• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field

    2020-01-10 07:39:10MarianNEGREA
    Plasma Science and Technology 2020年1期

    Marian NEGREA

    Department of Physics Association Euratom-MEdC, Romania University of Craiova, A.I.Cuza str.13,200585 Craiova, Romania

    Abstract We calculate the diffusion coefficients for ions moving in a prescribed electromagnetic field.The field is considered to be a superposition of an electrostatic stochastic field and a space-dependent and sheared magnetic field.We have considered as parameters involved in the calculation of the diffusion coefficients the shear ion Kubo number , the electrostatic Kubo number K, the parallel shear ion Kubo number , and the parallel thermal ion Kubo number . A geometrical parameter which is the measure of the product of the stochastic perpendicular correlation length and the gradient in the magnetic field strength (see definitions in the text) is found not to be important in our calculation. The results concerning the diffusion coefficients obtained in our model are in agreement with experimental data and with those corresponding to other models, and the neoclassical and anomalous values for the diffusion coefficients are obtained.

    Keywords: magnetic field, turbulence, diffusion(Some figures may appear in colour only in the online journal)

    1. Introduction

    Transport of particles in fusion plasma is still a very important issue for researchers. The theoretical results obtained for the transport coefficients from classical transport theory (see e.g.[1]) are not in agreement with the experimental results. The agreement is improved if the geometry of the magnetic field is taken into account for the calculation of the transport coefficients and the neoclassical transport theory is built (see e.g.[2] and [3]). Even neoclassical theory cannot explain some aspects of the diffusion of particles in a chaotic (turbulent)plasma. In this kind of plasma, transport is called anomalous if turbulence dominates the classical and neoclassical contributions to transport. The approximation that treated trapping in a new manner compared with the papers of Isichenko M B [4, 5], the numerical treatment given in [6] and [7] and used also in our paper to calculate the diffusion coefficients is the decorrelation trajectory method(DCT).There exist also a large amount of experimental, theoretical, and numerical papers(see,for example,references[8-26])that are dedicated to the understanding and control of transport in magnetically confined plasmas. The DCT is presented in the following selection of papers [8, 9, 11, 14, 22, 23].

    Results concerning the radial flux of particles obtained in reference [24] were used in order to calculate the effect of parallel fluctuations; in our paper only the perpendicular fluctuations (to the mean magnetic field) are taken into account. Separation of magnetic field lines, which is important for the calculation of diffusion coefficients, has been studied in many papers; see reference [25] and citations within. Particle behavior is a complex problem related to the confinement and transport of the bulk ions and electrons in plasma and to the plasma-wall interaction. This is a very important issue for the development of fusion reactors.

    Our paper studied the problem of the diffusion of ions in a space-dependent magnetic field and a divergenceless electrostatic stochastic field. The shape of the diffusion coefficients of a particle moving in a magnetic field with shear combined with an electrostatic stochastic field has been studied in many papers (see e.g. [27]). Numerical studies (such as‘direct numerical simulations')are devoted to the transport of particles in such a combination of fields(see e.g.[28]).All these issues are presented in the very good book of Radu Balescu[29].Our theoretical results are in agreement with the experimental ones. In our paper the magnetic field is dependent on the radial coordinate and the electrostatic stochastic field influences the values of the diffusion coefficients. The movement of particles was analyzed also in a guiding center model with a stochastic anisotropic magnetic field [30]. The results concerning the diffusion coefficients are similar with those obtained in the present paper.The conclusion is that,at least from these two different physical models,practically we obtained the same diffusion coefficient behavior.In our paper we will use some results obtained in reference [8], and the paper is organized as follows. The magnetic field model and the approximate guiding center equations are established in section 2.In section 3,some details of the DCT approach are presented and the necessary Eulerian correlations are derived using a standard procedure of the DCT method.We have also defined here the parameters (specific to the ions) involved in the change of the diffusion coefficients, namely the ion shear Kubo number, the electrostatic ion Kubo number Kion,parallel shear ion Kubo number,the parallel thermal ion Kubo number Kionand the geometrical parameter αR, which is the measure of the product of the stochastic perpendicular correlation length and the gradient in the magnetic field strength. Here the specific parameters of the motion of ions are defined. Before the section 4 we introduce some comments on the issues related to Kubo numbers,trapping and the open trajectories. In section 4 we calculate the diffusion coefficients and averaged global velocities.We also calculate the trapping time for different values of the parameters. The conclusions are provided in section 5.

