• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic,thermal stability and dynamic mechanical properties of beta isotactic polypropylene/natural rubber blends reinforced by NiZn ferrite nanoparticles

    2020-01-07 09:11:08LihJiunYuShrimHjAhmIngKongMouTrwnhShmsulBhriBinRzkElngoNtrjnChunKitAng
    Defence Technology 2019年6期

    Lih-Jiun Yu ,Shrim Hj Ahm ,Ing Kong ,Mou A.Trwnh ,Shmsul Bhri Bin A Rzk ,Elngo Ntrjn ,Chun Kit Ang

    a Department of Mechanical Engineering,Faculty of Engineering,Technology and Built Environment,UCSI University,No 1,Jalan Menara Gading,UCSI Heights(Taman Connaught),Cheras,56000,Kuala Lumpur,Malaysia

    b School of Applied Physics,Faculty of Science and Technology,University Kebangsaan Malaysia,43600,Bangi,Selangor Darul Ehsan,Malaysia

    c School of Engineering and Mathematical Sciences,La Trobe University,Bundoora,VIC,3086,Australia

    d Department of Physics,College of Science,Al-Hussein Bin Talal University,P.O Box 20,Ma'an,Jordan

    e Department of Food Science and Technology,University Malaysia Terengganu,Kuala Nerus,Terengganu,Malaysia

    ABSTRACT The dispersion of magnetic nanoparticles in matrix is crucial to ensure optimum performance of the composite.The difficulty level of achieving good dispersion is further increase when a multi-phases of matrix is present.A pre-coating technique of magnetic nanoparticles with polypropylene using ball-mill prior to melt-blending process was employed to prepare a multi-phases thermoplastic natural rubber composite.The effect of filler loading(2 wt%-10 wt%)on morphology,structure,magnetic properties,thermal stability and dynamic mechanical properties of the composites were investigated.It was found that the NiZn ferrite nanoparticles act as nucleating agent to form beta isostatic polypropylene thermoplastic composites.The composites'magnetic properties are directly dependent on the filler concentration.The dispersion of magnetic fillers in polymer matrix plays role in affecting the magnetic properties and thermal stability.The preference of filler to locate at amorphous phase has distorted the chain orientation of natural rubber and polypropylene.Hence,the polymorphism and crystallinity of the matrix varied as the filler loading increased,affecting the dynamic mechanical properties.It was found that 8 wt%NiZn nanocomposite exhibits highest E’and tanδ,indicating the dynamic mechanical properties of NiZn nanocomposite are affected by β-phase degree.

    Keywords:Magnetic Thermoplastic natural rubber Nanoparticles Composites

    1. Introduction

    Thermoplastic natural rubber(TPNR)is an analogue of the thermoplastic elastomers(TPE).They are prepared by blending rubber with thermoplastics such as polyolefins,offering an intermediate properties between these two polymers.According to Ibrahim&Dahlan[1],the TPNR exhibits improved impact strength,ductility and stiffness,as compared to the rubber and polyolefins.In addition,the ease of processing and high recycling ability are the main advantages of the TPE.Various fillers were incorporated into the thermoplastic elastomer matrices,aimed to achieve desired properties in the specific application.However,there is a need for proper mixing between the fillers and TPNR matrix in order to achieve optimal results.

    Incorporation of ferrite nanoparticles in polymeric matrix has offered superior performance in microwave absorption[2-6]and information storage[7-9],potentially applicable in stealth technology [10] and energy storage. The ferrite nanoparticles are embedded in polymeric matrix,enhancing the magnetic properties and mechanical properties of the polymers[1,11-13].These composite materials offer advantages,in term of flexibility of shaping,cost saving and reducing environmental attack on the filler counterparts.However,a good dispersion of the magnetic fillers in polymer matrix is hard to achieve,magnetic particles have higher tendency to form agglomerate due to their magnetic interaction.Furthermore,the control of fillers dispersion could be tougher,especially when the fillers are incorporated into multiple phase's matrix.Premphet&Horanont[14]observed that the phase structure of the ternary phase composite can be either exhibits as a separate dispersion of the phases or encapsulation of the fillers by elastomer.These two phase structure showed different crystallization behavior and dynamic mechanical properties,depends on the polarity of the elastomer.

    Numerous studies emphasized on the preparation and characterization of β isostatic polypropylene[15-19].The formation of β isostatic polypropylene with the presence of nucleating agent in multiple phase thermoplastic blends and their properties are remained unclear.In this paper,the work focused on the relationship between the microstructure and the properties of the NiZn ferrite loading in binary phase matrix which consists of natural rubber and polypropylene.The effect of filler loading on magnetic properties,thermal stability and dynamic mechanical properties of the nanocomposites were studied.

    2. Materials and methods

    Nickel zinc ferrite nanoparticles(Ni0.5Zn0.5Fe2O4),with 98.5%purity,average particle size 10-30 nm,were obtained from commercial suppliers in powder form.Natural Rubber(NR)and polypropylene(PP)were supplied by the Rubber Research Institute of Malaysia(RRIM)and Mobile(M)Sdn.Bhd.Liquid natural rubber(LNR)was prepared by photosynthesized degradation of NR in visible light.

