• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FEM analysis and experimental investigation of force and chip formation on hot turning of Inconel 625

    2020-01-07 09:10:38AsitKumarParidaKalipadaMaity
    Defence Technology 2019年6期

    Asit Kumar Parida ,Kalipada Maity

    a Indian Institute of Technology Delhi,Department of Mechanical Engineering,India

    b National Institute of Technology Rourkela,Department of Mechanical Engineering,India

    ABSTRACT This study investigates the hot machining of Inconel 625 alloy by using flame heating under different machining conditions using finite element analysis(FEM).Turning tests are performed at different cutting speeds and heating temperatures using uncoated carbide insert by DEFORM software.Significant reduction in cutting force and tool wear has achieved at heating conditions compared to room temperature.Highest tool life is achieved at the highest cutting speed and higher heating temperature condition.At heating conditions of the 600°C continuous chip is formed whereas at room temperature saw-tooth chip formation is observed.A significant agreement is achieved between simulated and experimental cutting forces and chip morphology.The effect of feed rates and depth of cuts are also studied experimentally during turning of Inconel 625 in a systematic manner.

    Keywords:Hot machining Force Inconel 625 Surface roughness Chip morphology

    1. Introduction

    The properties such as high weight to strength ratio,ability to retain at elevated temperature and high corrosion resistance,make nickel based alloys widespread applications.However,these material regarded as difficult-to-cut materials due to rapid tool wear[1,2].Researchers have tested different machining strategies for machining nickel base alloys to enhance machinability.

    Marques et al.[3]used solid lubricant along with minimum quantity lubrication(MQL)to enhance the machinability of Inconel 718 using ceramic tool.The use of a solid lubricant(MoS2)reduces surface roughness and tool wear.Rosan et al.[4]drilled NiTi alloy using carbide drill bit under MQL mixed with nano-particles,resulting in a reduction in torque,thrust force and enhancement of drill bit tool life.Dhananchezian[5]took hastelloy C-276 as a workpiece in turning operation under cryogenic cooling condition.Reduction in chip serration tooth and tool wear is reported under cryogen compared to dry cutting.Costes et al.[6]improved the tool life in hard turning of Inconel 718 using cubic boron nitride(CBN)tool.Mitrofanov et al.[7]studied the effect of ultrasonic vibration along with coolant in machining of Inconel 718 and observed a significant reduction in cutting force and radius of curvature of the chip.Though above techniques can enhance the machinability of nickel base alloys,high cost of the tool in hard turning,use of cryogenic coolants and harmful effect of cutting fluids on environment restrict their uses in machining industries.

    Hot machining or heat assisted machining is an alternative,environmental friendly technique can be used in machining of nickel based alloys[8].The basic principle of hot machining is to reduce the shear strength of material using a heat source and machine with ordinary carbide tool[9].Different heating techniques such as plasma[10],laser[11],induction[12],infrared radiation[13]and flame heating[14]are reported by researchers.Among all heating methods,flame heating is simple in design,less cost, easy to control and studied by many researchers for machining of different materials such as high manganese steel[15],AISI 316[16,17],titanium alloy[18]and nickel base alloys[19].

    Inconel 625 is a costly material and generally used in aerospace and marine application.It is considered as difficult-to-machine material, and resulting in rapid tool wear. Finite element modeling(FEM)is an effective tool that can be utilized for simulating the machining behavior of Inconel 625 such as stress,strain,temperature,chip morphology and forces without consuming time and money.Lofti et al.[20]used two different tools such as ceramic and carbide to investigate the wear using FEM in machining of Inconel 625 b y DEFORM software.Usui wear rate model is used to determine the wear in the cutting tool and observed that the depth of cut has significantly influence to the tool wear.Sofuoglu et al.[21]applied ultrasonic vibration with heating during turning of Hastelloy-x,which is nickel based alloys to study chatter and machining characteristics using FEM,suggesting the reduction of chatter can be achieved with difference.The effect of heating and nose radius on cutting forces,temperature,and stress in the hot turning of Inconel 718 using FEM[22]and reported that heating enhances machinability compared to dry machining.In their other study[23]the chip morphology parameters were significantly affected by heating was studied by numerical modeling.

    It also reveals from literature that researchers use FEM simulation in hot machining of different materials such as Inconel 718[2,23]and titanium alloys[14,24]using flame heating,Inconel 718[25]AISI D2[26]and Ti6Al4V[27]using laser heating,and Ti15V3 Al3 Cr3 Sn alloy[28]using hot ultrasonic method.However,no work has performed in hot machining of Inconel 625 yet using FEM,creating a research gap.Therefore,the primary objectives of the present study are to study the effect of cutting parameters and heating temperature on cutting forces, stress,strain and chip morphology using FEM.Additionally,the current study also focuses on the effect of ranges of feed rates and depth of cuts on forces at a heating temperature and results obtained are compared to the room temperature machinig condition.This study could be a good attempt to optimize and study the machining behavior of high strength materials in industries.