    2. The magnetic field model and the approximate guiding center equations

    In our paper we consider that particles are moving in an electrostatic stochastic electric field combined with a magnetic field that is unperturbed and has the form

    The guiding center trajectories are determined from the approximate equations

    where U is the parallel velocity, which we will approximate here with the thermal one,i.e.Vth.In order to make the system dimensionless we introduce the typical correlation lengths:λ⊥is the perpendicular correlation length and λ‖is the parallel correlation length along the main magnetic field. τcis the correlation time of the fluctuating electrostatic field and ε is a measure of the amplitude of the electrostatic field fluctuations.The correlation time τcis the maximum time interval over which the field (the electrostatic potential in our case) maintains a given structure and is about 10?5s, the perpendicular correlation length λ⊥is about 10?2m as was observed by several plasma turbulence diagnostics looking at the edge region of the tokamaks [31, 32] and λ‖is about 1-10 m.Using the results obtained in [8] and the dimensionless quantities x, y, z, τ and φ defined as

    we obtain the following dimensionless Langevin system of equations [8]:

    We write here the different Kubo numbers already defined in[8] entering the system of equations given in (4)-(6):

    is the electrostatic Kubo number

    is the shear Kubo number

    is the parallel shear Kubo number and

    is the parallel thermal Kubo number. The geometrical parameter αRis defined as the product of the stochastic perpendicular correlation length and the gradient in the magnetic field strength

    Considering that the thermal velocity used in the former expressions corresponds to ions,the following corresponding Kubo numbers for ions can be defined:

    3. Details of the DCT approach

    From the orders of magnitude of the different Kubo numbers given in[8]we can suppose that the term containingcan be neglected in the equation (6). We also suppose that

    where we can choose ( ) =z 0 0. An implicit dependence on time appears in the potential and the Langevin system of equations given in (4)-(6) becomes a 2D system

    For this system the DCT method can be applied in order to calculate the diffusion coefficient and other quantities of interest. For the stochastic dimensionless electrostatic potential φ (x , z, τ)we can choose the following spatiotemporal autocorrelation

    where

    and

    If we use solution (14), the function ( )τB becomes

    where definition (13) was used.

    The autocorrelation becomes

    The statistical properties of all the fluctuating quantities are calculated by taking appropriate derivatives of equations(16)and (17). We introduce the notations for the ‘directly fluctuating velocities' as

    From equation (19), we can deduce the Eulerian correlations between the directly fluctuating velocities Cij(i , j =x , y)and the mixed correlationsφCi( )=i x y, using the standard procedure given in [9-11]:

    where the following general relations were used:

    and also the antisymmetric tensor εij(ε12= ? ε21= 1,ε11=ε22= 0). Using these correlations we can develop the procedure of the DCT needed to calculate the components of the diffusion tensor components specific to our field. We introduce the following change of variable

    With this change of variable system (15) becomes (in the following we will drop the subscript ‘ion' from τion)

    where the following definitions are introduced:

    and

    The expression(29)and the definition given in(9)should not be confused. System (27) is studied using the DCT method.The total ensemble of the realizations of the stochastic system is a superposition of the subensembles S that are defined by the electrostatic potential φ and the ‘directly fluctuating velocities' videfined in (20) at time 0, i.e.

    The probability distribution function of these initial values is defined as

    The total Lagrangian correlation tensor components of the directly fluctuating velocities appearing in system (27) are

    where

    is the Lagrangian correlation tensor in a subensemble S. anddenotes the average in the subensemble. The last approximation in(33)is the essence of the DCT method.We have replaced the average velocity in a subensemble with the velocity obtained by using the solutions ( )τxSof the deterministic system given below in equations (37) and (38).

    The Eulerian average directly fluctuating velocitiesin the subensemble S are calculated as

    and the explicit expressions forare

    Next,we define,in a subensemble S,a deterministic trajectory by the following equations of motion:

    and

    Using the equations (34), (35), (36), (40), (41) and (42) the terms are calculated as

    and

    The solution of deterministic system (37), (38) depends not only on the parameters that define the subensemble S i.e.but also on the Kubo numbers defined in equations (7), (8), (10).

    The Lagrangian correlation tensor components are

    and contribute to the calculation of the running diffusion tensor components as

    4. DCT trajectories

    In this section we present some trajectories and hodographs resulting from system (37), (38), for a subensemble defined asand vy(0 , 0) ==1and for different values of Kionand

    In figures 1-3 we visualized trajectories and hodographs for the set of electrostatic Kubo numbers[0 .2, 0.5, 1, 5] for different values of the shear Kubo number=0.5(fgiure 1),=1(fgiure 2) and=5(fgiure 3). The shape is influenced by the electrostatic Kubo number only for a relatively high value of the level of turbulence as shown in the figures.For relatively small valuesof the level of turbulence,the shapes are almost the same except for the high value(see fgiures 1-3).

    All these quantities are calculated for different values of the electrostatic Kubo numberdefined above in expression (28) and of the shear Kubo number

    We have used in our calculations the electrostatic Kubo numbers

    For each value of the electrostatic Kubo number we have considered the evolution of the quantities for different values of the shear Kubo numbers

    Figure 4 presents the trajectories for a given subensemble,four fixed values for the electrostatic Kubo number Kion, a fixed value of the shear Kubo number=0.5and different values of the parameter: in the top left subplot= 10?3, in the top right subplot= 10?2, in the bottom left subplot= 10?1and in the bottom right subplot=1.The trajectories are closed for Kion= 5 and open in all the other cases,i.e.0.2,0.5,and 1 if<1.For=1the trajectories corresponding to Kion= 5 are also open, so trapping is not present in this case.