    The TPNR was prepared from PP,NR and LNR with a weight ratio of 70:20:10.LNR was used as the compatibilizer in the mixture.NiZnFe2O4nanopowder was ball milled with PP for 15min prior incorporated in the TPNR matrix by melt blending techniques in the laboratory.In this study,the TPNR/NiZnFe2O4nanocomposite with 2 wt%-10 wt%NiZnFe2O4was prepared using Thermo Haake at rotation speed of 100r?min-1,180°C,for 13min.After the blend,the samples were hot-pressed into a thin sheet of 1 mm in thickness using a hydraulic press at 185°C.Field emission scanning electron microscopy(FESEM)graph for the nanocomposite was obtained from a fractured surface.Transmission electron microscopy(TEM)graph for the nanocomposite was obtained by Phillips CM-12.Microstructure studies on nanocomposites were carried out by Xray diffraction (XRD; Siemens D5000) with CuKα1radiation(λ=1.5406 ?).Magnetization measurements were carried out using a vibrating sample magnetometer,VSM(Model 7404),to obtain the M-H loop at room temperature(25°C).Thermogravemetric analysis and dynamic mechanical analysis were carried out using TGA 50(Shimadzu)and DMA 2980(TA instrument)respectively.

    3. Results

    3.1. Magnetic properties

    The hysteresis of pure NiZn nanoparticles and nanocomposites with different filler content was measured at room temperature.Fig.1 exhibits the loops for the six samples with 2 wt%,4 wt%,6 wt%,8 wt%,10 wt%and 100 wt%of NiZn ferrite.The corresponding results from VSM for all samples are listed in Table 1.Initial susceptibility and permeability of the nanocomposite were obtained from the initial magnetization curve from VSM and listed in Table 1.As the filler content increased,the values of saturation magnetization(MS),remanence(MR),initial susceptibility(χi),and initial permeability(μi)increased,except for coercivity(Hci).The results are consistent with previous reports on other magnetic polymer by Kong et al.[2]and Gokturk et al.[20].For all nanocomposites,it is observed that the initial permeability is lower than 100 wt%NiZn ferrite.This is because the ferrite grains are embedded in the TPNR matrix.Vijutha Sunny[13]suggests that the nonmagnetic rubber matrix causes a discontinuity in the nanocomposite giving way to a demagnetizing field,thus,reducing the permeability at lower filler contents.

    Fig.1.M-H hysteresis loop obtained from the samples with various filler loading.

    Table 1Corresponding results obtained from VSM.

    The results indicate that saturation magnetization and remanence are increasing whereas the intrinsic coercive force value show a slightly decreasing,ranging from 22.06 to 20.35Oe.The Hcivalues of the nanocomposite are close to theHcivalue of 100 wt%of NiZn ferrite(20.35Oe).The values are different from those previously reported by Ramajo et al.[21]and Yang et al.[22],as theHcivalues of magnetic composites are almost constant and independent to the filler loading.It is known that the coercive force of a material is sensitive to the microstructure,related to the anisotropy of the magnetic particle.A good mixing process enables the magnetic particles to be randomly orientated and dispersed uniformly in the polymer matrix.The magnetic particles are isolated from each other in the polymer matrix.This could reduce the agglomeration of the magnetic particles,giving a higher mean distance between the particles.As the mean interparticle distance increases,the magnetic interaction between the ferrite particles decreases.The TPNR matrix restricts the alignment of the magnetic moment of the ferrite.Therefore,it is hard to demagnetize the ferrite particles with higher mean distance between the particles,thus the coercive force is high in the lower ferrite loading in the composite.Fig.2 shows SEM micrograph of the fractural surface of 2 wt%and 10 wt% of NiZn ferrite nanocomposite. The white spheres embedded in the TPNR matrix are NiZn ferrite nanoparticles.The NiZn ferrite particles in 10 wt%nanocomposites have a higher tendency to agglomerate into larger size,leaving a large interparticle distance between the nanoparticles while NiZn ferrite particles in 2 wt%nanocomposites are closed and isolated by the matrix.

    Application of a field H causes the magnetic induction to increase in the field direction.Magnetization reaches saturation when all the magnetic dipoles within the materials are aligned in the direction of the magnetic field.The saturation magnetization is only dependent only on the magnitude of the atomic magnetic momentsmand the number of atoms per unit volumen,MS=nm.Saturation magnetization is also commonly expressed as the magnetic moment per mass.This specific saturation magnetization is linearly dependent on the mass fraction of ferrite and obeys the general relation:MS=MfWf.WhereMfandWfare the saturation magnetization and weight fraction of the ferrite,respectively.The saturation magnetization of the nanocomposite depends on the content of the filler with magnetic moments in a given mass fraction.The experimentalMSvalue and the theoreticalMSvalue were plotted in Fig.3.The results indicate good agreement,as both experimental and theoreticalMSvalues are similar.

    3.2. Crystallography structure

    Fig.2.FESEM micrograph of(a)2 wt%NiZn ferrite nanocomposite(b)10 wt%NiZn ferrite nanocomposite.

    Fig.3.Comparison of theoretical and experimental Ms values.

    Fig.4.X-ray diffractograms of the nanocomposites with different filler content.