    2. Simulation and experimental validation

    2.1. 3D hot machining simulation

    To simulate hot turning of Inconel 625,DEFORM software which is based on updated Langrangian formulation is utilized in present case[29].The cylindrical workpiece is converted to a linear model for reduction of computational time and simplicity as shown in Fig.1.The workpiece is considered as a plastic material and cutting tool as rigid.The workpiece is fixed in all directions.The tool is fixed in feed and depth of cut direction,whereas it moves along cutting direction.Johnson-Cook model is implemented as a material model in Eq.(1).As the shape of the cutting tool is not available in DEFORM library,the CAD cutting tool is modeled using Solidworks with chip breaker.The geometry of the SNMG 120404 tool and simulating parameters is tabulated in Table 1.The thermal and mechanical properties of uncoated carbide insert and Inconel 625 are incorporated in the model.A heat exchange window is utilized to model the flame heating source and is described in Ref.[22].

    Table 1Tool geometry and process parameters.

    The material constants(A,B,C,n,andm)are taken from Ref.[20].The coefficient of friction(μ)value is utilized after conducting the machining test in Coulomb friction law as expressed in Eq.(2)and Eq.(3)respectively.

    whereFzis the cutting force,α is the rake angle andFxyis equivalent thrust force and can be evaluated as Eq.(4).

    2.2. Experimental validation

    To validate the simulation results,an experimental test is performed in turning of Inconel 625 on a conventional center lathe as shown in Fig.2.The composition Inconel 625 and heating method can be found in Ref.[30].The experimental trials are performed with the same cutting simulation conditions.The forces,chip morphology and surface finish(Ra)are evaluated by using dynamometer,optical microscope and profile meter respectively.

    Fig.1.Assembly of cutting tool and workpiece.

    Fig.2.Experimental setups for machining of Inconel 625.

    3. Results and discussion

    3.1. Simulated forces,stress distribution,temperature and chip formation analysis

    The simulated cutting forces are extracted at steady state cutting condition.It is observed reduction in(25%,18%and 12%)simulated cutting(Fz),feed(Fx)and radial force(Fy)at 600°C as compared to 30°C atVc=100 m/min,f=0.13 mm/rev andap=0.5 mm(Fig.3).This is due to the fact that heating effect decreases workpiece strength due to thermal softening.The application of heating increases the shear zone temperature 847°C at 600°C,whereas at 30°C it reaches 776°C.For in-depth analysis the flow stress or effective stress and effective strain at primary shear zone are extracted using point tracking method.Four points(1-4)are taken at the shear zone for 30°C and 600°C temperature(Fig.4).The effective stress of four points at heating temperature reduces at 600°C as compared to 30°C,resulting reduction in forces.Similarly,a set of simulations are carried out for cutting velocity of 40 m/min and 60 m/min,results are compared to experimental findings.A substantial agreement is observed between simulated and experimental forces except 30°C Num(Fy)at cutting speed of 60 m/min and 100 m/min respectively as shown in Fig.5.

    It is also observed that at 30°C the chip formed is the segmented type and at 600°C it is continuous;indicating the cutting force generated at 30°C is more fluctuating as compared to 600°C(Fig.3).The average chip thickness formed at 30°C is thicker,and the average chip width is lower compared to chip produced at 600°C.The reduction in chip thickness at 600°C is an indicator of an increase in shear angle,thus resulting in a reduction in cutting forces as compared to 30°C.The collected chips are examined under an optical microscope to study the chip morphology.The chips produced at a different heating temperature and their magnified optical images are shown in Fig.6.The simulated and experimental chip parameter(chip thickness and chip width)are presented in Fig.7.

    3.2. Effect of heating temperature and cutting parameters on experimentally obtained forces

    Fig.3.Simulated chip formation and force at room and hot condition.

    Fig.4.Point tracking of at shear zone and its effect on effective stress and strain at a different cutting speed.

    Fig.5.Error%between simulated and experimental forces for room and heating condition at f=0.13 mm/rev and ap=0.5 mm.

    Fig.7.Error%between simulated and experimental chip parameters.

    Fig.6.Formation of different types of chips and their optical images at different heating conditions(Vc=40 m/min,f=0.13 mm/rev and ap=0.5 mm).

