• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles

    2020-01-07 09:10:42SherifElasuneyYehia
    Defence Technology 2019年6期

    Sherif Elasuney ,M.Yehia

    a Head of Nanotechnology Research Center,School of Chemical Engineering,Military Technical College,Cairo,Egypt

    b School of Chemical Engineering,Military Technical College,Cairo,Egypt

    ABSTRACT Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J?g-1.This manner involves high activation energy and could render high burning rate regime.This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer.Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing.TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size.XRD diffractogram demonstrated highly crystalline material.The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent-antisolvent technique.The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques.APC demonstrated an initial endothermic decomposition stage at 242°C with subsequent two exothermic decomposition stages at 297.8°C and 452.8°C respectively.At 1 wt%,copper oxide offered decrease in initial endothermic decomposition stage by 30%.The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%.These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.

    Keywords:Ammonium perchlorate Catalyst Thermal behavior Energetic systems Catalyzed propellants

    1. Introduction

    Ammonium perchlorate(APC)is the main oxidizer in use for solid rocket propellants,as it can offer high oxidizing power as well as gas-generating capabilities[1,2].During combusting,oxidizer would decompose with the release of free oxygen.However the initial oxidizer decomposition to generate free oxygen is an endothermic process[3,4].Consequently the rate-determining step in many high-energy reactions appears to be the endothermic process associated with oxidizer decomposition[5].The higher oxidizer decomposition temperature,and its endothermic decomposition,the slower the burning rate will be[6].This endothermic process means high activation energy is required.Even though high energy reactions are extremely exothermic and spontaneously propagated; these reactions require activation energy to start the chemical reaction(Fig.1).

    APC has been shown to be capable of catalytic decomposition,with different metal oxides.It is widely accepted that transition metal and metal oxides can be employed for catalyzing the thermal decomposition of APC[7].Therefore they can be employed as burning rate catalyst in APC-based rocket propellant formulations[8,9].A low percentage(0.1 wt%-2 wt%),catalyst can offer a significant increase in propellant combustion performances[10].Nanostructured energetic materials(NSEMs)include nanoscale objects at least in one dimension[11].The performances of NSEMs differ from that of micro-structured energetic materials[12].Small critical diameter,high reaction rate,and high released heat allow NSEMs to fit very well to energetic chips[13].

    1.1. Nanocoating for activating energetic materials

    Core-shell nanoenergetic structure can offer an intimate mixing between catalyzing particles and potential oxidizer(i.e.APC).This emergent approach can offer effective catalyzing with high reactivity[14].Fig.2 demonstrates the impact of fine APC encapsulated with Fe2O3particles on burning rate and flame structure of APC-based composite propellants.

    Fig.2.The burning rates for the baseline propellant,propellant with micron-sized catalyst,propellant with nano-size catalyst,and propellant with encapsulated catalyst.

    It is apparently clear that APC encapsulated with catalyst yieldes the highest burning rate,followed by nanoscale catalyst mixed in directly.

    Burning and combustion characteristics of APC-based propellants depend on the decomposition characteristics of APC[15,16].The decomposition characteristics of APC are known to be sensitive to the presence of specific catalysts in small amounts[17,18].These additives are used as ballistic modifiers[19,20].The ballistic performance of composite propellant can be improved by adding certain catalyst such as ferric oxide(Fe2O3),copper oxide(CuO),copper chromite(CuO,Cr2O3),nickel oxide(NiO)etc.CuO particles demonstrated the lowest ignition temperature as well as high oxygen release rate at low temperature(Fig.3).

    Consequently CuO particles could the ideal catalyst to accelerate the decomposition rate of APC oxidizer[21].Recent investigations have demonstrated that nanoparticles of transition metal oxides,without any agglomeration,can offer enhanced catalyzing ability[22].There are great advantages for any synthesis technique that could offer fabrication of mono-dispersed particles in dispersion.Such technique is hydrothermal processing.

    1.2. Hydrothermal processing

    Fig.3.Temperature at which O2 was observed as oxidizer was heated alone(Y-axis)versus the ignition temperature when oxidizer was mixed stoichiometrically with Al nanoparticles(X-axis).

    Fig.4.Phase diagram of water PVT curve.

    Whatever the synthesis technology,as nanoparticles are dried they tend to agglomerate and aggregate with dramatic decrease in their surface area and reactivity[23].Therefore,these particles would act as micron particles rather than nanoparticles.Hydrothermal processing technique can offer sustainable fabrication of mono-dispersed particles with consistent product quality[24].