    The X-ray diffractograms of the TPNR and nanocomposites with various filler loadings are shown in Fig.4.The figure illustrates that two phases,crystalline phase and amorphous phase co-exist in both the TPNR and the nanocomposites.For all samples,the semiamorphous phases of the TPNR appear at the lower 2θ degree(<30°)and 42.48°.According to Alariqi et al.[23],the sharp peaks(14.05°,16.9°,18.5°,21.8°)in this range contributed by the crystallinity of the α-phase isotactic PP.Meanwhile,the broadening of the amorphous region of NR could be seen clearly in the X-ray diffractogram of TPNR.Tang et al.[24],Wang et al.[25]and Jancar[26]agreed that the thermodynamically stable β-phase formation of polymorphic PP is hard to achieve under normal processing condition.Varga et al.[27]and Horvath et al.[28]stated that the βphase can be obtained when the PP undergoes isothermal crystallization process, high shear field crystallization process or blended with β-phase nucleating ability polymer.It can be seen that the β-phase PP which located at 16°appears when NiZn ferrite incorporated in the TPNR.The proportional increment of the intensities β-phase with the filler content under constant processing condition,has demonstrated that the ability of NiZn ferrite to act as a nucleating agent,to promote β-phase formation of PP.The highest relative content of β-phase PP were obtained at 8 wt%NiZn ferrite,then reduced 25%at 10 wt%NiZn ferrite.The tendency of NiZn ferrite particle to form agglomerates at high filler content has weakened the nanoscale confinement structure formation,resulted disoriented PP crystals formation,hence led to an overall reduction in crystallinity of PP. The characteristic peaks of NiZn ferrite matched with the database(JCPDS file no.00-008-0234)to confirm the planes of NiZn ferrite in the nanocomposites.There is no structural change NiZn ferrite after incorporating in the TPNR,because the peak position of the NiZn ferrite peaks remain unchanged.It can be seen that,the increment of NiZn ferrite loading leads to the increment of the intensity of the characteristic peaks for NiZn ferrite,significantly at the major intensity peak at plane(311).By referring to the NiZn ferrite peaks in plane(311),the fractional crystallinity of the nanocomposites are 0.51,0.52,0.54,0.62,0.87 for 2 wt%-10 wt%nanocomposites respectively.Diffraction peaks and the amorphous phase of TPNR reduced at higher filler content since the characteristic peaks of crystalline NiZn ferrite became dominant.This result is consistent with Sun et al.[11]and Low et al.[29].The crystallinity and amorphous region of TPNR were suppressed after introducing fine NiZn ferrite particles into the system,due to the migration of fine particles interfering the preferred orientation of the TPNR.The magnetic dipole interaction of NiZn ferrite is higher in the low crystalline matrix because of the higher freedom of spin rotation at the amorphous phase,hence,leading to better magnetization properties NiZn ferrite in TPNR.At higher filler loadings,more NiZn ferrite particles located in the amorphous phase.Therefore,less external force(Hci)is required to orientate spin according to the applied field.

    Fig.5 illustrates the TEM micrograph of the NiZn ferrite nanocomposite.The dark spheres are NiZn ferrite particles,the grey regions are the NR phase,and the white regions are the PP phase.The phase structure of the NiZn ferrite nanocomposites shown in Fig.5 is the combination of the two types of phase structure,which observed by Premphet&Horanont[14].It can be seen that the NiZn ferrite particles are distributed homogenously in both the NR and PP phase,while some aggregation of the NiZn ferrite particles is likely to occur in the NR phase,due to the slightly high viscosity of NR,which limits the dispersion of NiZn ferrite particles during the mixing process.According to Osawa et al.[30],the movement of polymer segment surrounded the filler was limited by polymerparticle interaction.Hence,the preference of NiZn ferrite particles to aggregate in NR phases leads to the rapid drop of crystallinity of the TPNR phase.Based on the morphology examination,a schematic diagram was drawn to show the phase structure of the NiZn ferrite nanocomposite.Fig.6(a)shows the arrangement of TPNR molecule chains which consist of semi-crystalline phase and amorphous phase.After incorporated with NiZn ferrite with higher electronegative attraction,the molecule chain of TPNR was distorted by the NiZn ferrite particles with higher electronegative attraction and hence,affected the TPNR crystallography structural,as shown in Fig.6(b).

    Fig.5.TEM micrograph of 2 wt%NiZn ferrite nanocomposite.

    Fig.6.Schematic diagram of the arrangement of the TPNR molecule chains(a)before incorporated with NiZn ferrite(b)after incorporated with NiZn ferrite.

    3.3. Thermal properties

    Fig.7.Thermogram of NiZn ferrite nanocomposite.

    Table 2Data obtained from thermogram graph.

