformofj0+a1x+a2x2+……wherej0∈J(R),soR[[x]]isunitJ-clean.

    SetR×M={(r,m)|r∈R,m∈RMR}wedefinetheoperationby(r,m)+(s,v)=(r+s,m+v), (r,m)(s,v)=(rs,rv+ms).ThenR×Mformsaring,whichiscalledthetrivialextensionsofRandM.AsweallknowJ(R×M)={(r,m)|r∈J(R),m∈RMR}.

    Theorem16LetRbearing.ThenRisunitJ-cleanifandonlyifR×M={(r,m)|r∈R,m∈RMR}isunitJ-clean.

    Proof IfRis unitJ-clean, for any (r,m)∈R×MsinceRis unitJ-clean,r=eu+jwheree∈Id(R),u∈U(R),j∈J(R), we have (r,m)=(eu,0)+(j,m) where (eu,0)∈Ureg(R×M) and (j,m)∈J(R×M) which impliesR×Mis unitJ-clean whenRis unitJ-clean.

    Conversely, ifR×Mis unitJ-clean, we setP=(0,M), then we haveR?R×M/PsoRis unitJ-clean whenR×Mis unitJ-clean.

    :

    [1] BOSSALLER D P. On a generalization of clean rings[D].Saint Louis: Saint Louis University,2013.

    [2] VAMOS P. 2-good rings[J]. The Quarterly Journal of Mathematics,2005,56(3):417-430.

    [3] BADAWI A. On abelian π-regular rings[J]. Communication in Algebra,1997,25(4):1009-1021.

    [4] NICHOLSON W K, ZHOU Y. Clean general rings[J]. J Algebra,2005,291(1):297-311.

    [5] WANG Y, REN Y L. 2-good rings and their extentions[J]. Bull Korean Math Soc,2013,50(5):1711-1723.

    [6] GROVER H K, WANG Z, KHURANA D, et al. Sums of units in rings[J]. Journal of Algebra and Its Applications, 2014,13(1):1350072.

    關于UnitJ-clean環(huán)

    沈洪地 ,陳煥艮

    (杭州師范大學理學院,浙江 杭州310036)

    一個元素叫做右單位J-clean(左單位J-clean)如果在R中存在一個單位u,使得au(ua)是J-clean 的.一個環(huán)R叫做右單位J-clean(左單位J-clean)環(huán)當且僅當環(huán)中的每個元素都是右單位J-clean(左單位J-clean)的.文章得到了以下幾個結論:每個J-clean 環(huán)是 unitJ-clean 環(huán), 每個unitJ-clean 環(huán)是 unit clean環(huán),每個2-good 環(huán)是unit clean 環(huán),但是以上三個結論反過來就不正確.文章還證明了一個unitJ-clean 環(huán),那么它是2-good 環(huán)當且僅當1能表示成兩個單位的和.當R是一個阿貝爾環(huán),I是一個R的包含在Jacobson根里的理想,那么R是unitJ-clean 環(huán)當且僅當(1)R/I是unitJ-clean 的.(2)冪等元關于J(R)可提升.

    J-clean環(huán);unitJ-clean環(huán);冪等元;Jacobson根

    date:2015-06-16

    Supported by the Natural Science Foundation of Zhejiang Province(LY13A010019).

    CHEN Huanyin (1963—),Male,Professor,ph. Doctor, majored in algebra of basic mathematics. E-mail:huanyinchen@aliyun.com

