• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sonochemically assisted synthesis of nano HMX

    2020-01-07 09:10:34HemaSinghNileshJahagirdarShaibalBanerjee
    Defence Technology 2019年6期

    Hema Singh,Nilesh Jahagirdar,Shaibal Banerjee

    Department of Applied Chemistry,Defence Institute of Advanced Technology(DU),Girinagar,Pune,411025,India

    ABSTRACT Nanotechnology has played an influential role in improving the energetic content without subsiding the performance of high energy materials in the current era.In this work,HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)nanoparticles were prepared by sonochemically assisted solvent-antisolvent spray technique focussing the reduction in its size so as to improve its energetic properties.In order to fabricate nano HMX various parameters such as different solvents and temperature were investigated.Sonication is one of the strategies recently explored in this regard;so time dependent study of sonication using probe sonicator was performed.It has been postulated that bubble formed during sonication when collapses generate high temperature and many nucleation sites which leads to the formation of uniform spherical particles with small size and fast transition phase.XRD studies depicted phase transformation from α to β as a result of sonication.The TEM images revealed that the rise in the sonication time resulted into decrease in the particle size from 300 to 10 nm.Differential scanning calorimetry(DSC)was employed to determine the heat release of the samples and enhancement in the heat release with the decrease in the particle size.A decrease in the spark sensitivity was observed from 2J(regular HMX)to 50 mJ(nano HMX).

    Keywords:Sonication Spray technique Nano HMX Probe sonicator Impact sensitivity

    1. Introduction

    High energy materials are continually being explored with the intention to enhance their explosive parameters ranging from density,stored energy and transportation etc.One of the most promising compounds holding significant advantages in these aspects is HMX (Octagon). HMX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(C4H8N8O8)is a nitramine based explosive and due to its higher molecular weight,it is one of the most potent explosives to be manufactured[1-4].It has a higher velocity of detonation(VoD)(9100 m s-1Vs 8700 m s-1for RDX Vs 6900 m s-1for TNT).Moreover,it has a detonation pressure higher than conventional explosives(38.7 GPa Vs 34 GPa for RDX Vs 21 GPa for TNT).Its higher density(Specific Gravity:1.91 Vs 1.78 of RDX Vs 1.60 of TNT)[5]permits better loading of explosives especially when volume of the weapons is restricted.Having defined with above advantages,still it has poor sensitivity to impact,friction and electrical sparks thus forestall its use in military and civilian sector[6,7].

    In the present era of nanotechnology,it is perceived that the reduction in size of particles lowers the sensitivity of the energetic materials without hampering the energetic content of the materials[8].Consequently,preparation of nano size HMXs is an area of current research in the development of new high-energy materials.Few strategies involved in the fabrication of nanoparticles are solvent-antisolvent[9],recrystallization process[10],spray flash evaporation[11,12],ultrasonication[13]and mechanical demulsification shearing[14].Yongxu[15],Bayat[16]and Kumar[17]sprayed the acetone solution of HMX in a non-solvent(water)to control the mean size of the HMX crystals and thus,this approach seems to be the simplest technique for tuning the size of these nanoparticles. In this process, the solution containing organic compound is sprayed under pressure into an antisolvent(water)which generates high supersaturation resulting in precipitation due to dissociation of the hydrophobic active compound.

    Scheme 1.Schematic preparation of nano HMX.

    Fig.1.SEM of HMX particles prepared in different solvent:(a)Acetone,(b)DMSO and(c)DMF.

    The spraying may be an interesting method but it usually synthesize micron sized particles and accounts towards the agglomeration and non uniformity of fine particles.Thus,necessity of exploring the techniques which would leads to uniformity and mass transfer in the solution more rapidly than the conventional methods.Ultrasonication finds its inevitable application in synthesis and modifications of nanomaterials.High intensity ultrasound generates large number of bubbles which grows,collapses and produces hot spot with a high transient temperature(5000°C)and pressure(500 atm).The rapid increase in pressure and temperature causes variation in the concentration of solution and temperature,thereby favours the lowering of nucleation[18-22].Although there are reports in which bath sonicator is explored for reducing the size of materials however it has certain limitation such as uneven and uncontrollable cavitations in the bath.While in probe sonicator whole material is processed by same intensity.The power and duration of sonication could be varied so as to tailor the crystallite size distribution.