    The thermal stability of the NiZn ferrite nanocomposite was studied by thermogravity analysis under the nitrogen flow to prevent unwanted weight addition of oxidized product during heating process and was illustrated in Fig.7.The corresponding data obtained from thermogram are listed in Table 2.It was found that the thermal degradation of TPNR and its nanocomposites takes place through a two-step process,remarkable at decomposition temperature around 360°C and 440°C. The first decomposition temperature was due to the decomposition of the NR phases while the latter was due to the decomposition of the PP phases.The difference of crystallinity degree of these two phases impacts to the decomposition temperature,whereas the lower crystallinity phase(NR)provided more free volume to enable the molecules movement during heating process.The NiZn ferrite has higher resistance to the thermal degradation because the molecules are highly crystalline oriented.The thermal decomposition temperature of NR phases and PP phases of the NiZn ferrite nanocomposites were studied at the 10%weight loss and 50%weight loss of samples,denoted byT10andT50respectively in Table 2.The results revealed that theT10andT50are slightly shifted to the higher value.It is clear that the addition of NiZn ferrite leads to an increase of the TPNR thermal stability.Similar thermal stability behavior of the addition ferrite has been reported by Cha&Kim(2007)[31]and Puryanti et al.(2007)[32].The delaying of volatile products diffuse from bulk polymer was attributed to the physical absorption between the NiZn ferrite surface and their surrounding TPNR molecule chains.The increment of NiZn ferrite content provided more absorption interaction with the TPNR molecules,hence retarded the decomposition process of both NR phases and PP phases.The endset temperature of the nanocomposite was denoted byTT.Apparently,the values ofTTare inversely proportionally to the NiZn ferrite content,due to more heat energy are required to decompose large quantity of hydrocarbon compounds that presence in the samples.The residual weight percent demonstrated the remaining carbonyl products and NiZn ferrite which are incombustible at 500°C.These residual weight percent approached the initial filler weight percent,indicating a homogeneity blends were achieved by the blending of NiZn ferrite into the TPNR matrix.

    3.4. Dynamic mechanical properties

    The temperature dependence of storage modulus (E') of different filler loading of NiZn ferrite nanocomposite were studied at the fixed frequency of 1 Hz.From Fig.8(a),the NiZn ferrite addition had induced a higherE'value at-80°C.The large particle surface of nanosized NiZn ferrite tends to increase the stiffness of the TPNR in glassy state.Diez-Pascual et al.[33]explained the increment ofE'value is attributed to the effective load transfer from the polymer matrices to the fillers, resulting from the good dispersion of fillers in the matrix.TheE'value of 2 wt%NiZn ferrite showed a drastic drop at-73°C and exhibited lowestE'values above its glass transition temperature;this result is in agreement with Varga et al.[27]findings,the formation of β-phase PP reduced the tensile strength of nanocomposite,provided higher impact strength and ductility in contrast.However,as NiZn ferrite loading increases,the β-phase's toughening effect was overtaken by the reinforcement effect of the NiZn ferrite nanoparticle.HighestE'was achieved by 8 wt%NiZn ferrite,further increment of NiZn ferrite loading was found ineffective in load transfer.The reduction ofE'at 10 wt%possible due to reduction in β-phase PP and agglomeration of NiZn ferrite nanoparticles.

    Fig.8.(a)Storage modulus of nanocomposites with various filler loading(b)tanδ of nanocomposite with various filler loading.

    From Fig.8(b),tanδ peak value of all nanocomposites is higher than the corresponding tanδ peak value of TPNR.The increasing trend of the tanδ peak values was contributed by the hysteresis loss upon dynamic tensile stress.This is probably due to the particleparticle friction and particle-matrix interface interaction when more filler were introduced to the TPNR matrix.The particle-matrix interface interaction due to the presence of β-phase around the NiZn ferrite particle resulted increasing in the damping characteristic of the nanocomposites.Similar increment of tanδ peak value was observed by Weon&Sue[34]in the CaCo3/high crystalline PP system with the presence of β-phase.The corresponding glass transition temperatures(Tg)of the TPNR and the NiZn nanocomposites were identified from the tanδ peak position.It can be seen that there are two glass transition temperatures as shown by TPNR and NiZn nanocomposites. The firstTg(approximately-70°C)is theTgfor NR,while the latter glass transition temperature approximately located at 11°C is theTgfor PP in the TPNR system.The results shows the bothTgvalues had shifted to the lower value after incorporated with the NiZn ferrite particles.This implies that the incorporation of fillers in the TPNR matrix induced β-phase formation,led to an increment in the free volume of the polymer chain, thus promotes the molecular mobility at lower temperature.It can be observed that both glass transition temperatures(NR and PP)of 8 wt%NiZn nanocomposite is relatively low(approximately-73°C and 4°C).This is corresponding to high degree of β-phase presents in 8 wt% NiZn nanocomposite,resulting in more molecular chains mobility.The loss of energy attributed to the lower cohesive force by the β-phase,leads to easier slipping on the lamella chains when the degree of βphase increased[35].

    4. Conclusions

    Thermoplastic natural rubber exhibits as a non-magnetic material. The magnetic properties of TPNR can be improved by incorporating magnetic particles.It was found that the magnetic properties of the nanocomposites improved as the ferrite loading increased.The saturation magnetization of the nanocomposites can be estimated by its weight fraction of filler loading,following linear proportion of filler magnetization and its weight fraction relationship.The reduction of crystallinity of TPNR leads to higher magnetization properties due to the higher degree of spin rotation of the NiZn ferrite particles available in the amorphous phases.NiZn ferrite was found to act as a β-phase nucleating agent in the ternary phase composite,with the aids of pre-coating technique.The thermal stability,stiffness and softening point of the thermoplastic natural rubber were enhanced with the NiZn ferrite addition.It was found that 8 wt%NiZn nanocomposite exhibits highestE’and tanδ,indicating that the dynamic mechanical properties of NiZn nanocomposite are improved with increment of β-phase degree.