    10.3969/j.issn.1674-232X.2016.02.009

    O153.3 MSC2010: 16E50,16S34,16U10 Article character: A

    1674-232X(2015)02-0163-08

    猜你喜歡
    阿貝爾結論杭州
    杭州
    幼兒畫刊(2022年11期)2022-11-16 07:22:36
    由一個簡單結論聯(lián)想到的數(shù)論題
    立體幾何中的一個有用結論
    追風的小鷹
    狄利克雷與阿貝爾收斂判別法的教學研究
    作家風采 阿貝爾
    劍南文學(2018年1期)2018-04-11 02:30:47
    阿貝爾獎
    G20 映像杭州的“取勝之鑰”
    傳媒評論(2017年12期)2017-03-01 07:04:58
    杭州
    汽車與安全(2016年5期)2016-12-01 05:21:55
    杭州舊影
    看天下(2016年24期)2016-09-10 20:44:10
    大又大粗又爽又黄少妇毛片口| 国产精品蜜桃在线观看| 狂野欧美白嫩少妇大欣赏| 久久99热6这里只有精品| 亚洲av成人精品一区久久| 免费大片黄手机在线观看| 国产精品国产三级专区第一集| 中国三级夫妇交换| 亚洲高清免费不卡视频| av线在线观看网站| 欧美激情极品国产一区二区三区 | 国产精品一二三区在线看| 日韩精品免费视频一区二区三区 | 国产黄色免费在线视频| 色哟哟·www| 中文字幕精品免费在线观看视频 | 成人亚洲精品一区在线观看| 91久久精品电影网| 日韩一本色道免费dvd| 日本黄色片子视频| 搡女人真爽免费视频火全软件| 亚洲欧美一区二区三区黑人 | 婷婷色综合大香蕉| 久久国产精品大桥未久av| 日韩成人伦理影院| av在线app专区| 丝瓜视频免费看黄片| 国产精品国产三级国产专区5o| 老司机影院成人| 国产成人aa在线观看| 黄色视频在线播放观看不卡| 亚洲人与动物交配视频| 日韩 亚洲 欧美在线| 春色校园在线视频观看| 美女xxoo啪啪120秒动态图| 丁香六月天网| 中文字幕免费在线视频6| 国产欧美日韩一区二区三区在线 | 久久久久国产网址| 成人午夜精彩视频在线观看| 在线观看一区二区三区激情| 国产 精品1| 欧美精品国产亚洲| 国国产精品蜜臀av免费| 美女xxoo啪啪120秒动态图| 麻豆乱淫一区二区| av视频免费观看在线观看| 两个人的视频大全免费| 国产片内射在线| 97精品久久久久久久久久精品| 在线观看免费视频网站a站| 狠狠婷婷综合久久久久久88av| 草草在线视频免费看| 国产成人免费无遮挡视频| 晚上一个人看的免费电影| 国产探花极品一区二区| 亚洲怡红院男人天堂| 91精品伊人久久大香线蕉| 三上悠亚av全集在线观看| 日韩,欧美,国产一区二区三区| 欧美日韩在线观看h| 国产精品女同一区二区软件| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 久久精品国产自在天天线| 久久青草综合色| 久热久热在线精品观看| 波野结衣二区三区在线| 爱豆传媒免费全集在线观看| 国产精品嫩草影院av在线观看| 国产成人精品一,二区| 日本-黄色视频高清免费观看| 亚洲精品乱久久久久久| 国产精品一区www在线观看| 久热这里只有精品99| 久久热精品热| 久久综合国产亚洲精品| 亚洲人成网站在线播| 五月开心婷婷网| 日韩精品有码人妻一区| 中文字幕精品免费在线观看视频 | 久久99一区二区三区| 国产男人的电影天堂91| 久久精品国产亚洲网站| 国产精品不卡视频一区二区| 欧美bdsm另类| 美女cb高潮喷水在线观看| av在线老鸭窝| 一级,二级,三级黄色视频| 男女国产视频网站| 成人二区视频| 