    Hydrothermal processing includes instant mixing of metal salt fed with supercritical fluid.The synthesis conditions including precursor feed rate,reaction temperature,reaction pressure,and residence time can be precisely controlled[25].Mono-dispersed particles were likely to form as nucleation and subsequent crystal growth were similar for all particles[26].Therefore,hydrothermal processing could be a perfect technique for very fine powder processing with high purity,narrow particle size distribution,and controlled stoichiometry[27,28].

    The employed fluids for hydrothermal processing are supercritical fluids[29].A supercritical fluid(ScF)is defined as any fluid above its critical values[27].Beyond the critical point,the phase boundary disappears and a homogenous supercritical phase exists[30,31]. Even though, supercritical water (ScW) necessitates extreme conditions(Tc374.2°C,Pc220.5 bar)(Fig.4);it is one of the most common fluid in use for hydrothermal processing[32].

    ScW imposes exceptional properties related to improved number of hydrogen ions(H+)and hydroxide ions(OH-)[33-38].The superior levels of OH-at the critical point can be employed for nanoparticle synthesis as established by Adschiri[39,40].Under these extreme conditions hydrolysis(Eq.(1))of metal salts is instantly followed by a dehydration step(Eq.(2))[41-43].

    Hydrothermal processing includes instant mixing of ScW with metal salts;nanoparticles are formed at the interface of the two fluids[44].Hydrothermal processing offers controlled synthesis conditions via controlled reactant feed rate,reaction temperature,pressure, and residence time [45,46]. Therefore, hydrothermal processing can offer a relatively simple route for fabrication of different nanoparticles with high purity,controlled stoichiometry,and high crystallinity[22,23].

    This study reports on the sustainable fabrication of monodispersed colloidal CuO particles of 15 nm particle size by using straightforward continuous hydrothermal processing.CuO were developed in colloidal form and were effectively coated with APC particles by using fast-crash solvent-antisolvent technique.Thermal behavior of APC encapsulated with 1 wt%CuO has also been investigated to APC by using TGA and DSC.The main outcome of this study is that CuO nanoparticles offered a decrease in the initial endothermic decomposition of APC by 30%.Furthermore the subsequent two main exothermic peaks were merged into one single peak at 350°C.Additionally CuO offered an increase in total heat release of APC by 53%.It can be concluded that hydrothermal processing not only offered effective fabrication of novel colloidal catalyzing agent but also enabled the effective integration into APC particles.This novel catalyzing agent can find wide applications in advanced energetic systems.

    2. Experimental work

    2.1. Materials

    Copper acetate(Aldrich)was employed as metal salt precursor for the hydrothermal processing of CuO.Ammonium perchlorate with an average particle size of(200 μm)was purchased from(Aldrich).Acetone(Aldrich)was employed as a solvent for APC.All the reagents were analytical-grade chemicals.

    2.2. Hydrothermal synthesis of CuO

    Supercritical water was employed at 400°C (20 ml?min-1)(Flow A). An aqueous solution of 0.05 M copper acetate was employed as metal salt precursors at 25°C(10 ml?min-1)(Flow B).The whole system was pressurized to 240 bars using back pressure regulator(Fig.5).

    Colloidal CuO nanoparticles were synthesized at the interface of the two streams inside the reactor(R).The developed particles were cooled down to 60°C prior to collection at point D.

    2.3. Characterization of CuO nanoparticles

    The size and shape of colloidal CuO were visualized with TEM(JEM-2100F by Joel Corporation).The crystalline phase was investigated with XRD D8 advance by Burker Corporation over the angle range 2θ from 5°to 65°.The dry powder size and shape were investigated with SEM,ZEISS SEM EVO 10 MA.

    Fig.5.Flow diagram of the continuous hydrothermal synthesis system used for the instant production of CuO.

    2.4. Coating of CuO with ammonium perchlorate

    Synthesized CuO nanoparticles were effectively re-dispersed in acetone by using ultrasonic bath.APC particles were dissolved in acetone colloid.The weight ratio of APC/CuO was 99:1.CuO particles were coated with APC by using the fast-crash solvent-antisolvent technique using dichloromethane antisolvent.The precipitated composite particles were filtered and dried in a vacuum oven.The size and shape of composite particle diameter were investigated using SEM.

