• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive fault-tolerant control based on boundary estimation for space robot under joint actuator faults and uncertain parameters

    2020-01-07 09:11:10RongHuaLeiLiChen
    Defence Technology 2019年6期

    Rong-Hua Lei,Li Chen

    School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350116,China

    ABSTRACT Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.

    Keywords:Space robot Actuator faults Uncertain parameters Effectiveness factor Fault-tolerant control

    1. Introduction

    A space robot is a kind of non-linear multi-body dynamic system composed of a carrier(spacecraft)and a manipulator.It is widely used in the rendezvous and docking of a space capsule,hovering and capturing of a small satellite and fuel filling of other spacecraft[1-4].With the rapid development of space technology,space robots will play a greater role in the exploration and development of space resources.At present,the dynamics and control of space robots have become the focus of aerospace technicians,and some research results have emerged[5-8].For a space robot with uncertain parameters,Yu[6]designed an augmented robust control algorithm.For a space robot with communication delays,Liang[7]proposed an improved computed torque control method based on Taylor series prediction.For a floating-based space robot with input constraints,Xie[8]introduces an anti-saturation fuzzy sliding mode controller.However,none of the above algorithms take into account the PLCE actuator fault of space robot.Considering the joint actuator is the core component of the entire control system,its failure is bound to cause unpredictable consequences.Therefore,it is extremely important to improve its own fault tolerance to maintain the normal operation of the control system.

    Currently,there are abundant research results on fault-tolerant control of various dynamic systems[9-15].For a linear timevarying system with actuator failures,Rosalba[10]proposes a fault-tolerant strategy based on integral sliding mode and control allocation.For a linear multibody system with actuator faults,Zhu[11]designs a distributed fault-tolerant control scheme based on adaptive fault observer.For a class of linear time-delay system with PLCE actuator faults,Ye[12]developed a cost-guaranteed faulttolerant control algorithm based on linear matrix inequality(LMI)technology.Although the above control algorithms all achieve good fault-tolerant control effects,these control strategies are designed for linear systems.Since a space robot is a kind of MIMO(multiple inputs and multiple outputs)nonlinear system,it is quite hard to apply the above fault-tolerant algorithms to the motion control of space robot.It is worth mentioning that the researches on faulttolerant control of nonlinear systems need to be improved.For spacecraft with parameter uncertainties and actuator failures,Cai[13]proposed an indirect robust adaptive fault-tolerant controller.For spacecraft with input constraints and actuator failures,Xiao[14]designed an anti-saturation fault-tolerant velocity-free algorithm.It should be pointed out that both algorithms in Refs.[13,14]assume that the lower bound of the actuator effectiveness factor is known.However,for the actual spacecraft,the specific fault information of the actuator is difficult to be predicted,which limits the practical application of the algorithms.Geng[15]introduced a variable gain PID(proportion integral differential)fault-tolerant control scheme based on LMI technology for a spacecraft with actuator failure,which effectively improved the tracking performance of the system with time-varying inertial parameters,but the variable gain strategy increased the complexity of the algorithm.

    Based on the current research situation,an adaptive faulttolerant control algorithm based on boundary estimation is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by adaptive strategy,and the estimated values are fed back to the control algorithm in real time.Compared with the fault-tolerant algorithms in Refs.[13,14],the algorithm does not need to pre-determine the minimum value of the actuator effectiveness factors,which is more in line with practical engineering applications.Moreover,the algorithm is simple in structure and has less computational complexity than the algorithms proposed in Ref.[15].

    2. Dynamics modeling and problem description

    The planar structure of a free-floating space robot system withn+1 degrees of freedom is shown in Fig.1.The system consists of a base carrierB0and some rigid linksBi(i=1, 2, …,n).Oiis the rotation center ofBi;Ciis the mass center ofBi;l0is the distance from rotation centerO0toO1;li(i=1, 2, …,n)is the length of linkBialong theyiaxis;miis the mass ofBi(i=0,1,…,n);Jiis the inertia moment ofBi(i=0, 1, …,n)with respect to its mass centerCi;θ0is attitude angle displacement of the base relative to the Yaxis;θi(i=1, 2, …,n)is the angular displacement of the ith link,i.e.the relative rotation angle betweenyiaxis andyi-1axis.

    Combining the momentum conservation theorem with the Lagrange equation,the dynamic equation of the system can be derived as

    Fig.1.Free-floating space robot system.

    whereq=[θ0, θ1,…, θn]Tis the generalized coordinates of the system;D(q)∈R(n+1)×(n+1)is the symmetric positive-definite inertia matrix of the system;is the Coriolis/centrifugal force vector of the system;τ=[u1,u2, …,un]Tis the control torques of the joint actuators;is the uncertain parameters due to the high-frequency modes,measurement noise and the consumption of the liquid fuel.