    Fig.8.Effect of cutting speed on(a)cutting force(b)feed force(c)radial force at f=0.13 mm/rev and ap=0.5 mm.

    Fig.9.Effect of feed rate on(a)cutting force(b)feed force(c)radial force at Vc=100 m/min and ap=0.5 mm.

    Fig.10.Effect of depth of cut on(a)cutting force(b)feed force(c)radial force at Vc=100 m/min and f=0.13 mm/rev.

    Fig.11.Variation of(a)Tool life(b)Flank wear at f=0.13 mm/rev and ap=0.5 mm.

    Fig.12.Variation of(a)Tool life(b)Flank wear at Vc=100 m/min and ap=0.5 mm.

    Fig.13.Variation of(a)Tool life(b)Flank wear at Vc=100 m/min and f=0.13 mm/rev.

    Fig.14.Tool wear at f=0.13 mm/rev and ap=0.5 mm.

    In the first case,the variation in forces is recorded by varying cutting,temperature and keeping the depth of cutting and feed rate constant and the results obtained are shown in Fig.8(a-c).There is(29.96%,29.38%and 29.36%)reduction in cutting force,(14%,21%and 28%) feed force and (33%, 46% and 36%) radial force at respective cutting speeds,machining at 600°C compared to 30°C.However,increasing the cutting speed,there is again a reduction of cutting force(18%,19%and 17%),feed force(13%,20%and 27%)and radial force(38%,31%and 41%)at corresponding temperatures respectively.

    In the second case,the forces are recorded machining at room and hot condition by keeping cutting speed and depth of cut constant,but varying feed rates.There is a reduction in cutting force(36%,34%and 35%),feed force(18%,27%and 16%)and radial force(33%,46%and 36%)at respective feed rate.With increasing the feed rate,there is an increase in cutting force(17%,38%and 19%),feed force(24%,27%and 28%)and radial force(33%,28%and 20%)at a respective temperature(Fig.9).It is observed that all forces are increased with the increase in feed rate for all ranges of temperature of the workpiece.

    In the third case,machining trials are carried out by varying depth of cuts and keeping cutting speed and feed rate constant.Machining from 30°C to 600°C temperature,there is a reduction in cutting force(17%,15%and 15%),feed force(20%,14%and 29%)and radial force(44%,54%and 50%),at a respective depth of cut.There is an increase of cutting force(9%,14%and 12%),feed force(40%,25%and 25%)and radial force(33%,28%and 20%)at respective temperatures with rising in the depth of cut(Fig.10).

    3.3. Effect of heating temperature and cutting parameters on tool life and tool wear

    The effect of cutting speeds on tool life and corresponding flank wear with the heating temperature are performed.There is an increase of 209%,161%and 238%in tool life at respective cutting speeds,at 600°C compared to 30°C.However,increasing the cutting speed from 40 to 100 m/min,a reduction of 38%,10%and 32%in tool life at 30°C, 300°C and 600°C workpiece temperature respectively(Fig.11).At high cutting speed,there is an increase in cutting zone temperature which again reduces the strength of the material resulting in reducing tool wear.

    There is 81%,76%and 62%increase in tool life at a respective feed rate,from 30°C to 600°C as shown in Fig.12(a-b).It is observed that the tool life is decreased by(23%,33%and 31%)at 30°C,300°C and 600°C respectively,when feed rate increases.At high feed rate,sufficient heat is not transferred to the cutting zone in a hot turning[15].

    Machining Inconel 625 from room temperature to 600°C,the tool life increased by 120%,107%and 75%at a depth of cuts of 0.5 mm,1 mm and 1.5 mm respectively as shown in Fig.13(a-b).But increasing the depth of cut from 0.5 mm to 1.5 mm,there is a decrease in 20%,17%and 36%in tool life at respective temperatures.

    Wear formation in the room and hot turning at different cutting speed are shown in Fig.14.The average crater wear formation at 30°C is more compared to 600°C.Build-up-edge(BUE)and chipping formation occur in both room and heating conditions.

    3.4. Effect of cutting parameters and workpiece temperature on surface roughness

    The surface roughness value is decreased with increased heating temperature.40%,27%and 42%decrease of surface roughness at respective cutting speed in 600°C to 30°C temperature.When cutting speed is increased the surface finishes value is increased,by reducing surface roughness around 44%,36%and 33%at respective temperatures (Fig. 15(a)). Similarly, machining Inconel 625 at 600°C,the surface roughness decreases by 40%,19%and 37%at respective feed rates compared to 30°C(Fig.15(b)).The surface roughness value is decreased 17%,23%and 37%with heating temperature 600°C compared 30°C at a respective depth of cuts.Surface roughness increased by 14%and 32%at 30°C and 600°C with the increase of depth of cut(Fig.15(c)).