    The scope of this work was limited to a fixed ternary phase blend ratio of PP:NR:LNR.The work could be extended to investigate effect of beta isotactic polypropylene formation when different ratio of ternary blend is applied.

    Conflicts of interest

    The authors declare no conflict of interest.

    Acknowledgments

    The authors would like to thank the support from the National Science Fund(NSF),MOSTI,UKM and UCSI.

    精品一区在线观看国产| 午夜激情久久久久久久| 亚洲在久久综合| 极品教师在线视频| 人人澡人人妻人| 久久国产乱子免费精品| 性高湖久久久久久久久免费观看| 国产91av在线免费观看| 亚洲成人手机| 五月玫瑰六月丁香| 国产黄色免费在线视频| 蜜桃在线观看..| 国产亚洲精品久久久com| 一级毛片 在线播放| 精品国产露脸久久av麻豆| 午夜免费观看性视频| 亚洲国产精品国产精品| 久久精品久久精品一区二区三区| 午夜日本视频在线| 欧美日韩国产mv在线观看视频| 亚洲第一区二区三区不卡| 国产免费一区二区三区四区乱码| 成人亚洲精品一区在线观看| 能在线免费看毛片的网站| 久久国产乱子免费精品| 久久精品国产亚洲av涩爱| 青春草国产在线视频| 久久久久久伊人网av| 性高湖久久久久久久久免费观看| 国产爽快片一区二区三区| 成人特级av手机在线观看| 夫妻性生交免费视频一级片| 中文字幕亚洲精品专区| 成人18禁高潮啪啪吃奶动态图 | 亚洲第一区二区三区不卡| av黄色大香蕉| 一级a做视频免费观看| 免费大片黄手机在线观看| 欧美 亚洲 国产 日韩一| 国产欧美日韩综合在线一区二区 | 精品一区二区三卡| 国产精品蜜桃在线观看| 欧美另类一区| 伊人久久精品亚洲午夜| 建设人人有责人人尽责人人享有的| 精品久久久久久久久av| a级一级毛片免费在线观看| 黄色视频在线播放观看不卡| 亚洲精品国产成人久久av| 日韩av不卡免费在线播放| 男女无遮挡免费网站观看| 亚洲国产精品国产精品| a级毛片在线看网站| 乱码一卡2卡4卡精品| 乱系列少妇在线播放| 搡老乐熟女国产| 日本vs欧美在线观看视频 | 在线观看国产h片| 69精品国产乱码久久久| 中文天堂在线官网| 尾随美女入室| 亚洲国产成人一精品久久久| 国产免费视频播放在线视频| 日本vs欧美在线观看视频 | 啦啦啦中文免费视频观看日本| 自拍欧美九色日韩亚洲蝌蚪91 | 伦理电影免费视频| 七月丁香在线播放| 三级国产精品欧美在线观看| 免费少妇av软件| 麻豆精品久久久久久蜜桃| 久久午夜福利片| 欧美另类一区| 极品人妻少妇av视频| 边亲边吃奶的免费视频| 久久婷婷青草| 亚洲国产成人一精品久久久| 亚洲精品成人av观看孕妇| 一二三四中文在线观看免费高清| 精品国产乱码久久久久久小说| 国产在线免费精品| 国产色婷婷99| 免费看av在线观看网站| 18禁在线播放成人免费| 在线天堂最新版资源| 久久99热6这里只有精品| 多毛熟女@视频| 十八禁网站网址无遮挡 | 亚洲精品中文字幕在线视频 | 天堂中文最新版在线下载| 大片免费播放器 马上看| 国产精品福利在线免费观看| 成年人免费黄色播放视频 | 欧美精品亚洲一区二区| 又粗又硬又长又爽又黄的视频| 人人妻人人澡人人爽人人夜夜| 日韩一本色道免费dvd| 在线观看www视频免费| 免费观看av网站的网址| 9色porny在线观看| 男女免费视频国产| 欧美变态另类bdsm刘玥| 在线亚洲精品国产二区图片欧美 | 伦理电影免费视频| 日本vs欧美在线观看视频 | 国产精品久久久久成人av| 丰满人妻一区二区三区视频av| 自拍偷自拍亚洲精品老妇| 久久久久国产网址| 黑人巨大精品欧美一区二区蜜桃 | 精品视频人人做人人爽| 美女cb高潮喷水在线观看| 最后的刺客免费高清国语| 日日爽夜夜爽网站| 中文精品一卡2卡3卡4更新| 蜜臀久久99精品久久宅男| 色94色欧美一区二区| 久久这里有精品视频免费| 乱人伦中国视频| 秋霞在线观看毛片| 春色校园在线视频观看| 少妇猛男粗大的猛烈进出视频| 18禁在线播放成人免费| 国产国拍精品亚洲av在线观看| 免费播放大片免费观看视频在线观看| 性色av一级| 成人漫画全彩无遮挡| av在线观看视频网站免费| 国产又色又爽无遮挡免| 中文字幕制服av| 校园人妻丝袜中文字幕| 亚洲自偷自拍三级| 