    4.1. Comments on Kubo numbers and trapping versus open trajectories

    In the subensemble defnied as S:andthe shapes of the trajectories represented in figures 1-4 are influenced by the parameters already mentioned before.

    Trapping (or the existence of closed trajectories) is present when particles are moving near the maxima or minima of the stochastic electrostatic potential, and is influenced by dimensionless quantities called Kubo numbers. In our paper there are several Kubo numbers defined in(7)-(10),(12)and(13) in the particular case of ions. The electrostatic Kubo number defined in(7)measures the stochastic character of the electrostatic field and represents the ratio between the distance Vthτccovered by a particle moving with the velocity Vthduring the correlation time τcand the perpendicular correlation length λ⊥,

    5. Diffusion coefficients

    In this section we present in figures 5-9 the behavior of the running poloidal and radial diffusion coefficients (Dyy, Dxx)and the averaged directly fluctuating velocities over the subensembles, i.e.In figures 5-9 the following labels are used for the radial running diffusion coefficients:=0.1(continuous red line),=1(continuous dotted red line),=2(dotted red line) and=5(continuous red x line) and the same labels in blue for the poloidal running diffusion coefficients.For Kion= 0.2 the smallest asymptotic value (≈0.6) of the radial diffusion coefficient Dxxis obtained for the greater value of the shear Kubo number, i.e.=5;the same behavior is obtained for the poloidal diffusion coefficient Dyybut the asymptotic value is different(≈0.75)(see figure 5).The averaged directly fluctuating velocitiesare represented also in figure 5;the poloidal one is positive for τ? ≥0 but the radial one is negative for=5and positive for the other values offor the entire time interval [ ]τ ∈ 0, 4.The asymptotic(i.e. for τ ≥ 4) values of the averaged velocities are all zero.Practically the same behavior is present for Kion= 0.5 but with other values for the asymptotic diffusion coefficients(see figure 6).For Kion= 1,the smallest asymptotic value(≈0.25)for the radial diffusion coefficient Dxxis obtained for the greater value of the shear Kubo number, i.e.=5;the same behavior is obtained for the poloidal diffusion coefficient Dyybut the asymptotic value is different (≈0.5) (see figure 7).

    The averaged directly fulctuating velocitiesalso represented in figure 7 are positives for τ? ≥0 except for the radial one, which is negative for=5in the interval τ ∈ [1 , 2] . The asymptotic values are all zero.

    For Kion= 5 the asymptotic radial diffusion coefficient values are diminished and they belong to the interval[0 .06, 0.075], but the small one is obtained for=0.1(see figure 8).For an increased value of the electrostatic Kubo number (Kion= 10) an inversion of the behavior of the diffusion coefficients is observed (see figure 9); a decreasing of the maximum of the radial diffusion coefficient is also observed. The dimensional expressions for the radial and poloidal diffusion coefficients are

    and

    respectively. If we considerandthe dimensional factor c is about

    The expressions of DXXand DYYcan be defined also as functions ofas

    and

    where we remember that the correlation time is abouts. As a consequence,

    and

    Using the above relations and the results shown in the corresponding figures, we can state some observations. As stated in [33] for example, the neoclassical values for the diffusion coefficients are smaller than unity; e.g. they are of the order of 0.5 m2s?1,whereas in experiments they are much larger,with anomalous values that are found to be of the order of 4 m2s?1.

    For Kion= 10 (see figure 9) the radial diffusion coefficient( )DXXmaxis in the range of the neoclassical values, i.e.for practically all values of. The same situation appears forfor practically all values of.For the asymptotic values of the radial diffusion coefficients the situation is the following:( )DXXasis in the range[0 .15, 0.35],and increases ifincreases to the range[0 .1, 5].(DXX)asis about 0.6 m2s?1practically for all.(DYY)asis in the range[0 .2, 1.2] and increases ifincreases to the range[ ]0.1, 5.

    For Kion= 5 (see figure 8), =0.1 and 1, the radial diffusion coefficient has the maxima values 1.4 m2s?1for=1and 0.014 foris in the range[ ]0.75, 2 and increases ifincreases to the range[ ]0.1, 5.In figures 10-12 the labels used are as follows:Kion= 0.2 (red diamond), Kion= 0.5 (red squared), Kion=1(red triangle),Kion= 5(blue circle)and Kion= 10(blue x).We have calculated the influence ofon the radial and poloidal asymptotic diffusion coefficients for different levels of the electrostatic turbulence (see figure 10). It is obvious that an increase of the shear Kubo number produces a decrease of the asymptotic values for the radial and poloidal diffusion coefficients except for the level of electrostatic turbulence given here bythe asymptotic values increase slowly as a function ofbut the final values are smaller than those corresponding to Kion< 5. In figure 11 the moments τmaxcorresponding to the maxima achievements are represented as a function offor different Kion. For the radial diffusion coefficients (top of figure 11)the shapes are very similar to a hyperbolic decrease as a function of. The following order is obvious