    2.5. Thermal behavior of ammonium perchlorate encapsulated with CuO

    The impact of CuO nanoparticles on APC thermal behavior was investigated by using DSC in an attempt to evaluate the change in endothermic decomposition peak as well as total heat released upon oxidizer complete decomposition.DSC Q20 by TA,USA was employed;the tested sample was heated from 50°C to 500°C with heating rate 5°C?min-1under constant flow of N2gas at 50 ml?min-1.The impact of CuO on weight loss with temperature was investigated by using TGA 55 by TA,USA.The tested sample was heated from 50°C to 500°C at heating rate 5°C?min-1under N2flow rate at 25 ml?min-1.

    3. Result and discussions

    3.1. Characterization of synthesized CuO nanoparticles

    The size and shape of synthesized CuO particles were visualized using TEM.TEM micrographs demonstrated mono-dispersed CuO particles of 15 nm average particle size(Fig.6(a)).The diffraction pattern of the incident beam demonstrated mono-crystalline structure(Fig.6(b)).

    The synthesized colloidal CuO nanoparticles were dried.The crystalline structure of dried particles was investigated with X-ray diffraction(XRD).XRD diffractogram demonstrated high quality crystalline structure.The main diffraction peaks were found to be in good agreement with Joint Committee on Powder Diffraction Standards(JCPDS)from the International Centre for Diffraction Data(ICDD)according to(PDF-04-007-1375)(Fig.7).

    The average particle size of synthesized CuO nanoparticles was further evaluated using Debye-Scherer(Eq.(3))by employing the major diffraction peak[47].

    Fig.6.TEM micrographs of synthesized CuO nanoparticles.

    Fig.7.XRD diffractogram of synthesized CuO nanoparticles.

    Wherekis a constant equal to 0.94,λ is the wavelength of Cu Kα radiation,β is the full width at half maximum height(FWHM)of the diffraction peak in radians,and θ is the Bragg angles of the main planes.Evaluation of particle size of CuO nanoparticles by Scherer equation was found to be 15 nm.This result was found to be in good accordance with TEM micrographs.

    CuO particles were dried. SEM micrographs of dried CuO demonstrated a great tendency of CuO particles to aggregate and agglomerate with dramatic decrease in their interfacial surface area and reactivity(Fig.8).Agglomerates include strongly bonded or fused particles where the resulted external surface area could be reduced[33,48].

    The size and shape of starting APC particles was investigated with SEM.SEM micrographs demonstrated cubic particles with wide range particle size 150-200 μm(Fig.9(a));elemental mapping demonstrated uniform element distribution(Fig.9(b)).

    3.2. Characterization of APC encapsulated with CuO

    APC encapsulated with CuO was investigated with SEM in an attempt to investigate the particle size and morphology(size and shape).SEM micrographs demonstrated ultra fine particles with uniform particle size of 3 μm(Fig.10).

    Fig.8.SEM micrographs of dry CuO nanoparticles.

    Elemental analysis of APC encapsulated with CuO was investigated by using energy dispersive X-ray spectrometer(EDX)Bruker Quantax 200 equipped with SEM(Fig.11).

    Elemental analysis confirmed the chemical structure of APC encapsulated with CuO no interfering elements were reported.It can be concluded that the employed fast-crash solvent-antisolvent technique offered the development of ultra fine APC particles with uniform particle size as well as effective coating of CuO particles into APC oxidizer.

    3.3. Catalytic activity measurements

    The effectiveness of CuO catalyst for APC oxidizer was investigated by using DSC.APC thermal decomposition took place in three main stages as follow[49]:

    a)The first stage is the initial endothermic decomposition at 242.1°C;this decomposition is accompanied with heat absorption of 102.5 J?g-1.

    Fig.9.SEM micrographs.

    Fig.10.SEM micrographs of APC encapsulated with CuO.

    b)The second stage is the partial exothermic decomposition at 297.8°C with the formation intermediate gaseous such as NH3and HClO4via incomplete dissociation and sublimation(Eq.(4))[50,51].This partial decomposition of APC releases amount of heat 345.5 J?g-1.

    Fig.12.DSC thermogram of APC encapsulated with CuO to pure APC.

    c)The third stage is the second exothermic decomposition appears at 452.8°C.Complete decomposition of APC took place with the production of several final volatile molecules,such as HCl,H2O,N2O,Cl2,NO,O2,and NO2(Fig.12).

    CuO demonstrated high catalytic activity with dramatic change in thermal behavior of APC particles.CuO demonstrated an effective role as catalyst for APC oxidizer as follow:

    1)The initial endothermic decomposition heat was decreased from 102.5 to 71.2 J?g-1.This step behavior means high reactivity and less activation energy is required for decomposition of APC particles.This endothermic process is the rate determining step in combustion of different energetic systems.