    Property 1.is a skew symmetric matrix,i.e.,

    The dynamic Eq.(1)of the system can be expressed in the form of block matrices as follows

    whereD11,D12∈R1×n,D21∈Rn×1andD22∈Rn×nare the submatrices ofD,H11,H12∈R1×n,H21∈Rn×1andqr=[θ1, θ2, …, θn]T.

    Eq.(2)can be decomposed into

    SinceD(q)is symmetric and positive-definite,thenexists.From Eq.(3),we have

    Substituting Eq.(5)into Eq.(4),the dynamic equation of the joints can be obtained

    Eq.(6)can be quasi-linearized as[16].

    When the joints actuator encounters the PLCE fault,the dynamics model(1)can be rewritten as

    where ρ=diag{p1,p2, …,pn} represents the actuator effectiveness factor matrix with 0 ≤ρi≤1(i=1, 2, …,n)means the health status of the ith actuator.The case ρi=1 indicates that the ith actuator is working normally.0<ρi<1 corresponds to the case in which the ith actuator loses part of its effectiveness.While ρi=0 indicates that the ith actuator has lost its all control effectiveness.

    The control objective of this work is to design an adaptive faulttolerant control algorithm for the space robot system(8)subjected to the joint actuator faults and uncertain parameters,so as to ensure the stability of the closed-loop system,i.e.,joint output trajectories can track the desired trajectories.

    3. Adaptive controller design

    In order to facilitate the design of the subsequent control algorithm,Eq.(8)can be rewritten as

    Where Δρ=I-ρ,I∈Rn×nis the identity matrix;

    Assumption 1.The uncertain parametersis bounded and satisfies

    whereKis an unknown positive constant and||·||representsL∞norm in this paper.

    Assumption 2.Desired trajectoriesqrd,andare normbounded.

    Define the trajectory tracking error ase=qr-qrd.Then,the extended error is selected

    where λ is a positive constant.

    Next,the dynamic extended error can be further designed as

    where χ can be seemed as the error between J and S and its derivative with respected to time iswhere sgn(S)= [sgn(S1), sgn(S2), …, sgn(Sn)]Tsgn(J)=[sgn(J1), sgn(J2), …, sgn(Jn)]T,k1andk2are two positive constants satisfyingk1≠k2.

    For the real space robot,the lower bound of the actuator effectiveness factors min{ρi}and the upper bound of the uncertain parametersKare usually unknown.Therefore,it is necessary to design an adaptive laws to estimate the boundary values.The structure of the control system in this paper is depicted in Fig.2.

    In order to estimate the minimum value of the actuator effectiveness factor,define

    Fig.2.Block diagram of control system.

    whereb=1-min{ρi}.

    An adaptive fault-tolerant controller(AFTC)is designed as

    where μ and β are positive constants.

    Theorem 1. For the dynamic system(8)with joint actuator faults and uncertain parameters,supposing that Assumptions 1-2 hold and adopting the adaptive laws(14)and(15),the adaptive fault-tolerant controller(13)can ensure that the trajectory tracking error e=qr-qrd converges to zero asymptotically.

    ProofChoose a Lyapunov function as

    whereV1,V2andV3are different Lyapunov functions.

    The process of proof can be divided into three steps.

    Step 1Adaptive law Analysis

    Select a Lyapunov functionV1as

    Taking the time derivative ofV1,and utilizing Property 1,one obtains

    Substituting Eq.(9)into Eq.(18)yields

    Applying controller(13)into Eq.(19),one has

    Substituting adaptive law(14)into Eq.(20)yields

    Combining adaptive law(15)with Eq.(21),one obtains

    Step 2Reach time analysis

    In order to obtain the convergence time,a lemma is proposed as follows

    Lemma 1. The dynamic extended error J exists and can converge to zero in finite timetJ[17].

    After time tJ,dynamic extended error J=0;utilizingEq.(11),one has

    Select a Lyapunov functionV2as

    Taking the time derivative ofV2,we have

    From Eq.(24),one obtains||S||=|2V2|1/2.Substituting||S||into Eq.(25)yields

    Further,

    Since whentreachestS,extended errorSwill converge to zero;which implies whent=tS,S=0;furtherV2(t)=V2(tS),hence

    Next,one obtains

    Consequently,extended errorScan converge to zero in finite timetS.