    Fig.15.Variation of surface roughness with(a)cuting speed(b)feed rate(c)depth of cut.

    Fig.16.Microhardness below the machine surface at Vc=100 m/min,f=0.13 mm/rev and ap=0.5 mm.

    For measurement of micro-hardness,the workpiece is cut using wire electro-discharge-machine and polished by polishing machine.The machined subsurface is measured from the edge towards the center of the sample with an equal interval,i.e.,20 μm.The micro-hardness of the machined below the machined surface is decreased(up to 60 μm)with an increase of workpiece temperature,and the material becomes softened due to annealing at heat affected zone(HAZ).Moving from 60 μm to 160 μm the annealing is decreased,strain hardening zone(SHZ)is formed,and microhardness value becomes higher.When shearing and plastic deformation decreases,it is observed that the hardness value reached to its parent material zone(PMZ),i.e.,320 HV.It confirms the increase of workpiece temperature reduces the strain hardening effect during machining.The measurement of micro-hardness beneath the machined surface and corresponding values is shown in Fig.16.

    4. Conclusion

    In this paper,the effect of heating temperature on the forces,chip morphology parameters has been studied using FEM.The simulations are carried out using heat exchange window.To verify the simulation results an experiment trial has been performed.The following conclusion has been drawn on the work as follows:

    ·The forces exerted on the cutting tool are lower at heating compared to room temperature machining conditions.The increase of heating temperature reduces the chip thickness and increase the chip width than the chip produce at room temperature.

    ·The simulated chip formed at room temperature is the segmented type,whereas at 600°C it is continuous type chip.

    ·Highest tool life is observed at higher cutting speed with high heating temperature condition.Adhesion,notch wear,and builtup-edge formation are observed at both room and heating temperature condition.

    ·Surface roughness is mostly affected by cutting speed and least affected by the depth of cut. The micro-hardness value is decreased at heat affected zone,whereas the value is increased at strain hardening zone.

    ·The simulation results such as forces,chip thickness,and chip

    width are partially validated with the experimental findings.