    In this work, nano HMX were prepared by a simple reprecipitation method using solvent and antisolvent method assisted by probe sonicator.The effects of changing experimental parameters such as different solvents,temperature of antisolvent during injection and time of sonication on particle size are accounted.It also includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent-antisolvent process.The size and morphology of these particles were characterized by field emission scanning electron microscopy(FESEM)and TEM.

    2. Experimental

    2.1. Chemicals

    Dimethyl sulphoxide(DMSO),acetone, dimethyl formamide(DMF)of AR grade was purchased and use as supplied without any purification.Ultra-pure water(18.2 M??cm)from double stage water purifier(ELGA,PURELAB Option-R7)was used throughout.

    2.2. Synthesis of HMX

    Accurately weighed HMX was dissolved in three different solvents i.e.DMSO,DMF and acetone up to saturation level.The respective solutions were then quickly sprayed into distilled water(antisolvent)at room temperature through a needle HD 130 having a micronic sized pore.A standard laboratory pump was used to ensure sufficient pressure for the injection.This was done separately for each solvent.

    The precipitate of HMX was allowed to settle and the excess water-DMSO/DMF/Acetone solution was drained off.The resulting HMX particles were centrifuged.The three samples that resulted from this experiment were then given for SEM analysis.The size of the HMX particles was not found to be in nano regime from above experimental combinations.Therefore,in order to ensure the formation of nano-sized HMX particles,the following modification was made:Water used for further experimentation was maintained at 5°C instead of room temperature.This was done in order to ensure faster attainment of saturation of water-DMSO solution causing faster precipitation of HMX particles by DMSO being dissolved in water.Further,the water volume was restricted to 50 ml and this was agitated in a Petri dish using a magnetic stirrer at 750 rpm.This solution containing HMX particles suspended in DMSO-water system was sonicated in a probe sonicator with a frequency of 20 kHz and a potency of 750 W for duration of 10,30 and 60 min.This was consisted of multiple cycles,each having sonication of 20 s duration followed by a gap of 5 s.The sonication was at 20 kHz and 750 W.A blank sample without sonication was also prepared(HMX-ws)(see Scheme 1).

    Fig.2.SEM of(a)raw HMX(b)HMX-ws,(c)HMX-10m,(d)HMX-20m,(e)HMX-30m and(f)HMX-60m.

    Fig.3.XRD of HMX,HMX-ws,HMX-10m,HMX-20m,HMX-30m and HMX-60m.Inset shows data an expanded form of HMX,HMX-10m and HMX-60m.

    Fig.4.FT-IR of HMX,HMX-ws,HMX-10m,HMX-20m,HMX-30 m and HMX-60m.Inset shows data on expanded form.

    2.3. Characterizations

    The structural phase analysis of the samples was carried out using Bruker advanced TA with Cu-Kα radiation(λ=1.5406 A°)XRay Powder diffractrometer.The FTIR spectra was recorded by PerkinElmer Carl Leiss Field emission scanning electron microscopy(FESEM)(Sigma 03-18,Germany)was employed to study the morphology of the samples.The TEM measurements were performed using Philips CM-200.The thermal analysis was studied out with PerkinElmer,Pyris DSC-7.The DSC experiments were performed in nitrogen atmosphere with a flow rate of 50 ml min-1and a heating rate of 10 K min-1.The TGA was performed with PerkinElmer STA 6000 in nitrogen atmosphere.The sensitivity of the samples to impact stimuli was determined by the BAM hammer method.

    3. Results and discussion

    3.1. Effect of organic solvent on the solvent-antisolvent process

    Fig.5.TGA curves of HMX,HMX-ws,HMX-30m and HMX-60m

    The SEM of HMX samples prepared in presence of acetone,DMSO and DMF-water as solvent-antisolvent using spray technique at room temperature are presented in Fig.1.The particles obtained in presence of acetone depicted rod like morphology along with the spherical particles unlike the particles prepared using DMSO and DMF thus, showing mixed morphology. These results are in agreement with Kim et al. [23] work which reports that the morphology of HMX particles is greatly affected by the organic solvent.The particle size of these particles was observed to be varying widely in the range of 1-10 μm hence,we concluded that the aim of preparing nano HMX was not achieved.

    3.2. Effect of time dependent sonication studies

    Fig.6.DSC curves of HMX,HMX-ws,HMX-30m and HMX-60m

    Table 1DSC phenomenological data.