    Note that extended errorSand dynamic extended errorJcan both converge to zero in finite time,and dynamic extended error converges faster than extended error;i.e.,Since whent=tS,S=0;applying Eq.(10),we have

    Step 3Tracking error analysis

    Select a Lyapunov functionV3as

    Taking the time derivative ofV3yields

    Hence,the tracking error e is convergent.Based on the analysis results of the above three steps,one can see that ˙V≤0,which implies that the whole closed-loop system is stable.The proof is completed.

    4. Simulation examples

    In order to verify the effectiveness of the designed AFTC algorithm(13),numerical simulations of a planar two-link(n=2)space robot system are conducted using the fourth-order Runge-Kutta iterative method. The simulation results of the controller are compared with those of the nonsingular terminal sliding mode controller(NTSMC)proposed by Ref.[18]and the computed torque controller(CTC)proposed by Ref.[19]respectively.The NTSMC algorithm can only deal with model uncertainties,while the CTC algorithm can neither solve parameter uncertainties nor the PLCE actuator faults.

    Fig.3.Angle displacement of the base attitude under AFTC algorithm.

    Fig.4.Tracking performance of the AFTC algorithm and the NTSMC algorithm.

    The mathematical expression of the NTSMC algorithm is

    where α,φ,σ1and σ2are positive constant,1b,c1>1,0

    Fig.5.Tracking error of the AFTC algorithm and the NTSMC algorithm.

    Fig.6.Tracking performance of the CTC algorithm.

    Fig.7.Angle displacement of the base attitude under the AFTC algorithm.

    Fig.8.Tracking performance of the AFTC algorithm and the NTSMC algorithm.

    wherekvandkpare positive constant.

    The dynamic parameters of the space robot system arel0=1m,l1=l2=3m,m0=40kg,m1=m2=3kg,J0=34kg·m2,J1=J2=1kg·m2.

    The control gains of AFTC algorithm are chosen ask1= 0.15,k2=0.2,μ=0.5,β=0.001,ε=1,λ=3,χ=[0.1 0.1]T;NTSMC algorithm are set as σ1=2,σ2=3,α=1.8,φ=3,a=2,b=5/3,c1=1.1,c2=0.1;and CTC algorithm arekv=0.28,kp=0.4.

    The desired trajectories of the link joints are:θ1d=sin(0.2πt),θ2d=cos(0.2πt).The uncertain parameters are:0.05

    Fig.9.Tracking error of the AFTC algorithm and the NTSMC algorithm.

    4.1. Control performance in healthy status

    In this case, all the joint actuators are fault-free, i.e.,ρ=diag{1, 1}.The simulation results are shown in Fig.3 to Fig.6.Angle displacement of the base attitude under AFTC algorithm is illustrated in Fig.3.Fig.4 is the tracking performance comparison between the AFTC algorithm and the NTSMC algorithm,while Fig.5 is the tracking errors comparison under the two algorithms.Fig.6 is the tracking performance of CTC algorithm.

    It can be seen that both the AFTC algorithm and NTSMC algorithm can achieve trajectory tracking control of the joints,as shown in Fig.4;From Fig.5,one can further observe that the two algorithms can also limit the joint tracking errors to a small range of 0.01 rad.Since the CTC algorithm does not have the mechanism of compensating for uncertain parameters,the tracking errors of the closed-loop system can not converge.

    4.2. Control performance in failure status

    4.2.1. Scenario 1

    In this case,the PLCE actuator fault scenarios are considered and simulated.The actuator mounted in joint 1 loses 30%of its normal power at 5 s,while the actuator mounted in joint 2 lose 20%normal power at 8 s;i.e.,

    The simulation results are shown in Fig.7 to Fig.9.Angle displacement of the base attitude under AFTC algorithm is depicted in Fig.7.The tracking performance comparison between the AFTC algorithm and the NTSMC algorithm is shown in Fig.8,while Fig.9 is the tracking errors comparison under the two algorithms.

    Fig.10.Angle displacement of the base attitude under the AFTC algorithm.

    Fig.11.Tracking performance of the AFTC algorithm and the NTSMC algorithm.

    One can observe that although all the joint actuators are subjected to the PLCE faults,the link joints can still reach their desired positions with a tracking accuracy of 0.01 rad when the proposed AFTC algorithm is implemented to the space robot,as illustrated in Fig.8 and Fig.9(a).However,the closed-loop system is turn to unstable when NTSMC algorithm is applied to it,since the NTSMC algorithm can not resist the PLCE actuator faults.