    超碰av人人做人人爽久久| 久久久精品免费免费高清| 国产高清三级在线| 国产亚洲一区二区精品| 国产亚洲av嫩草精品影院| 亚洲欧美一区二区三区国产| 亚洲av在线观看美女高潮| 国产 一区 欧美 日韩| 18+在线观看网站| 99精国产麻豆久久婷婷| 国产一区二区三区av在线| 99热网站在线观看| 91久久精品国产一区二区成人| 99久国产av精品国产电影| 如何舔出高潮| 国产色婷婷99| 三级经典国产精品| 国产 一区精品| 亚洲国产欧美在线一区| 男男h啪啪无遮挡| 狂野欧美白嫩少妇大欣赏| 国产一级毛片在线| 亚洲精华国产精华液的使用体验| 91久久精品电影网| 一本色道久久久久久精品综合| 在线观看美女被高潮喷水网站| 一本一本综合久久| 乱码一卡2卡4卡精品| 欧美人与善性xxx| 国产午夜福利久久久久久| 亚洲欧美精品专区久久| 国产黄a三级三级三级人| 亚洲婷婷狠狠爱综合网| 直男gayav资源| 人人妻人人爽人人添夜夜欢视频 | 男男h啪啪无遮挡| 少妇人妻 视频| 夫妻午夜视频| 精品一区二区三区视频在线| 国产高清三级在线| 亚洲国产高清在线一区二区三| 亚洲欧美精品专区久久| 深爱激情五月婷婷| 日韩一区二区三区影片| 国产又色又爽无遮挡免| 国产精品一区二区性色av| 免费播放大片免费观看视频在线观看| 欧美日韩视频高清一区二区三区二| 在现免费观看毛片| 丝瓜视频免费看黄片| 亚洲无线观看免费| 神马国产精品三级电影在线观看| 国产精品人妻久久久影院| 九色成人免费人妻av| 亚洲,一卡二卡三卡| 久久精品夜色国产| 波多野结衣巨乳人妻| 国产熟女欧美一区二区| 日韩制服骚丝袜av| 欧美xxxx黑人xx丫x性爽| a级毛色黄片| 男插女下体视频免费在线播放| 久久久久久久大尺度免费视频| 亚洲欧美成人精品一区二区| 一区二区三区精品91| 2018国产大陆天天弄谢| 亚洲欧美中文字幕日韩二区| 美女被艹到高潮喷水动态| 九九在线视频观看精品| 最新中文字幕久久久久| 国产成人a∨麻豆精品| 久久6这里有精品| 亚洲av免费在线观看| 国产亚洲一区二区精品| 国产成人免费无遮挡视频| 亚洲伊人久久精品综合| 99视频精品全部免费 在线| 美女被艹到高潮喷水动态| 精品人妻一区二区三区麻豆| 黄色日韩在线| 九九久久精品国产亚洲av麻豆| 老司机影院毛片| 国产精品久久久久久精品古装| 一级片'在线观看视频| 搡女人真爽免费视频火全软件| 久久久久久九九精品二区国产| 成人亚洲精品一区在线观看 | 国产免费一区二区三区四区乱码| 国产亚洲午夜精品一区二区久久 | 高清毛片免费看| av女优亚洲男人天堂| 97热精品久久久久久| 日本爱情动作片www.在线观看| 在线观看国产h片| 亚洲国产精品成人久久小说| 午夜免费男女啪啪视频观看| 亚洲精品,欧美精品| 国产亚洲午夜精品一区二区久久 | 2022亚洲国产成人精品| 欧美日韩视频高清一区二区三区二| 久久人人爽人人片av| av专区在线播放| 国产免费福利视频在线观看| 久久久久久国产a免费观看| 老司机影院成人| 国产 一区 欧美 日韩| 国产精品一区二区在线观看99| 日韩精品有码人妻一区| 成人无遮挡网站| 亚洲欧美日韩另类电影网站 | 午夜免费观看性视频| 三级国产精品欧美在线观看| 国产视频首页在线观看| 成人鲁丝片一二三区免费| 国产伦理片在线播放av一区| 国产一区二区在线观看日韩| 亚洲婷婷狠狠爱综合网| 精品一区二区三卡| 一区二区三区精品91| 天美传媒精品一区二区| 又爽又黄a免费视频| 插逼视频在线观看| 色哟哟·www| 午夜激情福利司机影院| 欧美激情国产日韩精品一区| 日本wwww免费看| 最近手机中文字幕大全| 赤兔流量卡办理| 亚洲精品久久久久久婷婷小说| 久久久久久久午夜电影| 中文字幕亚洲精品专区| 大陆偷拍与自拍| av又黄又爽大尺度在线免费看| 色婷婷久久久亚洲欧美| 国产毛片在线视频| 久久久久久伊人网av| 99久久精品国产国产毛片| 亚洲三级黄色毛片| av播播在线观看一区| 久久99热这里只频精品6学生| 欧美3d第一页| 在线天堂最新版资源| 自拍欧美九色日韩亚洲蝌蚪91 | 美女内射精品一级片tv| 久久精品熟女亚洲av麻豆精品| 久久精品人妻少妇| 亚洲,一卡二卡三卡| 高清在线视频一区二区三区| 亚洲精品乱码久久久久久按摩| 一级二级三级毛片免费看| 欧美3d第一页| 午夜福利在线观看免费完整高清在| 精品久久久久久久久av| 中文字幕亚洲精品专区| 成人毛片60女人毛片免费| 有码 亚洲区| 国产黄色视频一区二区在线观看| 亚洲在久久综合| 