亚洲人成77777在线视频| 极品人妻少妇av视频| 亚洲国产最新在线播放| 亚洲精品久久成人aⅴ小说 | 欧美xxxx性猛交bbbb| 亚洲人成网站在线观看播放| av免费观看日本| av在线播放精品| 久久久久久久国产电影| 免费av不卡在线播放| 亚洲av.av天堂| 一本大道久久a久久精品| 亚洲欧美色中文字幕在线| 成人毛片60女人毛片免费| 午夜久久久在线观看| 少妇熟女欧美另类| 国产成人freesex在线| 精品久久久久久久久亚洲| 在线观看免费高清a一片| av线在线观看网站| 欧美精品一区二区大全| 色视频在线一区二区三区| 亚洲精品国产av蜜桃| 国产成人精品在线电影| 啦啦啦在线观看免费高清www| 国产精品久久久久久精品电影小说| 精品人妻在线不人妻| 91国产中文字幕| 最近中文字幕高清免费大全6| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| 国产高清国产精品国产三级| 九九爱精品视频在线观看| 欧美日韩综合久久久久久| 亚洲一级一片aⅴ在线观看| 亚洲国产色片| 18+在线观看网站| 男人操女人黄网站| 一本大道久久a久久精品| 久久这里有精品视频免费| 2022亚洲国产成人精品| 一二三四中文在线观看免费高清| 亚洲av成人精品一区久久| 男女边摸边吃奶| 免费大片18禁| 老女人水多毛片| 人妻夜夜爽99麻豆av| 国产精品欧美亚洲77777| 国产精品一二三区在线看| 国产精品一区二区三区四区免费观看| 欧美精品国产亚洲| 久热久热在线精品观看| 久久99一区二区三区| 亚洲av电影在线观看一区二区三区| 美女视频免费永久观看网站| 天堂中文最新版在线下载| 一级毛片电影观看| 蜜桃国产av成人99| 男女免费视频国产| 日日爽夜夜爽网站| 日韩一区二区视频免费看| av网站免费在线观看视频| 精品国产一区二区久久| 99热网站在线观看| 国产精品三级大全| 免费观看性生交大片5| videossex国产| 久久久久国产精品人妻一区二区| 亚洲人成网站在线播| 另类亚洲欧美激情| 欧美三级亚洲精品| 国产午夜精品久久久久久一区二区三区| 97超视频在线观看视频| 男女高潮啪啪啪动态图| 热99国产精品久久久久久7| 韩国高清视频一区二区三区| 久热这里只有精品99| 一级毛片黄色毛片免费观看视频| 久久99蜜桃精品久久| 精品午夜福利在线看| 精品少妇内射三级| 伦理电影免费视频| 精品国产露脸久久av麻豆| freevideosex欧美| 国产片内射在线| 久久久久国产精品人妻一区二区| 在线观看一区二区三区激情| 久久鲁丝午夜福利片| 三级国产精品欧美在线观看| 亚洲综合色网址| 日日爽夜夜爽网站| 女性被躁到高潮视频| 久久人人爽人人片av| 99久久人妻综合| a级片在线免费高清观看视频| 免费av不卡在线播放| 欧美人与性动交α欧美精品济南到 | 久久久国产精品麻豆| 91久久精品电影网| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲午夜精品一区二区久久| av在线播放精品| 老女人水多毛片| 超色免费av| 91精品国产国语对白视频| 国产日韩欧美在线精品| 精品国产乱码久久久久久小说| 色婷婷久久久亚洲欧美| 久久精品人人爽人人爽视色| 中国国产av一级| 乱人伦中国视频| 久久免费观看电影| 亚洲国产最新在线播放| 看免费成人av毛片| 制服人妻中文乱码| 日韩电影二区| 老司机影院毛片| 中文欧美无线码| 成人影院久久| 国产老妇伦熟女老妇高清| 日本黄色片子视频| 一个人看视频在线观看www免费| 成人国产av品久久久| av.