    4.2.2. Scenario 2

    In this case,a more serious PLCE failure occurred to the joint actuator under these situations:1)The actuator mounted in joint 1 decreases 52%of its normal value after 5 s;2)The actuator mounted in joint 2 undergoes 68%loss of effectiveness in 8 s;i.e.,

    Fig.12.Tracking error of the AFTC algorithm and the NTSMC algorithm.

    The simulation results are shown in Fig.10 to Fig.12.Angle displacement of the base attitude under the AFTC algorithm is depicted in Fig.10.The tracking performance comparison between the AFTC algorithm and the NTSMC algorithm is shown in Fig.11,while Fig.12 is the tracking errors comparison under the two algorithms.

    One can clearly see that although all the joint actuators encounter serious PLCE faults,the proposed AFTC algorithm can still manage to compensate for the PLCE faults and acquire the same tracking accuracy as Scenario 1,as presented in Fig.11 and Fig.12(a).However,with the deterioration of the joint actuator fault,the tracking performance of the NTSMC algorithm becomes worse than that in Scenario 1,as depicted in Fig.9(b)and Fig.12(b).Hence,it can be known that the proposed AFTC algorithm is robust to the PLCE actuator faults.

    5. Conclusion

    An adaptive fault-tolerant control algorithm is designed for freefloating space robot system subjected to uncertain parameters and the PLCE actuator faults.Since the lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated adaptively,the ADFTC algorithm does not need to obtain the specific information of the worst actuator failure as the traditional fault-tolerant algorithms did,which means it possesses a huge potential for engineering applications.In addition,the algorithm has a simple structure and few adaptive parameters,so it can greatly reduce the computational load of the on-board computer.In the future,the author decides to extend the algorithm from planar system to three-dimensional counterpart and further validate the feasibility of the algorithm by semi-physical simulation experiments.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China(11372073,11072061).