久久国产乱子免费精品| 欧美成人一区二区免费高清观看| 中文字幕久久专区| 亚洲av国产av综合av卡| 丝袜美腿在线中文| 亚洲人成网站高清观看| 亚洲精品视频女| 国国产精品蜜臀av免费| 秋霞在线观看毛片| 国产毛片a区久久久久| 精品国产三级普通话版| 日韩亚洲欧美综合| 精品少妇黑人巨大在线播放| 中文欧美无线码| 视频中文字幕在线观看| 观看免费一级毛片| 亚洲激情五月婷婷啪啪| 国产精品女同一区二区软件| 狠狠精品人妻久久久久久综合| 白带黄色成豆腐渣| 一级片'在线观看视频| 狂野欧美激情性bbbbbb| 黄色一级大片看看| 在线免费十八禁| 少妇的逼水好多| 九九在线视频观看精品| 一区二区av电影网| 亚洲欧美中文字幕日韩二区| 国产成人精品福利久久| av免费在线看不卡| 一级黄片播放器| 人妻一区二区av| 亚洲成人精品中文字幕电影| 欧美成人a在线观看| 亚洲av在线观看美女高潮| 在线a可以看的网站| 亚州av有码| 乱系列少妇在线播放| 91精品一卡2卡3卡4卡| 国产一区二区三区av在线| 欧美激情在线99| 女的被弄到高潮叫床怎么办| 午夜福利在线观看免费完整高清在| 日本猛色少妇xxxxx猛交久久| 少妇人妻精品综合一区二区| 国产白丝娇喘喷水9色精品| 最近最新中文字幕免费大全7| 国产亚洲精品久久久com| 国产色婷婷99| 亚洲成人中文字幕在线播放| 日本一二三区视频观看| 亚洲欧美成人精品一区二区| 99热网站在线观看| 免费看av在线观看网站| 国产高潮美女av| 啦啦啦中文免费视频观看日本| 又黄又爽又刺激的免费视频.| 国产黄色免费在线视频| 大香蕉97超碰在线| 免费大片黄手机在线观看| 亚洲精品色激情综合| 美女高潮的动态| 国产av码专区亚洲av| 精品久久国产蜜桃| 精品亚洲乱码少妇综合久久| 亚洲成人精品中文字幕电影| 乱系列少妇在线播放| 色综合色国产| 国产高清国产精品国产三级 | 久久久精品免费免费高清| 麻豆久久精品国产亚洲av| 极品教师在线视频| 男女那种视频在线观看| 国产欧美亚洲国产| 三级国产精品欧美在线观看| 成人国产麻豆网| 久久99热这里只频精品6学生| 国产精品一二三区在线看| 日韩一区二区视频免费看| 国产成人精品久久久久久| 草草在线视频免费看| 精品少妇久久久久久888优播| 天堂俺去俺来也www色官网| 欧美变态另类bdsm刘玥| 国产高潮美女av| 国产成年人精品一区二区| 婷婷色综合www| 老女人水多毛片| 成人亚洲欧美一区二区av| 美女国产视频在线观看| 免费观看的影片在线观看| 中文字幕久久专区| 美女国产视频在线观看| 欧美日韩亚洲高清精品| 亚洲精品视频女| 最后的刺客免费高清国语| 亚洲精品一二三| 国产成人免费观看mmmm| 中文字幕制服av| 久久女婷五月综合色啪小说 | 人妻系列 视频| 三级男女做爰猛烈吃奶摸视频| 国产精品爽爽va在线观看网站| 尤物成人国产欧美一区二区三区| 亚洲精品日韩av片在线观看| 国产美女午夜福利| 日本免费在线观看一区| 久久人人爽av亚洲精品天堂 | 日韩欧美 国产精品| av卡一久久| 欧美高清成人免费视频www| 亚洲av.av天堂| 免费看日本二区| 成人毛片a级毛片在线播放| 国精品久久久久久国模美| 精品视频人人做人人爽| 免费电影在线观看免费观看| 成年av动漫网址| 2022亚洲国产成人精品| 精品人妻熟女av久视频| 成年女人看的毛片在线观看| 色播亚洲综合网| 亚洲人成网站在线观看播放| 777米奇影视久久| 99热这里只有精品一区| 日本色播在线视频| 建设人人有责人人尽责人人享有的 | 韩国av在线不卡| 日本免费在线观看一区| videossex国产| 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 免费高清在线观看视频在线观看| 国产精品久久久久久精品电影小说 | 五月开心婷婷网| 舔av片在线| 国产免费又黄又爽又色| 国产精品国产三级国产av玫瑰| 女的被弄到高潮叫床怎么办| 久久国产乱子免费精品| 美女高潮的动态| 天天躁夜夜躁狠狠久久av| 国语对白做爰xxxⅹ性视频网站| 不卡视频在线观看欧美| 深爱激情五月婷婷| 亚洲精华国产精华液的使用体验| 欧美国产精品一级二级三级 | 亚洲美女搞黄在线观看| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 欧美三级亚洲精品| 性色avwww在线观看| 黄色配什么色好看| 青春草亚洲视频在线观看| 精品一区二区三卡| 国产欧美另类精品又又久久亚洲欧美| 