    2)The subsequent two exothermic decomposition peaks were merged into one single exothermic broad peak with total heat release of 1268.4 J?g-1at 350.1°C.

    3)CuO offered an increase in total heat release of APC by 53%.

    Thermal behavior of pure APC was further investigated with TGA;the wt%was recorded as function of temperature(Fig.13).APC demonstrated two main decomposition stages as follow:

    Fig.13.TGA thermogram of pure APC.

    1)The first partial decomposition stage at 298°C with weight loss of 30 wt%.This decomposition stage could be correlated to the initial exothermic decomposition peak in DSC at 297.8°C(345.5 J?g-1).

    2)The second main decomposition stage at 452°C with wt%loss of 69.9%;this could be ascribed to complete dissociation of APC.This decomposition peak could be corresponding to second main exothermic decomposition peak in DSC at 452.8°C(489.8 J?g-1).

    The main outcome of this study is that CuO particles demonstrated a complete shift of the main two exothermic decomposition peaks into one single peak(Fig.14).

    CuO offered not only decrease in required heat for APC initial decomposition,but also the two exothermic peaks were merged into one single peak.

    4. Conclusion

    Colloidal CuO with consistent product quality and average particle size of 15 nm were manufactured in continuous manner by using hydrothermal processing.Effective coating of CuO with APC oxidizer was accomplished via fast-crash solvent-antisolvent technique.CuO particles demonstrated superior catalytic activity by decreasing the endothermic decomposition stage by 30%.Furthermore CuO demonstrated unique thermal behavior;the two main exothermic decomposition peaks were merged into one peak with an increase in total heat release by 53%.This novel thermal behavior of catalyzed APC particles could open the route for advanced energetic systems where high burning rate regime is required.

    Fig.14.TGA thermogram of APC encapsulated with 1 wt%CuO.