黄色一级大片看看| 亚洲国产精品国产精品| 性色avwww在线观看| 日本vs欧美在线观看视频 | 99九九线精品视频在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 国产高清不卡午夜福利| 成人午夜精彩视频在线观看| 伊人久久国产一区二区| 性色av一级| 水蜜桃什么品种好| av国产久精品久网站免费入址| 一边亲一边摸免费视频| 久久免费观看电影| 国产免费一级a男人的天堂| 欧美日韩综合久久久久久| 国产欧美亚洲国产| 人人妻人人爽人人添夜夜欢视频 | 成年女人在线观看亚洲视频| 国产日韩欧美视频二区| 午夜老司机福利剧场| av卡一久久| 在线观看美女被高潮喷水网站| 男女国产视频网站| 国产精品人妻久久久影院| 国产精品成人在线| 三级国产精品欧美在线观看| 大香蕉久久网| 尾随美女入室| 亚洲人成网站在线观看播放| 亚洲三级黄色毛片| 亚洲三级黄色毛片| 午夜精品国产一区二区电影| 成人二区视频| 香蕉精品网在线| 国产精品嫩草影院av在线观看| 久久午夜福利片| 王馨瑶露胸无遮挡在线观看| 少妇猛男粗大的猛烈进出视频| 大片免费播放器 马上看| 成人特级av手机在线观看| 97在线视频观看| 一级毛片电影观看| 久久久国产一区二区| 七月丁香在线播放| 婷婷色综合大香蕉| 亚洲精品视频女| 肉色欧美久久久久久久蜜桃| 涩涩av久久男人的天堂| 极品少妇高潮喷水抽搐| 国产精品伦人一区二区| 成人影院久久| 精品久久国产蜜桃| 午夜av观看不卡| 插逼视频在线观看| 国产毛片在线视频| 久久鲁丝午夜福利片| 久久婷婷青草| 亚洲人成网站在线观看播放| 亚洲性久久影院| 成人午夜精彩视频在线观看| 少妇被粗大的猛进出69影院 | 99热6这里只有精品| 久久6这里有精品| av在线播放精品| 五月玫瑰六月丁香| 亚洲伊人久久精品综合| 国产成人精品久久久久久| 亚洲国产日韩一区二区| 欧美日韩一区二区视频在线观看视频在线| 赤兔流量卡办理| 午夜影院在线不卡| 国产日韩欧美亚洲二区| 国产深夜福利视频在线观看| 另类精品久久| 美女cb高潮喷水在线观看| 久久精品久久精品一区二区三区| 一级毛片久久久久久久久女| 精品少妇久久久久久888优播| 校园人妻丝袜中文字幕| 亚洲av电影在线观看一区二区三区| 久久午夜综合久久蜜桃| 精品少妇久久久久久888优播| 亚洲欧美日韩另类电影网站| 亚洲av综合色区一区| 国产伦在线观看视频一区| 欧美亚洲 丝袜 人妻 在线| 各种免费的搞黄视频| 最后的刺客免费高清国语| 99热这里只有精品一区| 亚洲欧美日韩东京热| 久久99精品国语久久久| 精品午夜福利在线看| 免费观看的影片在线观看| 极品少妇高潮喷水抽搐| 黑丝袜美女国产一区| 国产伦精品一区二区三区视频9| 美女内射精品一级片tv| 又爽又黄a免费视频| av网站免费在线观看视频| 在线观看免费高清a一片| 午夜视频国产福利| 国产伦精品一区二区三区视频9| 最近的中文字幕免费完整| 久久女婷五月综合色啪小说| 人人妻人人添人人爽欧美一区卜| 成人综合一区亚洲| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品电影小说| 大香蕉久久网| 国产精品一区二区在线不卡| 亚洲三级黄色毛片| 亚洲欧洲国产日韩| 亚洲精品成人av观看孕妇| 插逼视频在线观看| 在线观看美女被高潮喷水网站| 精品久久久噜噜| 日韩伦理黄色片| 97精品久久久久久久久久精品| 国产精品一区二区在线观看99| 久久久久人妻精品一区果冻| 国产伦精品一区二区三区四那| 精品一区二区免费观看| 久久精品久久久久久久性| 我的老师免费观看完整版| 少妇猛男粗大的猛烈进出视频| 国产成人午夜福利电影在线观看| 国产精品免费大片| 又爽又黄a免费视频| 国产精品无大码| 国产精品嫩草影院av在线观看| 五月开心婷婷网| 我要看日韩黄色一级片| 日本欧美视频一区| 日韩不卡一区二区三区视频在线| 如何舔出高潮| 久久99蜜桃精品久久| 在现免费观看毛片| 成人亚洲精品一区在线观看| 天美传媒精品一区二区| av视频免费观看在线观看| 亚洲一级一片aⅴ在线观看| 18禁动态无遮挡网站| 婷婷色麻豆天堂久久| 热99国产精品久久久久久7| 国产白丝娇喘喷水9色精品| 亚洲精品国产色婷婷电影| 一级爰片在线观看| 亚洲美女视频黄频| 亚洲av综合色区一区| 天天躁夜夜躁狠狠久久av| 成人无遮挡网站| 高清视频免费观看一区二区| 在线观看国产h片| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| 亚洲美女搞黄在线观看| 日本与韩国留学比较| 曰老女人黄片| 两个人的视频大全免费| 插阴视频在线观看视频| 女人久久www免费人成看片| 亚洲av电影在线观看一区二区三区| 精品一区二区三卡| 久久久久久伊人网av| 在线亚洲精品国产二区图片欧美 | 91久久精品国产一区二区三区| 99热这里只有是精品50| 99久久精品热视频| 欧美成人精品欧美一级黄| 国产精品国产三级专区第一集| 成年人午夜在线观看视频| 美女脱内裤让男人舔精品视频| 黄色怎么调成土黄色| 蜜桃在线观看..