在线天堂| 91久久精品国产一区二区三区| 高清毛片免费看| 久久热精品热| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 人人妻人人澡人人看| 亚洲欧美一区二区三区国产| 日本-黄色视频高清免费观看| 午夜免费鲁丝| 成人午夜精彩视频在线观看| 国产精品人妻久久久影院| 91精品国产九色| 亚洲精品aⅴ在线观看| 国产黄片视频在线免费观看| 少妇的逼水好多| 国产精品秋霞免费鲁丝片| 狂野欧美白嫩少妇大欣赏| 老司机影院毛片| 99九九线精品视频在线观看视频| 男女无遮挡免费网站观看| 国产一区二区在线观看日韩| 国产视频内射| 伊人亚洲综合成人网| 18禁在线无遮挡免费观看视频| 人妻 亚洲 视频| 草草在线视频免费看| 国产乱来视频区| 高清午夜精品一区二区三区| 亚洲成人手机| 免费看光身美女| 国产精品三级大全| 久久国产精品男人的天堂亚洲 | 国精品久久久久久国模美| 久久这里有精品视频免费| 亚洲天堂av无毛| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 黄片播放在线免费| 亚洲精华国产精华液的使用体验| av又黄又爽大尺度在线免费看| 妹子高潮喷水视频| 亚洲精品自拍成人| 久久久久网色| 国产精品久久久久久久电影| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| 爱豆传媒免费全集在线观看| 乱人伦中国视频| 亚洲精品,欧美精品| 在现免费观看毛片| 国产有黄有色有爽视频| 色视频在线一区二区三区| 午夜影院在线不卡| 极品人妻少妇av视频| 丰满饥渴人妻一区二区三| 久久99一区二区三区| 毛片一级片免费看久久久久| 99国产精品免费福利视频| 亚洲综合色网址| 丝瓜视频免费看黄片| 国产黄频视频在线观看| 老司机影院成人| 久久女婷五月综合色啪小说| 国产黄片视频在线免费观看| 国产av一区二区精品久久| www.色视频.com| 蜜桃国产av成人99| av播播在线观看一区| 亚洲国产色片| 欧美三级亚洲精品| 一区二区三区乱码不卡18| 亚洲,欧美,日韩| 一级片'在线观看视频| 高清毛片免费看| 亚洲精品视频女| 黄片播放在线免费| 亚洲人与动物交配视频| 国产亚洲最大av| 丝袜脚勾引网站| 综合色丁香网| 欧美 亚洲 国产 日韩一| av黄色大香蕉| 亚洲少妇的诱惑av| 国产精品一区二区在线观看99| 亚洲熟女精品中文字幕| 日本爱情动作片www.在线观看| 国产精品久久久久久精品古装| 国产又色又爽无遮挡免| 两个人的视频大全免费| 亚洲内射少妇av| 麻豆精品久久久久久蜜桃| kizo精华| 91国产中文字幕| 亚洲情色 制服丝袜| 国产视频内射| 免费av不卡在线播放| a级毛片免费高清观看在线播放| 国产黄频视频在线观看| 国产乱来视频区| 日韩人妻高清精品专区| 成年人午夜在线观看视频| 黑丝袜美女国产一区| 久久99热这里只频精品6学生| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| 中文字幕久久专区| 久久人人爽人人爽人人片va| 免费少妇av软件| 精品一区二区免费观看| 精品亚洲乱码少妇综合久久| 亚洲国产av新网站| 亚洲美女搞黄在线观看| 人人妻人人澡人人看| 嘟嘟电影网在线观看| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩另类电影网站| 免费高清在线观看视频在线观看| 青春草国产在线视频| 亚洲精品日韩在线中文字幕| 亚洲四区av| 99精国产麻豆久久婷婷| 丰满少妇做爰视频| 日本免费在线观看一区| av电影中文网址| 久久久久久久久久久免费av| 亚洲婷婷狠狠爱综合网| 欧美日韩综合久久久久久| 热re99久久国产66热| 亚洲中文av在线| 黄色怎么调成土黄色| 伦精品一区二区三区| 搡老乐熟女国产| 一区二区日韩欧美中文字幕 | 亚洲欧洲国产日韩| 中文字幕免费在线视频6| 亚洲天堂av无毛| 亚洲精品中文字幕在线视频| 