    欧美日本视频| 日韩欧美精品v在线| 国产一区二区激情短视频| 亚洲一区中文字幕在线| 免费观看精品视频网站| 国产视频内射| 俄罗斯特黄特色一大片| ponron亚洲| 中亚洲国语对白在线视频| 哪里可以看免费的av片| 国产成人系列免费观看| 97碰自拍视频| 不卡一级毛片| 国产黄片美女视频| 日本熟妇午夜| 欧美大码av| 色综合亚洲欧美另类图片| 三级男女做爰猛烈吃奶摸视频| 看片在线看免费视频| 亚洲天堂国产精品一区在线| 一卡2卡三卡四卡精品乱码亚洲| tocl精华| 国产成人精品无人区| 久久精品夜夜夜夜夜久久蜜豆 | 欧美又色又爽又黄视频| 99国产精品一区二区三区| 真人做人爱边吃奶动态| 亚洲在线自拍视频| 日本在线视频免费播放| 国产97色在线日韩免费| 国产欧美日韩一区二区精品| tocl精华| 给我免费播放毛片高清在线观看| 老鸭窝网址在线观看| 色精品久久人妻99蜜桃| 成人国语在线视频| 麻豆一二三区av精品| 久久国产精品影院| 久久久国产欧美日韩av| 亚洲国产欧洲综合997久久,| 成人午夜高清在线视频| 在线观看日韩欧美| 黑人欧美特级aaaaaa片| 久久香蕉精品热| 波多野结衣高清无吗| 两个人免费观看高清视频| 19禁男女啪啪无遮挡网站| 亚洲五月天丁香| 18禁黄网站禁片午夜丰满| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲成人国产一区在线观看| 后天国语完整版免费观看| 国产在线精品亚洲第一网站| 夜夜看夜夜爽夜夜摸| 黄片小视频在线播放| 亚洲九九香蕉| 88av欧美| 精品久久久久久久久久久久久| 首页视频小说图片口味搜索| 国产成人啪精品午夜网站| 成人一区二区视频在线观看| 久久精品亚洲精品国产色婷小说| 国产精品99久久99久久久不卡| 国产精品99久久99久久久不卡| 国产精品一区二区精品视频观看| 欧美日韩精品网址| 欧美绝顶高潮抽搐喷水| 亚洲专区字幕在线| www日本在线高清视频| 欧美激情久久久久久爽电影| 99国产精品一区二区三区| 欧美性长视频在线观看| 亚洲国产精品合色在线| 精品少妇一区二区三区视频日本电影| 精品不卡国产一区二区三区| 亚洲片人在线观看| 人成视频在线观看免费观看| 91麻豆av在线| 欧美乱色亚洲激情| 久久国产乱子伦精品免费另类| 亚洲精品粉嫩美女一区| 欧美乱妇无乱码| 久久伊人香网站| 蜜桃久久精品国产亚洲av| 国产1区2区3区精品| 亚洲成人免费电影在线观看| 国产精品久久久人人做人人爽| 国产伦人伦偷精品视频| 欧美3d第一页| 91在线观看av| 国产精品影院久久| 午夜福利免费观看在线| 可以在线观看的亚洲视频| 日本三级黄在线观看| 久久精品亚洲精品国产色婷小说| 久久国产乱子伦精品免费另类| 长腿黑丝高跟| 禁无遮挡网站| 国产av一区在线观看免费| 香蕉久久夜色| 国产高清视频在线播放一区| 亚洲中文av在线| 丝袜人妻中文字幕| 成人国语在线视频| 大型av网站在线播放| 欧美人与性动交α欧美精品济南到| 性欧美人与动物交配| 一卡2卡三卡四卡精品乱码亚洲| 欧美最黄视频在线播放免费| 亚洲国产高清在线一区二区三| 中文字幕人成人乱码亚洲影| 久久中文字幕一级| 日韩有码中文字幕| 国内精品久久久久精免费| 亚洲欧美精品综合一区二区三区| 国产野战对白在线观看| 日本免费a在线| 国产成人aa在线观看| 黄色a级毛片大全视频| 国产精品99久久99久久久不卡| 国产野战对白在线观看| 亚洲欧美一区二区三区黑人| 精品无人区乱码1区二区| 国产aⅴ精品一区二区三区波| 国产成+人综合+亚洲专区| 嫩草影视91久久| 99精品欧美一区二区三区四区| 国产精品 国内视频| 精品欧美一区二区三区在线| 白带黄色成豆腐渣| 丰满的人妻完整版| 中亚洲国语对白在线视频| 老司机福利观看| 99国产精品一区二区三区| 国产亚洲精品第一综合不卡| 久久久精品欧美日韩精品| bbb黄色大片| 国产精品一区二区免费欧美| 黄色 视频免费看| 亚洲av美国av| 丝袜人妻中文字幕| 久久热在线av| 亚洲 欧美 日韩 在线 免费| 亚洲av成人av| av福利片在线| 怎么达到女性高潮| 每晚都被弄得嗷嗷叫到高潮| 亚洲av成人av| 免费在线观看亚洲国产| 脱女人内裤的视频| 人人妻,人人澡人人爽秒播| 女生性感内裤真人,穿戴方法视频| 久久性视频一级片| 免费在线观看日本一区| 亚洲熟女毛片儿| 国产精品久久久久久精品电影| 国产成人精品久久二区二区91| 99久久综合精品五月天人人| 