日本一本二区三区精品| 亚洲av男天堂| 国产爽快片一区二区三区| 国产午夜精品久久久久久一区二区三区| 精品人妻熟女av久视频| 国产乱人视频| 久久精品夜色国产| 国产黄色免费在线视频| 麻豆乱淫一区二区| 国产精品福利在线免费观看| 又爽又黄无遮挡网站| 国产极品天堂在线| 成年免费大片在线观看| 国产精品成人在线| 性色av一级| 亚洲一区二区三区欧美精品 | 精品酒店卫生间| 夜夜爽夜夜爽视频| 18禁裸乳无遮挡免费网站照片| 少妇人妻精品综合一区二区| 成人高潮视频无遮挡免费网站| 久久久久久久久大av| 51国产日韩欧美| 日韩,欧美,国产一区二区三区| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 成人亚洲精品一区在线观看 | 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 大又大粗又爽又黄少妇毛片口| 欧美日韩视频精品一区| 性插视频无遮挡在线免费观看| 国产淫语在线视频| av免费观看日本| 亚洲精品日本国产第一区| 精品少妇黑人巨大在线播放| 免费观看性生交大片5| 久久久久久久久久成人| 精品少妇久久久久久888优播| 欧美人与善性xxx| 美女xxoo啪啪120秒动态图| 亚洲精华国产精华液的使用体验| 一级毛片久久久久久久久女| 成人高潮视频无遮挡免费网站| 嫩草影院新地址| 不卡视频在线观看欧美| 69av精品久久久久久| 欧美激情久久久久久爽电影| 毛片一级片免费看久久久久| 波野结衣二区三区在线| 日韩欧美精品免费久久| 欧美日韩综合久久久久久| 97热精品久久久久久| 欧美日韩综合久久久久久| 丰满少妇做爰视频| 国产免费福利视频在线观看| 国产 精品1| 久久久亚洲精品成人影院| 黄色视频在线播放观看不卡| 精品人妻偷拍中文字幕| 国产中年淑女户外野战色| 中文字幕av成人在线电影| 欧美xxxx性猛交bbbb| 亚洲精品亚洲一区二区| 青春草国产在线视频| 汤姆久久久久久久影院中文字幕| 亚洲成人一二三区av| 久久国产乱子免费精品| 国产精品三级大全| 国产精品久久久久久精品电影| 成人漫画全彩无遮挡| 亚洲国产成人一精品久久久| 一级毛片aaaaaa免费看小| 亚洲精品自拍成人| 久久6这里有精品| 男人狂女人下面高潮的视频| 欧美亚洲 丝袜 人妻 在线| 久久99热这里只频精品6学生| 久久久久久久久久久丰满| 国产成人精品久久久久久| 久久精品久久精品一区二区三区| 日韩电影二区| 精品午夜福利在线看| 天堂俺去俺来也www色官网| 久久久久久久久久人人人人人人| 国产精品久久久久久精品电影| 亚洲成人一二三区av| 亚洲av欧美aⅴ国产| 久久6这里有精品| 九草在线视频观看| 夫妻午夜视频| 亚洲无线观看免费| 精品一区在线观看国产| 别揉我奶头 嗯啊视频| av免费观看日本| 免费黄色在线免费观看| 国产永久视频网站| 一区二区三区乱码不卡18| av福利片在线观看| 噜噜噜噜噜久久久久久91| 欧美老熟妇乱子伦牲交| 偷拍熟女少妇极品色| 男女无遮挡免费网站观看| 国产男女内射视频| 国产 一区 欧美 日韩| 97超视频在线观看视频| 18禁动态无遮挡网站| 看非洲黑人一级黄片| 少妇 在线观看| 99久久九九国产精品国产免费| 青春草亚洲视频在线观看| 亚洲无线观看免费| 嫩草影院精品99| 麻豆成人av视频| 亚洲欧洲日产国产| av在线老鸭窝| 亚洲国产欧美人成| 亚洲三级黄色毛片| 欧美国产精品一级二级三级 | 亚洲aⅴ乱码一区二区在线播放| 80岁老熟妇乱子伦牲交| 高清av免费在线| 日韩一区二区视频免费看| 一本色道久久久久久精品综合| 成人美女网站在线观看视频| 国产成人免费观看mmmm| 国产爽快片一区二区三区| 国产成人91sexporn| 中文字幕制服av| 精品一区二区免费观看| 国产91av在线免费观看| 哪个播放器可以免费观看大片| 亚洲国产成人一精品久久久| 久久国产乱子免费精品| 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 男人狂女人下面高潮的视频| 精品一区二区免费观看| 国产爽快片一区二区三区| av免费在线看不卡| 亚洲国产精品国产精品| 精品久久久久久久久亚洲| 久久久久性生活片| 久久久久性生活片| 精品国产露脸久久av麻豆| 毛片女人毛片| 日本-黄色视频高清免费观看| 色播亚洲综合网| 欧美日韩综合久久久久久| 亚洲欧美日韩卡通动漫| 国产老妇女一区| 男男h啪啪无遮挡| 免费看光身美女| 