    The smallest value is( )τmax10and corresponds to Kion= 10.For the poloidal diffusion we represented in (bottom of figure 11) τmaxonly forThere are constant values for these moments; only their order of magnitude is different. We have also calculated the influence ofon the trapping time interval, i.e. onwhere τasis the moment corresponding to the beginning of the asymptotic regime and τmaxis the moment that corresponds to the maxima of the diffusion coefficients (see figure 12). We note that if trapping is present the diffusion coefficient shape begins with an increase(the ballistic regime)and continues with a subdiffusion regime up to a value corresponding to the beginning of the asymptotic regime.For the radial diffusion coefficient, we conclude that the trapping timeincreases for≤2for Kion∈{0 .2, 0.5, 1}and has relatively constant values for Kion∈{5 , 10}also for≤2. For≥2a relatively small region with a decrease of the time trapping is present for Kion= 5 followed by a decrease and an increase followed by a constant regime for Kion= 10. For Kion= 0.2 and 1 there exists a small increase, and for Kion= 0.5 a decrease is present. For the poloidal diffusion coefficient the shape of the trapping timerepresented in figure 12 only for a relatively large turbulence level is practically the same as for the corresponding radial situation.

    6. Conclusions

    In this paper,we have analyzed the diffusion of the ions using the Langevin equations corresponding to the guiding center and we applied the semi-analytical method of decorrelation trajectories (DCT). The latter can be considered as a generalization of the Corrsin approximation and takes into account the trapping effects (which necessarily exist in relatively strong turbulent plasmas).Using DCT,we have studied the transport of test particles (ions) by the electromagnetic drift that is produced by a stochastic electrostatic potential and by an inhomogeneous and sheared magnetic field. The DCT and the model used have given good qualitative results concerning the diffusion of ions. The radial and poloidal coefficients start with a linear part, indicating a ballistic regime,which is followed by a trapping regime.If trapping is present the diffusion coefficient has a shape that begins with an increase of the diffusion coefficient (the ballistic regime) and continues with a subdiffusion regime up to a value corresponding to the beginning of the asymptotic regime. We have calculated the influence ofon the radial and poloidal trapping time intervals for different values of Kion. After that the asymptotic value is reached (the trapping effects are visible in representations of trajectories). The diffusion coefficients increase with increasing levels of turbulence, i.e.with an increasing Kion. We have also represented the dependence of τmaxas a function ofand the trapping time interval as a function offor different levels of electrostatic turbulence. The maximum radial trapping time is reached for Kion= 0.5 for=2. The value=2 represents a critical value to which a corresponding critical value for the thermal ion velocity is obtained.For fixed values of the shear length and of the correlation time this critical value can be obtained. Forthe critical thermal velocity isThe results obtained in our model are in agreement with the experimental data: the neoclassical and anomalous values for the diffusion coefficients are obtained. Here the magnetic field model dependence on the radial coordinate and the electrostatic stochastic field influenced the values of the diffusion coefficients. Concerning the diffusion coefficients, similar results with those obtained in the present paper were found in [30].The conclusion is that from these two different physical models we obtained practically the same diffusion coefficient behavior. The magnetic shear, the inhomogeneity of the magnetic field and also the stochastic electrostatic field have the same influence on the ions'diffusion as has the stochastic magnetic drift.

    In conclusion, we state that

    (a) the diffusion present a pronounced trapping if Kion≥ 5;

    (b) the maxima of the diffusion coefficients decreases if Kion≥ 5;

    (c) the space dependence and the shear of the magnetic field modifies the diffusion coefficients.

    Important results concerning the behavior of the magnetic field were obtained(see e.g.[34]and[35])analyzing the Grad-Shafranov equation. From here, the possibility of constructing different magnetic fields appears. The diffusion of stochastic isotropic and anisotropic magnetic field lines in turbulence with a magnetic average poloidal magnetic field component was studied in[36]and an extension of this paper in such a magnetic field would be of interest.It will be necessary that collisions are taken into consideration in such a study,but this issue is left for future work. Here, only the influence of the aforementioned parameters on motion were taken into account.

    Acknowledgments

    I would like to thank Dr. Iulian Petrisor for fruitful discussions.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the EURATOM research and training program 2014-2018 under Grant Agreement No.633053.The views and opinions expressed herein do not necessarily reflect those of the European Commission.