    50天的宝宝边吃奶边哭怎么回事| 最近最新中文字幕大全免费视频| 国产成人av教育| 亚洲欧洲精品一区二区精品久久久| 香蕉久久夜色| 亚洲精品一区av在线观看| 天堂√8在线中文| av超薄肉色丝袜交足视频| 99久久精品国产亚洲精品| 国产精品电影一区二区三区| 12—13女人毛片做爰片一| 国产91精品成人一区二区三区| 91av网站免费观看| 精品久久蜜臀av无| a级毛片黄视频| 波多野结衣av一区二区av| 国产免费现黄频在线看| 女人精品久久久久毛片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲伊人色综图| 啦啦啦 在线观看视频| 大香蕉久久成人网| 夜夜躁狠狠躁天天躁| 黑人巨大精品欧美一区二区mp4| 一a级毛片在线观看| 男女之事视频高清在线观看| 免费不卡黄色视频| 日韩国内少妇激情av| 97碰自拍视频| 国产一区二区三区在线臀色熟女 | 亚洲国产欧美网| 久久久久久人人人人人| 国产免费现黄频在线看| 亚洲一区高清亚洲精品| 在线观看舔阴道视频| 亚洲全国av大片| 亚洲精品美女久久久久99蜜臀| cao死你这个sao货| 午夜免费激情av| 久久精品91无色码中文字幕| 国产色视频综合| 欧美日韩福利视频一区二区| 成人精品一区二区免费| 大型黄色视频在线免费观看| 99国产综合亚洲精品| 三级毛片av免费| 亚洲精品av麻豆狂野| 亚洲一区二区三区色噜噜 | 国产单亲对白刺激| 曰老女人黄片| 少妇被粗大的猛进出69影院| 色精品久久人妻99蜜桃| 午夜成年电影在线免费观看| 久久久久国产精品人妻aⅴ院| 天天躁狠狠躁夜夜躁狠狠躁| 在线看a的网站| 精品日产1卡2卡| 日韩国内少妇激情av| 日韩成人在线观看一区二区三区| 精品国产乱码久久久久久男人| 最新在线观看一区二区三区| 色婷婷久久久亚洲欧美| 80岁老熟妇乱子伦牲交| 老司机亚洲免费影院| 亚洲成人免费av在线播放| 国产av精品麻豆| 国产97色在线日韩免费| 国产精品久久久久成人av| 色在线成人网| 天天添夜夜摸| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 精品人妻在线不人妻| 午夜亚洲福利在线播放| 久久99一区二区三区| 国产精品av久久久久免费| 欧美激情高清一区二区三区| 狠狠狠狠99中文字幕| 成人手机av| 制服人妻中文乱码| 国产成人欧美| 嫩草影院精品99| 免费不卡黄色视频| 国产精品1区2区在线观看.| 欧美黑人精品巨大| 亚洲人成电影观看| 久久热在线av| 亚洲伊人色综图| 俄罗斯特黄特色一大片| 欧洲精品卡2卡3卡4卡5卡区| 999久久久精品免费观看国产| 天堂动漫精品| 亚洲欧美激情综合另类| 久久久久国产精品人妻aⅴ院| 一区福利在线观看| 久久午夜亚洲精品久久| 亚洲国产日韩欧美精品在线观看| 欧美bdsm另类| 久久久色成人| 搞女人的毛片| 色吧在线观看| 狂野欧美白嫩少妇大欣赏| 波多野结衣巨乳人妻| 日本五十路高清| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 一区二区三区激情视频| 噜噜噜噜噜久久久久久91| 国产69精品久久久久777片| 特级一级黄色大片| 国内揄拍国产精品人妻在线| 国产淫片久久久久久久久 | 九九久久精品国产亚洲av麻豆| 18禁裸乳无遮挡免费网站照片| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费| 最近视频中文字幕2019在线8| 久久99热6这里只有精品| 人妻制服诱惑在线中文字幕| 在线免费观看的www视频| 最近在线观看免费完整版| 午夜视频国产福利| 色噜噜av男人的天堂激情| 中国美女看黄片| 亚洲人成网站高清观看| av天堂在线播放| 性色av乱码一区二区三区2| 成人亚洲精品av一区二区| 小说图片视频综合网站| 欧美精品国产亚洲| 99久久精品国产亚洲精品| 在线十欧美十亚洲十日本专区| 亚洲片人在线观看| 亚洲成av人片免费观看| 国产熟女xx| 一a级毛片在线观看| 嫁个100分男人电影在线观看| 人妻丰满熟妇av一区二区三区| 91字幕亚洲| 超碰av人人做人人爽久久| 亚洲avbb在线观看| 精品人妻偷拍中文字幕| 亚洲国产精品成人综合色| 九色国产91popny在线| 12—13女人毛片做爰片一| av在线天堂中文字幕| 亚洲男人的天堂狠狠| 精品一区二区三区视频在线观看免费| 国产精品自产拍在线观看55亚洲| 亚洲精品456在线播放app | 日韩欧美一区二区三区在线观看| 