三级男女做爰猛烈吃奶摸视频| av在线播放免费不卡| 亚洲狠狠婷婷综合久久图片| 少妇的丰满在线观看| 中文资源天堂在线| 午夜影院日韩av| 免费看美女性在线毛片视频| 热99re8久久精品国产| 国内精品久久久久精免费| 国产一级毛片七仙女欲春2| 黄片小视频在线播放| 亚洲精品久久国产高清桃花| 日韩大尺度精品在线看网址| 国产三级中文精品| 制服丝袜大香蕉在线| 一本一本综合久久| 精品国内亚洲2022精品成人| 日韩精品青青久久久久久| 国产精品爽爽va在线观看网站| 久久久精品国产亚洲av高清涩受| 99国产精品一区二区三区| 国产伦一二天堂av在线观看| 久久精品亚洲精品国产色婷小说| 国产亚洲精品一区二区www| 国产亚洲精品av在线| 久久久久亚洲av毛片大全| 九九热线精品视视频播放| 亚洲人成电影免费在线| 国产成人精品久久二区二区免费| 少妇人妻一区二区三区视频| 欧美日韩亚洲综合一区二区三区_| 很黄的视频免费| 亚洲国产欧美网| 波多野结衣高清无吗| 亚洲人成77777在线视频| 一级作爱视频免费观看| 欧美日本视频| 美女大奶头视频| 亚洲av第一区精品v没综合| 欧美3d第一页| 三级男女做爰猛烈吃奶摸视频| 美女大奶头视频| 亚洲欧美一区二区三区黑人| 级片在线观看| 免费在线观看影片大全网站| 九九热线精品视视频播放| 国产av又大| 国产v大片淫在线免费观看| 在线十欧美十亚洲十日本专区| 在线免费观看的www视频| 一本一本综合久久| 亚洲欧美日韩高清在线视频| 午夜影院日韩av| 免费看美女性在线毛片视频| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三| 亚洲熟妇中文字幕五十中出| 此物有八面人人有两片| 欧美日韩乱码在线| 法律面前人人平等表现在哪些方面| 久久久久国产精品人妻aⅴ院| 亚洲全国av大片| 欧美性长视频在线观看| 美女黄网站色视频| x7x7x7水蜜桃| 亚洲最大成人中文| 男女床上黄色一级片免费看| 亚洲人与动物交配视频| 99久久99久久久精品蜜桃| 国产主播在线观看一区二区| 欧美乱妇无乱码| 窝窝影院91人妻| 人人妻人人澡欧美一区二区| 后天国语完整版免费观看| 欧美精品啪啪一区二区三区| 亚洲国产精品sss在线观看| av超薄肉色丝袜交足视频| 国产片内射在线| 午夜视频精品福利| 青草久久国产| 国产精品一区二区精品视频观看| 51午夜福利影视在线观看| 中文字幕最新亚洲高清| 成人三级黄色视频| 可以在线观看的亚洲视频| 在线观看66精品国产| 成在线人永久免费视频| 亚洲av成人精品一区久久| 美女大奶头视频| 欧美日韩福利视频一区二区| 日本成人三级电影网站| 99国产精品一区二区蜜桃av| 国产成+人综合+亚洲专区| 亚洲精品美女久久av网站| 国产激情久久老熟女| 伊人久久大香线蕉亚洲五| 中国美女看黄片| 国产伦一二天堂av在线观看| 露出奶头的视频| 91大片在线观看| 搡老岳熟女国产| 狂野欧美白嫩少妇大欣赏| 麻豆成人av在线观看| 亚洲九九香蕉| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 日本一本二区三区精品| 亚洲美女视频黄频| 久久久久国产一级毛片高清牌| 亚洲全国av大片| 日本一二三区视频观看| 国产精品一区二区精品视频观看| 大型av网站在线播放| netflix在线观看网站| 美女高潮喷水抽搐中文字幕| 亚洲第一电影网av| 色噜噜av男人的天堂激情| 亚洲欧美激情综合另类| 老熟妇仑乱视频hdxx| 国产成人影院久久av| 欧美 亚洲 国产 日韩一| 亚洲精品国产精品久久久不卡| 色尼玛亚洲综合影院| 日本免费一区二区三区高清不卡| 国产av又大| 在线观看66精品国产| 一夜夜www| 精品久久久久久久人妻蜜臀av| 久久中文看片网| 亚洲欧美精品综合久久99| 18禁观看日本| 欧美日韩一级在线毛片| 身体一侧抽搐| 亚洲五月婷婷丁香| 亚洲人成网站在线播放欧美日韩| 国模一区二区三区四区视频 | 久久久久久久久免费视频了| 他把我摸到了高潮在线观看| 欧美国产日韩亚洲一区| 久久这里只有精品中国| 两人在一起打扑克的视频| 人妻夜夜爽99麻豆av| 亚洲aⅴ乱码一区二区在线播放 | 99久久无色码亚洲精品果冻| 欧美日韩国产亚洲二区| 亚洲人成77777在线视频| 日本三级黄在线观看| 亚洲最大成人中文| xxx96com| 欧美高清成人免费视频www| 成人三级黄色视频| 久久久久国内视频| 亚洲精品国产一区二区精华液| 亚洲 欧美 日韩 在线 