    Further,the solvent DMSO was chosen since the solubility of HMX in DMSO was found to be higher in comparison to that in other solvents.The temperature of the antisolvent(water)was lowered to 5°C.The solution containing HMX particles suspended in DMSO-water system was sonicated for 10 min,20 min,30 min and 60 min.Fig.2 illustrates the SEM of raw HMX(HMX),sprayed and without sonicated(HMX-ws)and sonicated for 10 min(HMX-10m),20 min(HMX-20m),30 min(HMX-30m)and 60 min(HMX-60m).The SEM images of all the samples prepared in DMSO indicate cube-like morphology but with different sizes.The raw HMX was found to be 300-450 μm in size while when it was sprayed in cold water the size was reduced to 1-3 μm.Further,the sprayed sample was probe sonicated for 10,20,30 and 60 min and the approximate sizes obtained are 1-2 μm,1-1.5 μm,90-60 nm and 10-40 nm respectively.It was observed that increase the time of sonication,leads to decease in the size of HMX crystals which can be attributed to the bubbles formed during sonication when collapses generate high temperature and creates many nucleation sites which lead to decrease in agglomeration and enhance the controllability of the crystallization process[24].Thus,by tailoring the ultrasonic duration with proper concentration and temperature,the size of the particles would be reduced.The size and the morphology were further confirmed by TEM analysis.

    3.3. Composition analysis of HMX samples

    HMX crystals exist in four different polymorphs:α(orthorhombic),β(monoclinic),γ(monoclinic)and δ(hexagonal)phases[25].β-HMX is the most preferred from military point of view due to its highest density,impact sensitivity and detonation velocity in comparison with other polymorphs[26].The XRD pattern of raw HMX shows peaks with 2θ values at 13.84°,14.82°,16.16°,20.55°,22.99°,26.17°,29.66°,31.88°and 32.11°which are assigned to(220),(040),(111),(131),(400),(080),(171),(022)and(202)planes respectively for α-HMX(JCPDS no.00-025-1748).Similarly,XRD pattern of HMX sprayed in presence of DMSO(HMX-ws)was obtained but the peak at 2θ=16°seem to split into two peaks(2θ=16.00°and 16.32°)along with some additional peaks.This indicate that along with α-HMX some amount of γ-form may also be present which is consistent with the Lee et al.[27]report which states that the gamma polymorph is obtained by cold antisolvent precipitation.On the other hand,XRD of samples sonicated at 10 min,30 min and 60 min samples depict peaks at 2θ=14.8°,16.0°,18.33°,20.57°,21.83°,22.81°,26.15°,27.00°,29.66°and 31.83°corresponding to(011),(020),(110),(02),(12),(120),(012)(031)(020) and (32) Miller indices for β-HMX form (JCPDS no.45-1539).Soni et al.have reported that converting fine particles of γ to β form is a great challenge.The polymorphic transformation is reported in the literature by heating or pressing of pellets of nanosize materials[28].In another work,Lee et al.have found that β-HMX would be formed by recrystallizing HMX from acetone[29].In the present case,we have found that ultrasonication resulted in the phase transformation.The slight increase in the width of the peaks of 60 min sonicated sample(Fig.3(inset))implies a reduction in the particle size.

    Fig.7.TEM of(a)HMX-ws,(b)HMX-10m,(c)HMX-20m,(d)HMX-30m and(e)HMX-60m.

    The FT-IR analysis of raw HMX,HMX-ws,HMX-10m,HMX-20m,HMX-30m and HMX-60m are shown in Fig.4.The major IR bands for HMX samples are at 1564 cm-1, 1145 cm-1, 964 cm-1and 946 cm-1, 843 cm-1and 761 cm-1, 625 cm-1and 600 cm-1assigned to the characteristic vibrations of νsNO2,νsNO2ν ring,ring stretching band,δ and γ-NO2and τ+γ NO2respectively[17].It is noteworthy that the sample HMX-ws shows peaks at 1027 cm-1and 709 cm-1typical signatures corresponding to the γ polymorph of HMX which is consistent with the XRD data.Further,absence of these peaks in sonicated samples confirms the formation of β-form of HMX[30].Additionally,a peak 1140 cm-1is observed in HMX-ws indicating the presence of residual DMSO which on sonication fades away.