午夜激情欧美在线| 国产老妇女一区| 亚洲精品粉嫩美女一区| 精品久久久久久成人av| 成人毛片a级毛片在线播放| 欧美性猛交黑人性爽| 麻豆成人午夜福利视频| 99久久精品国产亚洲精品| 亚洲性夜色夜夜综合| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 久久精品91蜜桃| 亚洲精品粉嫩美女一区| 禁无遮挡网站| 亚洲在线观看片| 国产午夜福利久久久久久| 亚洲熟妇中文字幕五十中出| 亚洲最大成人手机在线| 最近最新中文字幕大全电影3| 永久网站在线| 国产黄a三级三级三级人| 一进一出抽搐动态| 级片在线观看| 欧美激情久久久久久爽电影| 久久人人精品亚洲av| 午夜福利免费观看在线| 能在线免费观看的黄片| 亚洲在线自拍视频| 999久久久精品免费观看国产| 欧美性猛交黑人性爽| 一卡2卡三卡四卡精品乱码亚洲| 在线天堂最新版资源| 欧美日韩中文字幕国产精品一区二区三区| 国产单亲对白刺激| 久久热精品热| 在线观看午夜福利视频| 日韩国内少妇激情av| 深夜精品福利| 成人亚洲精品av一区二区| 999久久久精品免费观看国产| av在线天堂中文字幕| 亚洲国产精品久久男人天堂| 99国产极品粉嫩在线观看| 色精品久久人妻99蜜桃| 国产伦在线观看视频一区| 香蕉av资源在线| x7x7x7水蜜桃| 国产精品亚洲一级av第二区| 性色av乱码一区二区三区2| 亚洲在线自拍视频| 国产主播在线观看一区二区| 啦啦啦韩国在线观看视频| av在线观看视频网站免费| 日韩欧美精品免费久久 | 亚洲精品色激情综合| aaaaa片日本免费| 亚洲精品一卡2卡三卡4卡5卡| 国产精品三级大全| 夜夜夜夜夜久久久久| 国产视频一区二区在线看| 国产精品日韩av在线免费观看| 欧美3d第一页| 一区二区三区激情视频| 99国产精品一区二区蜜桃av| 人妻丰满熟妇av一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲最大成人手机在线| .国产精品久久| 欧美一区二区国产精品久久精品| 亚洲人成网站在线播| 一区二区三区高清视频在线| 一区二区三区免费毛片| 免费看光身美女| 国产欧美日韩精品亚洲av| 久久草成人影院| 精品一区二区三区视频在线观看免费| 国产精品久久久久久人妻精品电影| 丁香六月欧美| 国产91精品成人一区二区三区| 老司机午夜十八禁免费视频| 亚洲成人免费电影在线观看| 嫩草影院入口| 757午夜福利合集在线观看| 精品久久久久久久久av| 真实男女啪啪啪动态图| 国产伦精品一区二区三区视频9| 中国美女看黄片| 久久精品国产亚洲av天美| 国产精品1区2区在线观看.| 露出奶头的视频| av黄色大香蕉| 久久亚洲精品不卡| 国产精品亚洲av一区麻豆| av在线蜜桃| 夜夜爽天天搞| 人妻制服诱惑在线中文字幕| 欧美一区二区亚洲| 免费一级毛片在线播放高清视频| 国内揄拍国产精品人妻在线| 中出人妻视频一区二区| 99国产极品粉嫩在线观看| 亚洲成av人片免费观看| 九九在线视频观看精品| 性插视频无遮挡在线免费观看| 亚洲国产日韩欧美精品在线观看| 久久久久久国产a免费观看| 国产成人啪精品午夜网站| 亚洲真实伦在线观看| 亚洲最大成人手机在线| 国产视频一区二区在线看| 日本a在线网址| 国产在线男女| 国产国拍精品亚洲av在线观看| 日本在线视频免费播放| 亚洲精品成人久久久久久| 一级作爱视频免费观看| 午夜视频国产福利| 欧美bdsm另类| 精品午夜福利视频在线观看一区| 久久国产乱子伦精品免费另类| 国产真实乱freesex| h日本视频在线播放| 超碰av人人做人人爽久久| 欧美潮喷喷水| 美女黄网站色视频| 午夜久久久久精精品| 无遮挡黄片免费观看| 可以在线观看的亚洲视频| 亚洲人成网站在线播放欧美日韩| 日本免费a在线| 国产激情偷乱视频一区二区| 床上黄色一级片| 中文在线观看免费www的网站| eeuss影院久久| 在线免费观看不下载黄p国产 | 97超视频在线观看视频| 精品久久久久久久久久久久久| 日韩成人在线观看一区二区三区| 日本黄色片子视频| 久久精品人妻少妇| 国产亚洲精品久久久com| 一个人看的www免费观看视频| 99国产综合亚洲精品| 美女被艹到高潮喷水动态| 国产精品一及| 国产aⅴ精品一区二区三区波| 中文字幕人成人乱码亚洲影| 国产单亲对白刺激| 国产真实伦视频高清在线观看 | 免费观看精品视频网站| 天堂动漫精品| 十八禁国产超污无遮挡网站| 最新中文字幕久久久久| 午夜福利成人在线免费观看| 一级a爱片免费观看的视频| 非洲黑人性xxxx精品又粗又长| 