| 少妇的逼好多水| 一个人免费看片子| 日本wwww免费看| 国产精品久久久久久精品古装| a级毛片在线看网站| 婷婷色综合www| 国产白丝娇喘喷水9色精品| 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看| 欧美国产精品一级二级三级 | 青春草亚洲视频在线观看| 亚洲丝袜综合中文字幕| 亚洲自偷自拍三级| 极品少妇高潮喷水抽搐| 久久精品国产自在天天线| 妹子高潮喷水视频| 久久久午夜欧美精品| 人妻少妇偷人精品九色| 亚洲欧美精品自产自拍| 午夜福利影视在线免费观看| 日本免费在线观看一区| 精品国产国语对白av| 少妇高潮的动态图| 日本爱情动作片www.在线观看| 97超碰精品成人国产| 精品久久国产蜜桃| 欧美一级a爱片免费观看看| 国产成人免费观看mmmm| 狠狠精品人妻久久久久久综合| 久久99蜜桃精品久久| 狂野欧美白嫩少妇大欣赏| 边亲边吃奶的免费视频| 我要看黄色一级片免费的| 国产av精品麻豆| 王馨瑶露胸无遮挡在线观看| 最近中文字幕2019免费版| 嫩草影院入口| 人体艺术视频欧美日本| 国产免费一区二区三区四区乱码| 亚洲成人av在线免费| 国产精品久久久久久av不卡| 国产男女超爽视频在线观看| 亚洲va在线va天堂va国产| 成人亚洲欧美一区二区av| 黄色毛片三级朝国网站 | 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99| 一二三四中文在线观看免费高清| 亚洲经典国产精华液单| 久久韩国三级中文字幕| 伦理电影大哥的女人| 中文字幕av电影在线播放| 人妻制服诱惑在线中文字幕| 狂野欧美激情性xxxx在线观看| 观看免费一级毛片| 成人国产av品久久久| 97超碰精品成人国产| 欧美少妇被猛烈插入视频| 日韩一区二区视频免费看| 国产精品免费大片| h视频一区二区三区| 日韩av免费高清视频| 男女无遮挡免费网站观看| 国产成人精品婷婷| 亚洲第一av免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩强制内射视频| 人人妻人人看人人澡| 国产亚洲最大av| 久久久欧美国产精品| 91久久精品国产一区二区三区| 少妇的逼水好多| 免费av中文字幕在线| 午夜视频国产福利| 成人影院久久| 亚洲国产色片| 亚洲第一区二区三区不卡| 中文字幕精品免费在线观看视频 | 日韩电影二区| av一本久久久久| 在线播放无遮挡| 9色porny在线观看| 内射极品少妇av片p| 亚洲精品久久午夜乱码| www.av在线官网国产| 国产成人免费无遮挡视频| 国产黄片美女视频| videossex国产| 人体艺术视频欧美日本| 精品久久久精品久久久| 久久女婷五月综合色啪小说| 人人妻人人添人人爽欧美一区卜| 国产精品不卡视频一区二区| 久久97久久精品| 久久久国产精品麻豆| 日韩欧美精品免费久久| 亚洲第一区二区三区不卡| 精品一区二区三区视频在线| 在线观看av片永久免费下载| 日本黄色片子视频| 哪个播放器可以免费观看大片| 国产欧美日韩一区二区三区在线 | 午夜老司机福利剧场| 你懂的网址亚洲精品在线观看| 美女cb高潮喷水在线观看| 亚洲国产精品一区二区三区在线| 欧美精品亚洲一区二区| 久久久午夜欧美精品| 国产无遮挡羞羞视频在线观看| 五月伊人婷婷丁香| 乱人伦中国视频| 18禁裸乳无遮挡动漫免费视频| 99热这里只有是精品50| 国产亚洲午夜精品一区二区久久| 麻豆成人av视频| 中文字幕av电影在线播放| 国产男女超爽视频在线观看| 国产老妇伦熟女老妇高清| 91午夜精品亚洲一区二区三区| 久久99热6这里只有精品| 69精品国产乱码久久久| 精品亚洲乱码少妇综合久久| 高清av免费在线| 久久久欧美国产精品| 视频中文字幕在线观看| 女人久久www免费人成看片| 午夜老司机福利剧场| 在线看a的网站| 免费黄色在线免费观看| av播播在线观看一区| 午夜精品国产一区二区电影| 日日撸夜夜添| 日本欧美视频一区| 国产精品免费大片| 亚洲久久久国产精品| 男男h啪啪无遮挡| 免费观看av网站的网址| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 欧美成人精品欧美一级黄| www.