    ORCID iDs

    国国产精品蜜臀av免费| 亚洲电影在线观看av| 国产精品综合久久久久久久免费| 成人国产麻豆网| av在线天堂中文字幕| 99在线视频只有这里精品首页| 老师上课跳d突然被开到最大视频| 搞女人的毛片| 久久人人精品亚洲av| 色综合站精品国产| 熟女人妻精品中文字幕| 精品久久久久久久久久免费视频| 亚洲av五月六月丁香网| 精品一区二区免费观看| 日日干狠狠操夜夜爽| 久久久久性生活片| 午夜免费男女啪啪视频观看 | 久久精品91蜜桃| 欧美日韩精品成人综合77777| 国产精品自产拍在线观看55亚洲| 狂野欧美白嫩少妇大欣赏| 久久久精品大字幕| 999久久久精品免费观看国产| 色综合亚洲欧美另类图片| 麻豆国产97在线/欧美| 亚洲欧美日韩卡通动漫| 一级黄片播放器| 99热这里只有精品一区| 精品福利观看| 久久婷婷人人爽人人干人人爱| 岛国在线免费视频观看| 色尼玛亚洲综合影院| 成人国产综合亚洲| 草草在线视频免费看| 欧美激情在线99| 如何舔出高潮| 免费看光身美女| 色吧在线观看| 亚洲va在线va天堂va国产| 国内久久婷婷六月综合欲色啪| 日本熟妇午夜| 久久精品久久久久久噜噜老黄 | 日本黄色视频三级网站网址| 日韩欧美三级三区| 麻豆成人午夜福利视频| 啦啦啦韩国在线观看视频| 不卡一级毛片| a级毛片免费高清观看在线播放| 久9热在线精品视频| 人妻丰满熟妇av一区二区三区| 免费观看在线日韩| 有码 亚洲区| 1024手机看黄色片| 赤兔流量卡办理| 免费在线观看影片大全网站| 少妇的逼好多水| 精品欧美国产一区二区三| 九色国产91popny在线| 小说图片视频综合网站| 国产男人的电影天堂91| 三级毛片av免费| 美女被艹到高潮喷水动态| 两个人的视频大全免费| or卡值多少钱| 欧美另类亚洲清纯唯美| 欧美不卡视频在线免费观看| 国产蜜桃级精品一区二区三区| 天天躁日日操中文字幕| 蜜桃久久精品国产亚洲av| 看十八女毛片水多多多| 一进一出好大好爽视频| 在线免费十八禁| 窝窝影院91人妻| 日本免费一区二区三区高清不卡| 亚洲国产欧美人成| 亚洲欧美激情综合另类| 成人国产综合亚洲| 波多野结衣高清作品| 亚洲欧美日韩高清专用| 亚洲国产日韩欧美精品在线观看| 一级a爱片免费观看的视频| 一个人免费在线观看电影| 久久精品国产99精品国产亚洲性色| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清激情床上av| 日日干狠狠操夜夜爽| 国产淫片久久久久久久久| 午夜福利欧美成人| www日本黄色视频网| www.色视频.com| 色吧在线观看| 超碰av人人做人人爽久久| 一边摸一边抽搐一进一小说| 亚洲成a人片在线一区二区| 伦精品一区二区三区| 亚洲欧美日韩无卡精品| 亚洲黑人精品在线| 人妻丰满熟妇av一区二区三区| 午夜福利高清视频| 我要看日韩黄色一级片| 日本三级黄在线观看| 在线观看66精品国产| 久久久久久伊人网av| 嫁个100分男人电影在线观看| 国产在线精品亚洲第一网站| 两个人的视频大全免费| 久久久久久大精品| 精品99又大又爽又粗少妇毛片 | 欧美日韩乱码在线| 天堂影院成人在线观看| 国产免费一级a男人的天堂| 国产国拍精品亚洲av在线观看| 1024手机看黄色片| 亚洲va日本ⅴa欧美va伊人久久| 欧美bdsm另类| 中国美女看黄片| 老女人水多毛片| 麻豆久久精品国产亚洲av| 九色成人免费人妻av| 午夜激情福利司机影院| 变态另类成人亚洲欧美熟女| 色哟哟·www| 亚洲欧美激情综合另类| 又紧又爽又黄一区二区| 综合色av麻豆| 久久99热6这里只有精品| 亚洲最大成人中文| 亚州av有码| 久久久国产成人免费| 午夜日韩欧美国产| 午夜a级毛片| 久久久久国内视频| 日日夜夜操网爽| 亚洲自拍偷在线| 一区二区三区四区激情视频 | 国产精品一区www在线观看 | 最近最新免费中文字幕在线| 啦啦啦观看免费观看视频高清| 久久久久久九九精品二区国产| 有码 亚洲区| 成人鲁丝片一二三区免费| 亚洲va日本ⅴa欧美va伊人久久| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清专用| 久久精品国产亚洲av涩爱 | 大型黄色视频在线免费观看| 超碰av人人做人人爽久久| 精品久久久久久成人av| 国产精品综合久久久久久久免费| 日日干狠狠操夜夜爽| 亚洲美女搞黄在线观看 | 国产精品人妻久久久影院| 美女 人体艺术 gogo| 亚洲欧美日韩东京热| 色吧在线观看| 