欧美日韩黄片免| 午夜福利在线观看吧| 欧美精品啪啪一区二区三区| 少妇裸体淫交视频免费看高清| 中文字幕av在线有码专区| 亚洲自偷自拍三级| 中文在线观看免费www的网站| 久久欧美精品欧美久久欧美| 少妇裸体淫交视频免费看高清| 亚洲精品乱码久久久v下载方式| 三级国产精品欧美在线观看| 国内毛片毛片毛片毛片毛片| 日本三级黄在线观看| 99视频精品全部免费 在线| 欧美精品国产亚洲| 日本撒尿小便嘘嘘汇集6| 国内精品一区二区在线观看| 国产精品免费一区二区三区在线| 午夜激情福利司机影院| h日本视频在线播放| 欧美黑人欧美精品刺激| 午夜激情欧美在线| 日韩精品中文字幕看吧| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 人妻制服诱惑在线中文字幕| 91麻豆精品激情在线观看国产| 美女 人体艺术 gogo| h日本视频在线播放| 亚洲av日韩精品久久久久久密| 国内精品久久久久精免费| 亚洲,欧美精品.| 久久久久精品国产欧美久久久| 精品国产三级普通话版| 亚洲第一电影网av| 男女做爰动态图高潮gif福利片| 成熟少妇高潮喷水视频| 亚洲精品成人久久久久久| 久久久国产成人精品二区| 精品人妻1区二区| 中文字幕精品亚洲无线码一区| 国产精品一区二区性色av| 国产亚洲av嫩草精品影院| 99视频精品全部免费 在线| 一区二区三区免费毛片| h日本视频在线播放| 日韩av在线大香蕉| 欧美最新免费一区二区三区 | 韩国av一区二区三区四区| 综合色av麻豆| 色5月婷婷丁香| 18禁在线播放成人免费| 老司机深夜福利视频在线观看| 国产精品精品国产色婷婷| 午夜免费男女啪啪视频观看 | 国产欧美日韩精品亚洲av| 亚洲在线观看片| 精品午夜福利在线看| 国产综合懂色| 一二三四社区在线视频社区8| 精品一区二区三区av网在线观看| 国产精品电影一区二区三区| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 亚洲熟妇熟女久久| 赤兔流量卡办理| 琪琪午夜伦伦电影理论片6080| 免费一级毛片在线播放高清视频| or卡值多少钱| 在线播放无遮挡| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添av毛片 | 又爽又黄无遮挡网站| 精品久久久久久,| 久久精品国产99精品国产亚洲性色| 久久人人精品亚洲av| 国产单亲对白刺激| 村上凉子中文字幕在线| 老司机福利观看| 欧美bdsm另类| av黄色大香蕉| 国产高清视频在线观看网站| 免费一级毛片在线播放高清视频| 我要看日韩黄色一级片| 天天一区二区日本电影三级| 毛片一级片免费看久久久久 | 中文字幕av成人在线电影| 无人区码免费观看不卡| 神马国产精品三级电影在线观看| 成年免费大片在线观看| 少妇被粗大猛烈的视频| 中文字幕人妻熟人妻熟丝袜美| 宅男免费午夜| 99精品在免费线老司机午夜| a级毛片免费高清观看在线播放| 中文字幕av在线有码专区| 亚洲内射少妇av| 波多野结衣巨乳人妻| 亚洲无线在线观看| 国产免费男女视频| 欧美成人a在线观看| 国产视频一区二区在线看| 青草久久国产| 成人国产一区最新在线观看| 欧美黄色淫秽网站| 国产主播在线观看一区二区| av在线老鸭窝| 欧美一区二区国产精品久久精品| 亚洲,欧美,日韩| 两个人视频免费观看高清| 伦理电影大哥的女人| 97热精品久久久久久| 精品一区二区三区视频在线观看免费| 可以在线观看的亚洲视频| av天堂在线播放| 国产单亲对白刺激| 欧美日本亚洲视频在线播放| 毛片女人毛片| 国产高清三级在线| 国产亚洲精品av在线| 国产高清视频在线观看网站| 亚洲人成网站在线播| 亚洲国产精品sss在线观看| 免费在线观看亚洲国产| 国产精品久久久久久亚洲av鲁大| 日韩亚洲欧美综合| 悠悠久久av| 麻豆成人午夜福利视频| 欧美日韩黄片免| 18禁裸乳无遮挡免费网站照片| 两性午夜刺激爽爽歪歪视频在线观看| 淫秽高清视频在线观看| 赤兔流量卡办理| 国产精品日韩av在线免费观看| 国产精品亚洲美女久久久| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 日本成人三级电影网站| 夜夜爽天天搞| 国产精品国产高清国产av| av在线天堂中文字幕| 午夜免费男女啪啪视频观看 | 搡老熟女国产l中国老女人| 午夜福利免费观看在线| 亚洲三级黄色毛片| 欧美精品国产亚洲| 免费在线观看日本一区| 亚洲激情在线av| 又爽又黄无遮挡网站| 欧美一区二区精品小视频在线| 久久久色成人| 