最黄视频免费看| 香蕉精品网在线| 亚洲美女黄色视频免费看| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 熟女人妻精品中文字幕| 久久久午夜欧美精品| 国产黄色视频一区二区在线观看| 最新的欧美精品一区二区| 少妇人妻精品综合一区二区| 国产黄频视频在线观看| 飞空精品影院首页| 99热国产这里只有精品6| 晚上一个人看的免费电影| 国产熟女午夜一区二区三区 | 亚洲精品色激情综合| 国产一区有黄有色的免费视频| 各种免费的搞黄视频| 麻豆精品久久久久久蜜桃| 久久99精品国语久久久| 热re99久久精品国产66热6| 亚洲精品,欧美精品| 久久久精品区二区三区| 国产 一区精品| 另类精品久久| 最新中文字幕久久久久| 亚洲精品一区蜜桃| 国产欧美另类精品又又久久亚洲欧美| 成人综合一区亚洲| 免费av中文字幕在线| 少妇的逼水好多| 狂野欧美激情性xxxx在线观看| 在线播放无遮挡| 欧美精品一区二区免费开放| 国产精品久久久久久久久免| 久久久久精品久久久久真实原创| 十八禁高潮呻吟视频| 久久久久久久久大av| 久久久国产欧美日韩av| 五月玫瑰六月丁香| 在线观看免费视频网站a站| 免费av中文字幕在线| 国产精品人妻久久久久久| 丰满迷人的少妇在线观看| 中国美白少妇内射xxxbb| 99九九线精品视频在线观看视频| 久久久久国产网址| 校园人妻丝袜中文字幕| 亚洲av二区三区四区| 精品国产国语对白av| 欧美日韩综合久久久久久| 春色校园在线视频观看| 美女大奶头黄色视频| 最近2019中文字幕mv第一页| 国产精品偷伦视频观看了| 亚洲精品456在线播放app| 26uuu在线亚洲综合色| 亚洲人成网站在线播| 精品久久久久久电影网| 国产一区有黄有色的免费视频| 午夜激情久久久久久久| 国产午夜精品一二区理论片| 天美传媒精品一区二区| 日韩熟女老妇一区二区性免费视频| 美女内射精品一级片tv| 亚洲第一区二区三区不卡| 国产老妇伦熟女老妇高清| 91午夜精品亚洲一区二区三区| 水蜜桃什么品种好| 午夜av观看不卡| 久久久久久久大尺度免费视频| 国产熟女午夜一区二区三区 | 国产亚洲欧美精品永久| 午夜免费男女啪啪视频观看| 黑人欧美特级aaaaaa片| 国产成人精品福利久久| 美女cb高潮喷水在线观看| 交换朋友夫妻互换小说| 麻豆精品久久久久久蜜桃| av免费观看日本| 久久久久国产精品人妻一区二区| 性高湖久久久久久久久免费观看| 99久久精品国产国产毛片| av网站免费在线观看视频| 麻豆乱淫一区二区| 最新中文字幕久久久久| 国产一区有黄有色的免费视频| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| 男男h啪啪无遮挡| 欧美三级亚洲精品| 少妇熟女欧美另类| 3wmmmm亚洲av在线观看| 国产亚洲av片在线观看秒播厂| 自拍欧美九色日韩亚洲蝌蚪91| 秋霞伦理黄片| 欧美日韩视频高清一区二区三区二| 免费大片18禁| 亚洲国产av新网站| 久久久精品区二区三区| 国产熟女欧美一区二区| 亚洲精品av麻豆狂野| 伦精品一区二区三区| 亚洲精品国产色婷婷电影| 秋霞伦理黄片| 久久人人爽人人爽人人片va| 日本91视频免费播放| av免费观看日本| 在线观看www视频免费| freevideosex欧美| 人妻少妇偷人精品九色| 亚洲精品美女久久av网站| 国产精品一区二区三区四区免费观看| 免费av中文字幕在线| 国产一区有黄有色的免费视频| 最黄视频免费看| 欧美3d第一页| 超色免费av| 午夜激情福利司机影院| 天天操日日干夜夜撸| 大码成人一级视频| 极品少妇高潮喷水抽搐| 国产极品粉嫩免费观看在线 | 久热这里只有精品99| 亚洲国产欧美在线一区| 国产亚洲精品第一综合不卡 | 国产国拍精品亚洲av在线观看| 