男人狂女人下面高潮的视频| 动漫黄色视频在线观看| 听说在线观看完整版免费高清| 校园春色视频在线观看| 麻豆久久精品国产亚洲av| 中文字幕熟女人妻在线| av黄色大香蕉| 欧美又色又爽又黄视频| 18禁裸乳无遮挡免费网站照片| 国产精品电影一区二区三区| 最新中文字幕久久久久| 国产精品嫩草影院av在线观看 | 亚洲国产欧美人成| 99久久成人亚洲精品观看| 亚洲精品久久国产高清桃花| 国产精品不卡视频一区二区| 丰满人妻一区二区三区视频av| bbb黄色大片| 欧美激情国产日韩精品一区| 亚州av有码| 麻豆精品久久久久久蜜桃| 久久久久国产精品人妻aⅴ院| 99久久中文字幕三级久久日本| 少妇人妻精品综合一区二区 | 亚洲久久久久久中文字幕| 免费av不卡在线播放| 亚洲精品粉嫩美女一区| 欧美日韩亚洲国产一区二区在线观看| 日本黄大片高清| 亚洲精品国产成人久久av| 如何舔出高潮| av在线蜜桃| 国国产精品蜜臀av免费| av黄色大香蕉| 又粗又爽又猛毛片免费看| 亚洲aⅴ乱码一区二区在线播放| 观看免费一级毛片| 欧美bdsm另类| 欧美色欧美亚洲另类二区| h日本视频在线播放| 国产精品三级大全| 最近最新中文字幕大全电影3| 亚洲av中文av极速乱 | 亚洲一区二区三区色噜噜| 国产精品女同一区二区软件 | a级毛片免费高清观看在线播放| 精品99又大又爽又粗少妇毛片 | 婷婷丁香在线五月| 日韩欧美国产一区二区入口| 午夜福利在线观看吧| 人人妻人人看人人澡| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 国产精品久久久久久久电影| 一个人免费在线观看电影| 成人美女网站在线观看视频| 久久精品国产自在天天线| 国产真实乱freesex| 少妇熟女aⅴ在线视频| 长腿黑丝高跟| 99热这里只有精品一区| 午夜福利高清视频| 国内精品宾馆在线| av福利片在线观看| 听说在线观看完整版免费高清| 中文在线观看免费www的网站| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 在线国产一区二区在线| 美女黄网站色视频| 国产久久久一区二区三区| 精品人妻偷拍中文字幕| 一个人观看的视频www高清免费观看| 成人综合一区亚洲| www日本黄色视频网| 99riav亚洲国产免费| 中文在线观看免费www的网站| 国产白丝娇喘喷水9色精品| 亚洲精品日韩av片在线观看| 中文字幕熟女人妻在线| 51国产日韩欧美| 欧美+日韩+精品| 十八禁网站免费在线| 亚洲av不卡在线观看| 老熟妇仑乱视频hdxx| 日本 欧美在线| 中国美白少妇内射xxxbb| 日韩欧美三级三区| 日本在线视频免费播放| 久久欧美精品欧美久久欧美| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 丝袜美腿在线中文| 特级一级黄色大片| 舔av片在线| 成人美女网站在线观看视频| 国产精品久久久久久精品电影| 亚洲欧美激情综合另类| 精品人妻偷拍中文字幕| 1024手机看黄色片| 动漫黄色视频在线观看| 久久久久国内视频| 亚洲经典国产精华液单| 女人十人毛片免费观看3o分钟| 成人欧美大片| 美女高潮喷水抽搐中文字幕| 国内久久婷婷六月综合欲色啪| 久久人人精品亚洲av| 在线免费十八禁| 国语自产精品视频在线第100页| 我要看日韩黄色一级片| 麻豆一二三区av精品| 国产私拍福利视频在线观看| 91麻豆av在线| 亚洲欧美日韩无卡精品| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕日韩| 久久午夜福利片| 欧美日韩国产亚洲二区| 亚洲国产欧洲综合997久久,| 老司机福利观看| 中文字幕av成人在线电影| 国产成人影院久久av| 亚洲欧美日韩东京热| 久久久久久大精品| 可以在线观看毛片的网站| 3wmmmm亚洲av在线观看| 91精品国产九色| 久久欧美精品欧美久久欧美| 亚洲人与动物交配视频| 国产爱豆传媒在线观看| 精品欧美国产一区二区三| 在线观看66精品国产| 亚洲七黄色美女视频| 中文字幕高清在线视频| 亚洲内射少妇av| 亚洲国产精品久久男人天堂| 91久久精品电影网| 免费人成视频x8x8入口观看| 亚洲最大成人中文| 变态另类丝袜制服| 91精品国产九色| 日韩精品青青久久久久久| 男人和女人高潮做爰伦理| 又紧又爽又黄一区二区| videossex国产| 欧美+日韩+精品| 国产一区二区激情短视频| 乱码一卡2卡4卡精品| 美女大奶头视频| 国产视频内射| 