    Kinetic crystallization such as spray method produces mostly metastable phases.In case of HMX,gamma form is the kinetically stable form that is formed during spraying onto water.Further,when it is ultra sonicated in a medium which contains DMSO,it can assist desolution of gamma phase and appearance of thermodynamically stable beta phase.This is a solution mediated phase transformation[31].

    3.4. Thermal decomposition studies of HMX samples

    Thermal study is a vital parameter from the energetic perspective as it elaborates the energy liberated by the material.The TGDSC of raw HMX,HMX-ws,HMX-30m and HMX-60m were performed.It is noted in the TGA graph(Fig.5)that the decomposition temperature of the 60 m sonicated sample is lower than the other samples,which can be ascribed to nano size of HMX-60m sample.The HMX-ws sample shows that percentage of residual is high which may be due to the presence of absorbed DMSO in the sample which is consistent with the FT-IR results.The DSC thermal curve of HMX shows first endothermic peak at 189°C which is due to the phase transformation,small second endothermic peak at 278°C corresponds to melting of HMX followed by an exothermic decomposition at 287°C(see Fig.6).

    The corresponding phenomenological data is summarized in Table 1.In the DSC thermal curve,the endothermic phase transformation peak in HMX-60m sample is observed at higher temperature(198°C)as compared to raw HMX(186°C).This result shows that the phase transformation takes place at high temperature with the reduction of particle size. Another interesting finding was an increase in heat release(ΔH)with the increase in the sonication time was observed from DSC.This implies that simple ultrasonic strategy can play an important role in increasing the heat release and alter the thermal parameters of the sample.

    Table 2Sizes of samples by SEM and TEM.

    Table 3Sensitivities of nano HMX and regular HMX.

    3.5. Size dependent studies of HMX samples

    The TEM micrographs of HMX-ws,HMX-10m,HMX-20m HMX-30m and HMX-60m are displayed in Fig.7.Presence of spherical particles can be observed from the micrographs of all the samples.The size of the sample obtained by spraying in presence of DMSO is 200-500 nm but when the sample was sonicated at different duration of time a decrease in size is observed.The sizes of the particles are presented in Table 2.The TEM analysis also confirmed that sonication reduces nano cluster formation.

    3.6. Sensitivities of nano HMX sample and regular HMX

    Further,the impact,friction and spark sensitivity of nano HMX(HMX-30m and HMX-60m)and regular HMX were investigated and the results are tabulated in Table 3.It was revealed that the friction and spark sensitivity were remarkably reduced with the decreasing of the crystal size.The reduction in the friction sensitivity is in line with theoretical postulates and similar results are reported in the literature also for HMX[32]and RDX[33]while the crystal entered into the nano domain.It may be attributed to the fact that decrease in the size reduces the internal defects but may lead to enhancement in surface imperfections.While,a decrease in the spark sensitivity may be ascribed to high surface area of the nanomaterials which can be easily stimulated[34].

    4. Conclusion

    We have successfully developed a synthetic path for preparing HMX nanoparticles using solvent-antisolvent assisted probe sonication process.The study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solventantisolvent process.The observed results demonstrated the time dependent effect of sonication on the reduction of crystal size(300-10 nm).It was noteworthy to find that sonication resulted in a phase change from α to β form of HMX.A signifciant enhancement in the heat release was noted in the DSC thermogram due to sonication.In the end ultrasound technique owing to its advantages in the production of crystals with improved habit and reduced size marks the key area of research which can potentially be explored industrially. Sensitivity measurement was performed and a decrease in the spark sensitivity was observed from 2J(regular HMX)to 50 mJ(nano HMX).

    Acknowledgments

    The authors thank the Vice Chancellor,DIAT,for giving us support towards the publication.We thank ER&IPR,DRDO,New Delhi for funding the project “DRDO-DIAT Programme on Nanomaterials”.Authors are also thankful to DST/DBT-BIRAC supported Venture Center,at CSIR-NCL,Pune,India for thermogravimetric analysis(TGA).

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2019.04.010.