丝袜喷水一区| 视频区图区小说| 晚上一个人看的免费电影| 91国产中文字幕| 99九九线精品视频在线观看视频| 亚洲婷婷狠狠爱综合网| 国产精品99久久久久久久久| 高清av免费在线| 乱码一卡2卡4卡精品| 十分钟在线观看高清视频www| 免费黄网站久久成人精品| 日韩人妻高清精品专区| 国产黄色视频一区二区在线观看| 亚洲精品亚洲一区二区| 人妻系列 视频| 亚洲av中文av极速乱| 午夜激情福利司机影院| 日产精品乱码卡一卡2卡三| 性色av一级| 夜夜看夜夜爽夜夜摸| 一级二级三级毛片免费看| 一区二区日韩欧美中文字幕 | 国产精品人妻久久久久久| 国产精品三级大全| av专区在线播放| 夫妻午夜视频| 成年女人在线观看亚洲视频| 欧美精品国产亚洲| 午夜影院在线不卡| 777米奇影视久久| 亚洲第一av免费看| 大片电影免费在线观看免费| 午夜影院在线不卡| 亚洲综合色网址| 午夜免费观看性视频| 亚洲内射少妇av| av视频免费观看在线观看| 国产亚洲最大av| 97超碰精品成人国产| 制服人妻中文乱码| 在线播放无遮挡| 国产片内射在线| 亚洲国产精品999| 久久午夜综合久久蜜桃| 欧美激情极品国产一区二区三区 | 欧美 日韩 精品 国产| 精品午夜福利在线看| 亚洲久久久国产精品| 大香蕉97超碰在线| 一区在线观看完整版| 欧美一级a爱片免费观看看| 一级二级三级毛片免费看| 国产av码专区亚洲av| 麻豆精品久久久久久蜜桃| 国产成人91sexporn| kizo精华| 亚洲欧美清纯卡通| 制服诱惑二区| 国产日韩欧美在线精品| 免费观看性生交大片5| 人妻夜夜爽99麻豆av| 亚洲国产成人一精品久久久| 国产国拍精品亚洲av在线观看| 黄色配什么色好看| 欧美精品亚洲一区二区| 又大又黄又爽视频免费| 久久久精品免费免费高清| 丝袜美足系列| 亚洲精品视频女| 97在线人人人人妻| 青春草亚洲视频在线观看| 国产av码专区亚洲av| 国产亚洲一区二区精品| 18禁裸乳无遮挡动漫免费视频| 91精品一卡2卡3卡4卡| 午夜91福利影院| 这个男人来自地球电影免费观看 | 美女国产视频在线观看| 国产不卡av网站在线观看| 毛片一级片免费看久久久久| freevideosex欧美| 亚洲av在线观看美女高潮| 制服人妻中文乱码| 日本免费在线观看一区| 婷婷色av中文字幕| 国产精品人妻久久久影院| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 婷婷色综合大香蕉| 80岁老熟妇乱子伦牲交| 男男h啪啪无遮挡| 亚洲欧美一区二区三区黑人 | 母亲3免费完整高清在线观看 | 三级国产精品欧美在线观看| 国产乱来视频区| 成人国产麻豆网| 伊人久久国产一区二区| 美女主播在线视频| 亚洲精品乱码久久久v下载方式| 免费播放大片免费观看视频在线观看| 纯流量卡能插随身wifi吗| 精品久久久久久电影网| 97在线人人人人妻| 亚洲av福利一区| 赤兔流量卡办理| 一级二级三级毛片免费看| 看免费成人av毛片| 成人无遮挡网站| 欧美xxⅹ黑人| 亚洲国产精品成人久久小说| 欧美精品人与动牲交sv欧美| 亚洲精品成人av观看孕妇| 久久久午夜欧美精品| 飞空精品影院首页| 亚洲av男天堂| 青春草视频在线免费观看| 狂野欧美激情性xxxx在线观看| 成年人免费黄色播放视频| 国产在视频线精品| 天天操日日干夜夜撸| 啦啦啦啦在线视频资源| 国产一区二区在线观看av| 精品久久久噜噜| 国产片内射在线| 欧美激情极品国产一区二区三区 | xxxhd国产人妻xxx| 岛国毛片在线播放| 中文字幕av电影在线播放| 亚洲欧美精品自产自拍| 人妻少妇偷人精品九色| 狠狠婷婷综合久久久久久88av| av不卡在线播放| 成年美女黄网站色视频大全免费 | videosex国产| 精品一区二区三区视频在线| 只有这里有精品99|