色视频.com| 日韩视频在线欧美| 噜噜噜噜噜久久久久久91| 国产在线视频一区二区| 最近手机中文字幕大全| 亚洲精品自拍成人| 久热久热在线精品观看| 丰满人妻一区二区三区视频av| 国产欧美日韩精品一区二区| 校园人妻丝袜中文字幕| 熟女电影av网| 国产中年淑女户外野战色| 观看av在线不卡| 精品亚洲成a人片在线观看| 有码 亚洲区| 欧美人与善性xxx| 美女内射精品一级片tv| 边亲边吃奶的免费视频| 亚洲精品456在线播放app| 国产成人91sexporn| 精品久久久噜噜| 中国国产av一级| 女性生殖器流出的白浆| 在线 av 中文字幕| 日本av免费视频播放| 国产乱人偷精品视频| 精品久久久久久久久av| 国产在线视频一区二区| av不卡在线播放| 国产精品国产三级专区第一集| 亚洲人成网站在线播| 日韩三级伦理在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲婷婷狠狠爱综合网| 久久热精品热| 亚洲国产成人一精品久久久| 亚洲av福利一区| 国产伦理片在线播放av一区| 男男h啪啪无遮挡| 两个人的视频大全免费| 丝袜在线中文字幕| 爱豆传媒免费全集在线观看| 尾随美女入室| 一区二区三区乱码不卡18| 久久热精品热| 三上悠亚av全集在线观看 | 欧美高清成人免费视频www| 日日摸夜夜添夜夜爱| 亚洲av日韩在线播放| 建设人人有责人人尽责人人享有的| 亚洲av成人精品一二三区| 日本欧美视频一区| 亚洲av电影在线观看一区二区三区| 亚洲中文av在线| 久久久久网色| 欧美日韩视频精品一区| 99热这里只有是精品50| 观看美女的网站| 欧美日韩一区二区视频在线观看视频在线| 国产乱来视频区| www.色视频.com| 国产淫语在线视频| 在线观看美女被高潮喷水网站| 人妻一区二区av| 日韩成人av中文字幕在线观看| 久久鲁丝午夜福利片| 久久这里有精品视频免费| 一区在线观看完整版| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 在线观看www视频免费| 男人舔奶头视频| 国产精品国产三级国产专区5o| 久久久午夜欧美精品| 免费在线观看成人毛片| 男女啪啪激烈高潮av片| 建设人人有责人人尽责人人享有的| 男女啪啪激烈高潮av片| 中文字幕精品免费在线观看视频 | 午夜免费鲁丝| 国产一区二区三区综合在线观看 | av网站免费在线观看视频| 久久久久网色| 22中文网久久字幕| 欧美日韩av久久| 一级,二级,三级黄色视频| 国产黄色视频一区二区在线观看| 亚洲精品自拍成人| 久久精品夜色国产| 一区二区三区精品91| 久久精品久久久久久久性| 日本色播在线视频| 中文字幕制服av| 九九久久精品国产亚洲av麻豆| 亚洲精品乱码久久久v下载方式| 日韩制服骚丝袜av| 精品视频人人做人人爽| 91在线精品国自产拍蜜月| 国产免费一级a男人的天堂| 丝袜在线中文字幕| 九色成人免费人妻av| 国产欧美亚洲国产| 日韩 亚洲 欧美在线| 人人妻人人澡人人看| 少妇的逼水好多| 大片免费播放器 马上看| 亚洲av国产av综合av卡| 久久精品国产亚洲av天美| 狂野欧美激情性xxxx在线观看| av福利片在线观看| 韩国高清视频一区二区三区| 日日撸夜夜添| 在线精品无人区一区二区三| 日本欧美国产在线视频| 国产一区二区在线观看日韩| 精品视频人人做人人爽| 大片免费播放器 马上看| 男人舔奶头视频| 乱码一卡2卡4卡精品| 欧美性感艳星| 国产精品一区二区性色av| 99热这里只有精品一区| 丰满乱子伦码专区| 黑丝袜美女国产一区| 国产精品国产三级国产专区5o| 各种免费的搞黄视频| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品电影小说| 少妇人妻 视频| 亚洲精华国产精华液的使用体验| 一区二区三区乱码不卡18| 欧美日韩视频精品一区| h视频一区二区三区| av卡一久久| 国产精品偷伦视频观看了| 国产精品麻豆人妻色哟哟久久| 国产黄片视频在线免费观看| 中文天堂在线官网| 亚洲图色成人| 偷拍熟女少妇极品色| 午夜福利网站1000一区二区三区| 精品99又大又爽又粗少妇毛片| 国产亚洲最大av| 免费观看av网站的网址| 国产一区二区三区av在线| 国产色婷婷99| 美女内射精品一级片tv| 国产午夜精品久久久久久一区二区三区| 欧美97在线视频| 国产免费一区二区三区四区乱码| 91aial.com中文字幕在线观看| 免费少妇av软件| 大片免费播放器 马上看| 国产午夜精品久久久久久一区二区三区| 美女中出高潮动态图| 亚洲成人手机| 国产一区二区三区av在线| 久久这里有精品视频免费| 免费观看性生交大片5| 久久久久久久久久久久大奶| 乱码一卡2卡4卡精品| 精品少妇久久久久久888优播| 日韩一本色道免费dvd| 少妇精品久久久久久久| 日日爽夜夜爽网站| 国产亚洲5aaaaa淫片| 国产乱人偷精品视频| a级毛片免费高清观看在线播放|