婷婷精品国产亚洲av在线| 久久九九热精品免费| 国语自产精品视频在线第100页| av在线天堂中文字幕| 天堂av国产一区二区熟女人妻| 国产精品一及| 亚洲美女搞黄在线观看 | 国产精品人妻久久久影院| 国产av一区在线观看免费| 国产不卡一卡二| 桃色一区二区三区在线观看| 免费看a级黄色片| 国产成人aa在线观看| 日本-黄色视频高清免费观看| 一区二区三区免费毛片| 变态另类成人亚洲欧美熟女| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜| 一边摸一边抽搐一进一小说| 亚洲人成网站在线播放欧美日韩| 午夜福利在线观看吧| 色综合色国产| 嫩草影院入口| 又紧又爽又黄一区二区| 99riav亚洲国产免费| 波野结衣二区三区在线| 天天躁日日操中文字幕| 欧美精品国产亚洲| 淫妇啪啪啪对白视频| 91麻豆精品激情在线观看国产| 亚洲不卡免费看| www日本黄色视频网| 两人在一起打扑克的视频| 久久热精品热| 很黄的视频免费| 欧美三级亚洲精品| 18禁裸乳无遮挡免费网站照片| 国语自产精品视频在线第100页| 一个人免费在线观看电影| 搡老熟女国产l中国老女人| 久久中文看片网| 精品日产1卡2卡| 亚洲成人精品中文字幕电影| 国产单亲对白刺激| 久久精品国产自在天天线| 婷婷丁香在线五月| 国产高清激情床上av| 亚洲avbb在线观看| 国产精品久久久久久精品电影| 色尼玛亚洲综合影院| 国产精品av视频在线免费观看| 精品日产1卡2卡| 97人妻精品一区二区三区麻豆| 韩国av在线不卡| ponron亚洲| 麻豆成人午夜福利视频| 欧美+亚洲+日韩+国产| 欧美xxxx性猛交bbbb| 男女啪啪激烈高潮av片| 日本撒尿小便嘘嘘汇集6| 国内少妇人妻偷人精品xxx网站| 能在线免费观看的黄片| 久久精品人妻少妇| 午夜爱爱视频在线播放| 人妻夜夜爽99麻豆av| 国产亚洲av嫩草精品影院| 动漫黄色视频在线观看| 久99久视频精品免费| 国产乱人视频| 成年免费大片在线观看| 国产一区二区在线观看日韩| 亚洲美女搞黄在线观看 | 中国美女看黄片| 精品不卡国产一区二区三区| 久久午夜亚洲精品久久| 国产精品综合久久久久久久免费| 可以在线观看的亚洲视频| 嫩草影视91久久| 国产中年淑女户外野战色| 日韩精品青青久久久久久| 韩国av在线不卡| 最好的美女福利视频网| 一级av片app| 搡老岳熟女国产| 精品日产1卡2卡| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲av天美| 国产精品久久久久久精品电影| 老师上课跳d突然被开到最大视频| 亚洲一级一片aⅴ在线观看| 久久久久久久亚洲中文字幕| 国产av不卡久久| 美女被艹到高潮喷水动态| 综合色av麻豆| 日本熟妇午夜| videossex国产| 一区二区三区激情视频| 久99久视频精品免费| 久久欧美精品欧美久久欧美| 成年女人毛片免费观看观看9| 欧美bdsm另类| 最近最新中文字幕大全电影3| 国产高清视频在线观看网站| 中文字幕高清在线视频| 校园人妻丝袜中文字幕| 亚洲专区国产一区二区| 99久久精品国产国产毛片| 午夜福利在线观看免费完整高清在 | 国产精品1区2区在线观看.| 国产精品久久视频播放| av在线蜜桃| 国产麻豆成人av免费视频| 午夜福利在线在线| 国产精品久久久久久久久免| 他把我摸到了高潮在线观看| 大又大粗又爽又黄少妇毛片口| 国产一区二区在线av高清观看| 亚洲中文日韩欧美视频| 亚洲七黄色美女视频| 黄色日韩在线| 好男人在线观看高清免费视频| 中文字幕av成人在线电影| 麻豆精品久久久久久蜜桃| 成人三级黄色视频| 直男gayav资源| 国产成年人精品一区二区| 亚洲av成人精品一区久久| 女生性感内裤真人,穿戴方法视频| 亚洲成av人片在线播放无| 日本a在线网址| 看十八女毛片水多多多| 久久久色成人| av中文乱码字幕在线| 亚洲精品456在线播放app | 99精品在免费线老司机午夜| 听说在线观看完整版免费高清| 欧美日韩瑟瑟在线播放| 日本一二三区视频观看| 22中文网久久字幕| 欧美丝袜亚洲另类 | 国产色爽女视频免费观看| 国产欧美日韩精品亚洲av| 国产在线男女| 嫩草影院新地址| .