日本wwww免费看| 日本猛色少妇xxxxx猛交久久| 91久久精品电影网| 欧美日韩精品成人综合77777| 亚洲色图综合在线观看| 99久久人妻综合| 成年女人看的毛片在线观看| 亚洲av电影在线观看一区二区三区 | av在线观看视频网站免费| 国产亚洲午夜精品一区二区久久 | 国产高潮美女av| 久久精品久久久久久噜噜老黄| 丝袜美腿在线中文| 深爱激情五月婷婷| 狂野欧美白嫩少妇大欣赏| 极品少妇高潮喷水抽搐| 少妇的逼水好多| 日韩大片免费观看网站| 国产精品久久久久久av不卡| 婷婷色av中文字幕| 99久久精品一区二区三区| 日韩伦理黄色片| 欧美另类一区| 国产亚洲av嫩草精品影院| 青春草视频在线免费观看| 在线观看av片永久免费下载| 国内揄拍国产精品人妻在线| 成人特级av手机在线观看| 蜜桃久久精品国产亚洲av| 黄片wwwwww| 中文字幕亚洲精品专区| 免费电影在线观看免费观看| 在线观看人妻少妇| 久久久精品欧美日韩精品| 国产精品国产av在线观看| 亚洲内射少妇av| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲最大av| 内射极品少妇av片p| 亚洲精品国产成人久久av| 内射极品少妇av片p| 国产综合精华液| 国产老妇女一区| 久久久久九九精品影院| 蜜臀久久99精品久久宅男| 久久久久性生活片| 91aial.com中文字幕在线观看| 亚洲精品一区蜜桃| 一级毛片 在线播放| 赤兔流量卡办理| 久久ye,这里只有精品| 国产成人精品福利久久| 18禁在线无遮挡免费观看视频| www.av在线官网国产| 国产成人a∨麻豆精品| .国产精品久久| 毛片一级片免费看久久久久| 日韩,欧美,国产一区二区三区| 一区二区三区乱码不卡18| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美一区二区三区国产| 精华霜和精华液先用哪个| 亚洲精品国产av蜜桃| 亚洲自偷自拍三级| 男女无遮挡免费网站观看| 亚洲内射少妇av| www.av在线官网国产| 精品久久久久久久末码| 日韩av在线免费看完整版不卡| 国产免费一区二区三区四区乱码| 看十八女毛片水多多多| 欧美日韩国产mv在线观看视频 | 婷婷色av中文字幕| 我的女老师完整版在线观看| 亚洲在线观看片| 色视频在线一区二区三区| 免费大片黄手机在线观看| 五月天丁香电影| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av蜜桃| 自拍欧美九色日韩亚洲蝌蚪91 | 狂野欧美白嫩少妇大欣赏| 精华霜和精华液先用哪个| 欧美成人精品欧美一级黄| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆| 久久影院123| 亚洲精品一二三| 一区二区三区四区激情视频| 人妻夜夜爽99麻豆av| 狂野欧美激情性bbbbbb| 亚洲av成人精品一二三区| videos熟女内射| 中国国产av一级| 欧美+日韩+精品| 精品久久久久久久末码| 在线精品无人区一区二区三 | 国产精品99久久99久久久不卡 | 女人久久www免费人成看片| 国产精品偷伦视频观看了| av女优亚洲男人天堂| 亚洲av国产av综合av卡| 日日啪夜夜爽| 少妇的逼好多水| 欧美激情久久久久久爽电影| 嫩草影院入口| 日产精品乱码卡一卡2卡三| 欧美成人精品欧美一级黄| 精品久久久久久久久av| 国产精品不卡视频一区二区| 亚洲国产最新在线播放| 国产女主播在线喷水免费视频网站| av一本久久久久| 99精国产麻豆久久婷婷| 国产片特级美女逼逼视频| 国产一区二区在线观看日韩| 久久精品国产鲁丝片午夜精品| 日韩中字成人| 亚洲人成网站在线播| 国产精品国产三级国产av玫瑰| 久久久久久久久久成人| 在线观看免费高清a一片| 波野结衣二区三区在线| 少妇熟女欧美另类| av在线蜜桃| 热re99久久精品国产66热6| 又大又黄又爽视频免费| 免费av观看视频| 免费观看无遮挡的男女| 亚洲av中文av极速乱| 蜜桃亚洲精品一区二区三区| 一边亲一边摸免费视频| 国产精品人妻久久久久久| 高清欧美精品videossex| 国产男女内射视频| 国产久久久一区二区三区| 777米奇影视久久| 五月开心婷婷网| 免费观看的影片在线观看| 欧美日韩精品成人综合77777| 亚洲精品一区蜜桃| 观看美女的网站| av天堂中文字幕网| 啦啦啦啦在线视频资源| 黄片wwwwww| 91精品一卡2卡3卡4卡| 亚洲,一卡二卡三卡|