国产免费一级a男人的天堂| 性色av乱码一区二区三区2| 可以在线观看毛片的网站| 亚洲熟妇熟女久久| 高潮久久久久久久久久久不卡| 丰满人妻一区二区三区视频av| 高清在线国产一区| 亚洲激情在线av| 欧美国产日韩亚洲一区| 欧美bdsm另类| 蜜桃亚洲精品一区二区三区| 亚洲真实伦在线观看| 亚洲人与动物交配视频| 国产免费一级a男人的天堂| 桃红色精品国产亚洲av| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 色综合婷婷激情| 女生性感内裤真人,穿戴方法视频| 久久久精品大字幕| 丰满的人妻完整版| 又爽又黄无遮挡网站| 久久人人精品亚洲av| 亚洲欧美激情综合另类| 日韩欧美国产一区二区入口| 精品一区二区三区视频在线| 欧美三级亚洲精品| 嫁个100分男人电影在线观看| 欧美日韩综合久久久久久 | 久久人人爽人人爽人人片va | 老熟妇仑乱视频hdxx| 好男人在线观看高清免费视频| 夜夜看夜夜爽夜夜摸| 99riav亚洲国产免费| 九九在线视频观看精品| 美女 人体艺术 gogo| 午夜a级毛片| 中文字幕久久专区| 欧美一区二区亚洲| 亚洲成人免费电影在线观看| 国产日本99.免费观看| 久久精品国产亚洲av香蕉五月| 啦啦啦韩国在线观看视频| 性色av乱码一区二区三区2| 亚洲中文字幕日韩| 老司机午夜十八禁免费视频| 他把我摸到了高潮在线观看| 色综合婷婷激情| 老鸭窝网址在线观看| 我的老师免费观看完整版| 97超级碰碰碰精品色视频在线观看| 亚洲片人在线观看| 真人做人爱边吃奶动态| 久久亚洲真实| ponron亚洲| 亚洲av电影不卡..在线观看| 床上黄色一级片| 欧美日韩瑟瑟在线播放| 久久久国产成人免费| 亚洲精品成人久久久久久| 成人美女网站在线观看视频| 日本免费a在线| 久久精品91蜜桃| 日本黄色片子视频| 97超视频在线观看视频| 亚洲,欧美,日韩| 久久性视频一级片| 国产真实伦视频高清在线观看 | 身体一侧抽搐| 国产真实乱freesex| 好男人电影高清在线观看| 一级黄片播放器| 国产三级在线视频| 国产视频内射| 国产一区二区三区视频了| 一级a爱片免费观看的视频| 亚洲av熟女| 三级毛片av免费| 乱码一卡2卡4卡精品| 国产精品av视频在线免费观看| 免费黄网站久久成人精品 | 如何舔出高潮| 精品久久久久久久久亚洲 | 久久久久免费精品人妻一区二区| 18禁裸乳无遮挡免费网站照片| 男人舔奶头视频| 尤物成人国产欧美一区二区三区| 久久久精品欧美日韩精品| 欧美区成人在线视频| 99热这里只有是精品在线观看 | 999久久久精品免费观看国产| 欧美中文日本在线观看视频| 波多野结衣高清作品| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩高清专用| 在线观看一区二区三区| 赤兔流量卡办理| 中国美女看黄片| 人人妻人人澡欧美一区二区| 老女人水多毛片| 少妇裸体淫交视频免费看高清| 三级男女做爰猛烈吃奶摸视频| 中文字幕精品亚洲无线码一区| 亚洲综合色惰| 国产伦一二天堂av在线观看| 精品欧美国产一区二区三| 少妇被粗大猛烈的视频| 真人做人爱边吃奶动态| www.www免费av| 亚洲欧美日韩无卡精品| 欧美最黄视频在线播放免费| 性插视频无遮挡在线免费观看| 亚洲精品在线观看二区| 真实男女啪啪啪动态图| 亚洲七黄色美女视频| 日韩免费av在线播放| 国产av一区在线观看免费| 亚洲性夜色夜夜综合| 亚洲精品在线美女| 国产精品久久久久久久久免 | 亚洲天堂国产精品一区在线| 一个人免费在线观看电影| 亚洲成人久久性| 亚洲avbb在线观看| 我要看日韩黄色一级片| 午夜福利在线观看免费完整高清在 | 成人精品一区二区免费| 国产成人影院久久av| 日韩成人在线观看一区二区三区| 99热精品在线国产| 日本 欧美在线| av在线观看视频网站免费| 午夜精品一区二区三区免费看| 免费搜索国产男女视频| 国产av在哪里看| 啦啦啦观看免费观看视频高清| 性插视频无遮挡在线免费观看| 最好的美女福利视频网| 在线播放国产精品三级| 日本免费a在线| 午夜福利高清视频| 高清在线国产一区| 性色av乱码一区二区三区2| 午夜福利高清视频| 老女人水多毛片| av视频在线观看入口| 欧美又色又爽又黄视频| 午夜精品一区二区三区免费看| 嫩草影院入口| 日韩成人在线观看一区二区三区| 可以在线观看毛片的网站| 日韩欧美精品免费久久 | 夜夜躁狠狠躁天天躁| 性插视频无遮挡在线免费观看| 色在线成人网| 精品久久久久久久人妻蜜臀av| 午夜福利视频1000在线观看|