国产精品久久| 亚洲av免费高清在线观看| 国产三级中文精品| 99久国产av精品| 久久久成人免费电影| 国产高清三级在线| 欧美日韩中文字幕国产精品一区二区三区| 亚洲,欧美,日韩| 毛片一级片免费看久久久久 | 亚洲国产精品成人综合色| 欧美中文日本在线观看视频| 亚洲美女视频黄频| 亚洲欧美日韩高清在线视频| 国产一区二区三区在线臀色熟女| 白带黄色成豆腐渣| 亚洲四区av| 此物有八面人人有两片| 老司机午夜福利在线观看视频| 搡女人真爽免费视频火全软件 | 中文资源天堂在线| 免费搜索国产男女视频| 不卡一级毛片| 干丝袜人妻中文字幕| 国产主播在线观看一区二区| 国产成人a区在线观看| 中文字幕熟女人妻在线| 老熟妇乱子伦视频在线观看| 最近在线观看免费完整版| 国产三级在线视频| 久久精品国产鲁丝片午夜精品 | 亚洲va日本ⅴa欧美va伊人久久| 一边摸一边抽搐一进一小说| 男女啪啪激烈高潮av片| 精品日产1卡2卡| 亚洲精品色激情综合| 中文字幕高清在线视频| 欧美在线一区亚洲| 欧美日韩黄片免| 国内精品久久久久久久电影| 久久精品夜夜夜夜夜久久蜜豆| 人妻丰满熟妇av一区二区三区| 国产精品女同一区二区软件 | 少妇人妻精品综合一区二区 | 亚洲专区国产一区二区| 国产精品一区www在线观看 | 啦啦啦观看免费观看视频高清| 免费看美女性在线毛片视频| 一级黄色大片毛片| 可以在线观看的亚洲视频| 欧美日韩精品成人综合77777| 日本一本二区三区精品| 99九九线精品视频在线观看视频| 小说图片视频综合网站| 热99re8久久精品国产| 久久精品夜夜夜夜夜久久蜜豆| 啦啦啦观看免费观看视频高清| 在线观看美女被高潮喷水网站| 欧美日韩综合久久久久久 | 不卡一级毛片| 久久草成人影院| 亚洲av美国av| 国产伦在线观看视频一区| 日韩欧美精品免费久久| 午夜福利在线在线| 在线播放国产精品三级| a级毛片a级免费在线| 婷婷精品国产亚洲av| 国产成人aa在线观看| 在线观看一区二区三区| 精品国内亚洲2022精品成人| 亚洲av熟女| 亚洲成人久久性| 男人狂女人下面高潮的视频| 国产精品一区二区三区四区久久| 琪琪午夜伦伦电影理论片6080| 99久久九九国产精品国产免费| 麻豆成人午夜福利视频| 3wmmmm亚洲av在线观看| 成人综合一区亚洲| 岛国在线免费视频观看| 国产高清视频在线播放一区| 99热这里只有精品一区| 国产一区二区亚洲精品在线观看| 网址你懂的国产日韩在线| 国产精品嫩草影院av在线观看 | 国产成人av教育| 亚洲美女视频黄频| 午夜免费男女啪啪视频观看 | av在线老鸭窝| 国产精品女同一区二区软件 | 成年免费大片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品乱码一区二三区的特点| 1024手机看黄色片| 黄片wwwwww| 免费在线观看日本一区| 色播亚洲综合网| 91午夜精品亚洲一区二区三区 | 色哟哟·www| 国产精品一区二区三区四区免费观看 | 成年免费大片在线观看| 美女高潮喷水抽搐中文字幕| 日韩,欧美,国产一区二区三区 | 国产不卡一卡二| 国产激情偷乱视频一区二区| 国产精品久久久久久av不卡| 国产精品久久久久久亚洲av鲁大| 老师上课跳d突然被开到最大视频| 偷拍熟女少妇极品色| 午夜福利在线观看免费完整高清在 | 一个人免费在线观看电影| 不卡一级毛片| 亚洲人成网站在线播| 国产一区二区在线av高清观看| 精品福利观看| 国产视频内射| 天堂动漫精品| 看免费成人av毛片| bbb黄色大片| 国产精品一及| 一个人看视频在线观看www免费| 精品一区二区三区视频在线| 日韩精品有码人妻一区| 色综合婷婷激情| 桃红色精品国产亚洲av| 亚洲成人中文字幕在线播放| 日日摸夜夜添夜夜添小说| 男女视频在线观看网站免费| 婷婷精品国产亚洲av在线| 又黄又爽又刺激的免费视频.| 国产高清有码在线观看视频| 精品人妻偷拍中文字幕| 日韩欧美国产在线观看| 一夜夜www| 午夜福利高清视频| 亚洲天堂国产精品一区在线| 嫩草影院新地址| 国产乱人视频| 久久人妻av系列| 国产伦人伦偷精品视频| 久久久久久九九精品二区国产| 国产av一区在线观看免费| 观看美女的网站| 成人毛片a级毛片在线播放| 久久精品国产鲁丝片午夜精品 | 日韩中文字幕欧美一区二区| 亚洲欧美精品综合久久99| 欧美性猛交黑人性爽| 99视频精品全部免费 在线| 91精品国产九色| 丰满乱子伦码专区| 亚洲电影在线观看av| 亚洲男人的天堂狠狠| 99九九线精品视频在线观看视频| 1000部很黄的大片| 99久久成人亚洲精品观看| 搡老妇女老女人老熟妇| 中文字幕av成人在线电影| 观看免费一级毛片| 69av精品久久久久久| 国产男靠女视频免费网站| 啦啦啦韩国在线观看视频| 午夜老司机福利剧场| av国产免费在线观看| netflix在线观看网站|