免费| 琪琪午夜伦伦电影理论片6080| 高清在线国产一区| 精品久久久久久,| 久久精品国产亚洲av高清一级| 男女那种视频在线观看| 国产三级中文精品| 欧美性猛交╳xxx乱大交人| 色av中文字幕| 精品电影一区二区在线| 俄罗斯特黄特色一大片| 免费看日本二区| 欧美一区二区精品小视频在线| 免费观看人在逋| 亚洲一区高清亚洲精品| 久久香蕉精品热| 嫩草影院精品99| 欧美国产日韩亚洲一区| 99久久久亚洲精品蜜臀av| 欧美日韩乱码在线| 亚洲人成网站高清观看| 每晚都被弄得嗷嗷叫到高潮| 久久久久久大精品| 国产单亲对白刺激| 成人特级黄色片久久久久久久| 九九热线精品视视频播放| 国产精品久久电影中文字幕| 999精品在线视频| 国产伦人伦偷精品视频| 国产久久久一区二区三区| 伊人久久大香线蕉亚洲五| 大型av网站在线播放| 亚洲 欧美一区二区三区| 欧美av亚洲av综合av国产av| 国产亚洲av嫩草精品影院| 91九色精品人成在线观看| 久久婷婷人人爽人人干人人爱| 国产真实乱freesex| 色老头精品视频在线观看| 天堂动漫精品| 欧美成人免费av一区二区三区| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影| 99精品在免费线老司机午夜| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 啦啦啦韩国在线观看视频| 在线观看一区二区三区| x7x7x7水蜜桃| 日本黄大片高清| av超薄肉色丝袜交足视频| 亚洲av中文字字幕乱码综合| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 91九色精品人成在线观看| 亚洲片人在线观看| 亚洲欧美日韩高清专用| 亚洲av片天天在线观看| 国产av在哪里看| 亚洲av熟女| 怎么达到女性高潮| 88av欧美| 日日爽夜夜爽网站| videosex国产| 91九色精品人成在线观看| 国产精品精品国产色婷婷| 欧美高清成人免费视频www| 久久久久久国产a免费观看| 一级毛片高清免费大全| 亚洲熟妇中文字幕五十中出| 欧美最黄视频在线播放免费| 亚洲av电影在线进入| 中文字幕av在线有码专区| 日韩欧美三级三区| 黑人欧美特级aaaaaa片| 亚洲精品国产精品久久久不卡| 精品国内亚洲2022精品成人| 国产一区二区三区在线臀色熟女| 看片在线看免费视频| 午夜福利免费观看在线| 欧美日韩国产亚洲二区| cao死你这个sao货| 岛国在线观看网站| 一边摸一边抽搐一进一小说| 亚洲成人免费电影在线观看| 成人av在线播放网站| 999久久久国产精品视频| 国产久久久一区二区三区| 一级a爱片免费观看的视频| 国产97色在线日韩免费| 男人舔女人下体高潮全视频| 欧美极品一区二区三区四区| 国产精品久久久人人做人人爽| www.熟女人妻精品国产| 波多野结衣高清作品| 亚洲欧美日韩高清在线视频| 久久久久久大精品| 不卡av一区二区三区| 国产精品久久久久久人妻精品电影| 手机成人av网站| 1024视频免费在线观看| 精品一区二区三区视频在线观看免费| 女警被强在线播放| 国产野战对白在线观看| 国产成人啪精品午夜网站| 1024香蕉在线观看| 看免费av毛片| 亚洲狠狠婷婷综合久久图片| 欧美精品啪啪一区二区三区| 精品久久久久久久末码| 麻豆久久精品国产亚洲av| 亚洲成人久久爱视频| 最好的美女福利视频网| 亚洲国产中文字幕在线视频| 亚洲成人国产一区在线观看| 天堂av国产一区二区熟女人妻 | 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 色综合欧美亚洲国产小说| 99久久精品热视频| 日本一本二区三区精品| a级毛片a级免费在线| 国产午夜精品论理片| 欧美在线一区亚洲| 久久久久久免费高清国产稀缺| 亚洲人成电影免费在线| 少妇人妻一区二区三区视频| 伦理电影免费视频| 国产一区二区在线av高清观看| 窝窝影院91人妻| 听说在线观看完整版免费高清| 亚洲欧美日韩东京热| 18美女黄网站色大片免费观看| 欧美日韩黄片免| 亚洲专区字幕在线| 69av精品久久久久久| 国产视频一区二区在线看| 久久香蕉激情| 亚洲乱码一区二区免费版| 亚洲精品国产一区二区精华液| 亚洲激情在线av| 国产激情欧美一区二区| 一个人免费在线观看电影 | 日本 av在线| 日本一本二区三区精品| 舔av片在线| 成人国产综合亚洲| 在线观看免费日韩欧美大片| 好男人电影高清在线观看| x7x7x7水蜜桃| 亚洲片人在线观看| 免费在线观看日本一区| 日本免费a在线| 一二三四在线观看免费中文在| 一本一本综合久久| 亚洲美女黄片视频| 国产人伦9x9x在线观看| 久久精品综合一区二区三区| 又黄又爽又免费观看的视频| 男插女下体视频免费在线播放| 91字幕亚洲| 国产单亲对白刺激| 日韩欧美三级三区| 欧美高清成人免费视频www| 搡老妇女老女人老熟妇| 精品少妇一区二区三区视频日本电影| 一级作爱视频免费观看| 精华霜和精华液先用哪个| 亚洲第一电影网av| 色综合站精品国产| 少妇熟女aⅴ在线视频| 午夜免费激情av| 又粗又爽又猛毛片免费看| 久久精品国产99精品国产亚洲性色| 他把我摸到了高潮在线观看| 成人欧美大片| 大型av网站在线播放| 亚洲中文字幕一区二区三区有码在线看 | 国产精品日韩av在线免费观看| 亚洲专区字幕在线| 男插女下体视频免费在线播放| 日韩欧美国产一区二区入口| 日本三级黄在线观看| 九色成人免费人妻av| 免费在线观看视频国产中文字幕亚洲| 欧美成人一区二区免费高清观看 | 久久久久久久久久黄片| 夜夜躁狠狠躁天天躁| 国产精品免费一区二区三区在线| 国产成人av教育| 国产av一区在线观看免费| 国产成人系列免费观看| 欧美人与性动交α欧美精品济南到| 亚洲精品在线美女| 中国美女看黄片| 麻豆成人av在线观看| 十八禁人妻一区二区| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 欧美乱码精品一区二区三区| 九色成人免费人妻av| 高潮久久久久久久久久久不卡| 国产91精品成人一区二区三区| 欧美3d第一页| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 99国产精品一区二区三区| 我要搜黄色片| 国产亚洲精品综合一区在线观看 | 国产v大片淫在线免费观看| 全区人妻精品视频| 日韩高清综合在线| 黄色成人免费大全| а√天堂www在线а√下载| 91九色精品人成在线观看| 久久久久久大精品| 久久 成人 亚洲| 亚洲精品色激情综合| 午夜久久久久精精品| avwww免费| 首页视频小说图片口味搜索| 大型黄色视频在线免费观看| 丝袜人妻中文字幕| 50天的宝宝边吃奶边哭怎么回事| 1024香蕉在线观看| 搡老熟女国产l中国老女人| 黄频高清免费视频| 国产精品一区二区精品视频观看| 久久天躁狠狠躁夜夜2o2o| 少妇粗大呻吟视频| 国产亚洲欧美98| 亚洲男人天堂网一区| 欧美日韩国产亚洲二区| 久久九九热精品免费| 美女大奶头视频| 国产又黄又爽又无遮挡在线| 听说在线观看完整版免费高清| 熟女电影av网| 女人被狂操c到高潮| 免费在线观看完整版高清| 国产免费男女视频| 香蕉国产在线看| www日本黄色视频网| 日日夜夜操网爽| 欧美zozozo另类| 国产高清视频在线播放一区| 午夜成年电影在线免费观看| 亚洲av日韩精品久久久久久密| 老司机在亚洲福利影院| 亚洲人成伊人成综合网2020| 美女黄网站色视频| 欧美性长视频在线观看| 操出白浆在线播放| 欧美黑人精品巨大| 韩国av一区二区三区四区| 给我免费播放毛片高清在线观看| 五月伊人婷婷丁香| 日日摸夜夜添夜夜添小说| 久久天躁狠狠躁夜夜2o2o| 男女午夜视频在线观看| 日本一本二区三区精品| 国产成人精品久久二区二区91| 91字幕亚洲| 91大片在线观看| 51午夜福利影视在线观看| 欧美一区二区精品小视频在线| 国产精品永久免费网站| 免费看美女性在线毛片视频| 人妻夜夜爽99麻豆av| 国产激情久久老熟女| 舔av片在线| 国产一级毛片七仙女欲春2| 欧美另类亚洲清纯唯美| 久久久精品欧美日韩精品| 亚洲精品在线美女| 亚洲男人的天堂狠狠| 亚洲av日韩精品久久久久久密| 国产亚洲精品久久久久久毛片| 又爽又黄无遮挡网站| 久久香蕉国产精品| 国产精品亚洲一级av第二区| 中出人妻视频一区二区| 亚洲av日韩精品久久久久久密| 亚洲成人免费电影在线观看| 精品午夜福利视频在线观看一区| 九九热线精品视视频播放| 久久精品91蜜桃| 99久久综合精品五月天人人| 久久久国产精品麻豆| 欧美三级亚洲精品| 国产激情久久老熟女| 丝袜美腿诱惑在线| 欧美一区二区精品小视频在线| 中文字幕最新亚洲高清| 两个人视频免费观看高清| 最新美女视频免费是黄的| 亚洲一码二码三码区别大吗| 99国产极品粉嫩在线观看| 日韩欧美在线二视频| 日韩欧美免费精品| 99久久久亚洲精品蜜臀av| 国产人伦9x9x在线观看| 岛国在线免费视频观看|