    午夜免费激情av| 搡老熟女国产l中国老女人| 日本熟妇午夜| 国产野战对白在线观看| 天堂√8在线中文| 91久久精品国产一区二区成人| 国产真实乱freesex| 99热这里只有精品一区| 欧美精品啪啪一区二区三区| av在线观看视频网站免费| 日韩欧美三级三区| 午夜福利在线观看吧| 麻豆av噜噜一区二区三区| 成人美女网站在线观看视频| 亚洲成人免费电影在线观看| 国产精品久久久久久精品电影| 成人国产综合亚洲| 999久久久精品免费观看国产| 亚洲精品成人久久久久久| 欧美一区二区国产精品久久精品| 青草久久国产| 亚洲天堂国产精品一区在线| av专区在线播放| 亚洲最大成人中文| 日韩欧美精品v在线| 色哟哟·www| 嫩草影院入口| 欧美高清性xxxxhd video| 国产av麻豆久久久久久久| 麻豆成人av在线观看| 日韩成人在线观看一区二区三区| 免费大片18禁| 桃色一区二区三区在线观看| 国产伦一二天堂av在线观看| 久久热精品热| 色哟哟·www| 美女cb高潮喷水在线观看| 精品日产1卡2卡| 国产精品人妻久久久久久| 国内精品美女久久久久久| 久久久成人免费电影| 制服丝袜大香蕉在线| 久久九九热精品免费| 校园春色视频在线观看| 中文在线观看免费www的网站| 少妇的逼水好多| netflix在线观看网站| h日本视频在线播放| 2021天堂中文幕一二区在线观| 亚洲国产欧洲综合997久久,| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 色哟哟哟哟哟哟| 黄片小视频在线播放| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站在线播| 国产精品乱码一区二三区的特点| 亚洲国产精品sss在线观看| 国产精品爽爽va在线观看网站| 国产美女午夜福利| 中文资源天堂在线| 18禁黄网站禁片免费观看直播| 少妇裸体淫交视频免费看高清| 亚洲欧美激情综合另类| 成人高潮视频无遮挡免费网站| 亚洲成人精品中文字幕电影| 91在线精品国自产拍蜜月| 熟女人妻精品中文字幕| 日韩欧美在线乱码| 亚洲精品日韩av片在线观看| 91久久精品国产一区二区成人| 欧美极品一区二区三区四区| 又紧又爽又黄一区二区| 男女床上黄色一级片免费看| 午夜精品久久久久久毛片777| 国产精品伦人一区二区| 99久久无色码亚洲精品果冻| 白带黄色成豆腐渣| 中文资源天堂在线| 欧美日韩国产亚洲二区| 久久久久国产精品人妻aⅴ院| 精品不卡国产一区二区三区| 成年版毛片免费区| 国产精品国产高清国产av| 伦理电影大哥的女人| 亚洲av五月六月丁香网| 国语自产精品视频在线第100页| 国产白丝娇喘喷水9色精品| 国产亚洲精品久久久久久毛片| 午夜福利在线观看免费完整高清在 | 欧美成人性av电影在线观看| 久久久久九九精品影院| 99久国产av精品| 欧美激情国产日韩精品一区| 久久精品夜夜夜夜夜久久蜜豆| 欧美在线一区亚洲| 精品久久久久久久久久免费视频| 国产精品影院久久| а√天堂www在线а√下载| 欧美成人免费av一区二区三区| 国产精品乱码一区二三区的特点| 国产私拍福利视频在线观看| bbb黄色大片| 99久久精品一区二区三区| 国产乱人视频| 亚洲av第一区精品v没综合| 色av中文字幕| av天堂中文字幕网| 精品乱码久久久久久99久播| 亚洲人成伊人成综合网2020| 一个人看视频在线观看www免费| 91av网一区二区| 国产精品久久久久久人妻精品电影| 亚洲精品乱码久久久v下载方式| av天堂中文字幕网| 亚洲av日韩精品久久久久久密| 最新在线观看一区二区三区| 女同久久另类99精品国产91| 麻豆国产97在线/欧美| 非洲黑人性xxxx精品又粗又长| 欧美日韩国产亚洲二区| 国内揄拍国产精品人妻在线| 毛片女人毛片| 9191精品国产免费久久| 五月伊人婷婷丁香| 在现免费观看毛片| 成人高潮视频无遮挡免费网站| 男女做爰动态图高潮gif福利片| 欧美xxxx黑人xx丫x性爽| 国产高清三级在线| 亚洲自拍偷在线| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 亚洲第一区二区三区不卡| 有码 亚洲区| 桃色一区二区三区在线观看| 午夜两性在线视频| 国产一区二区亚洲精品在线观看| 国产v大片淫在线免费观看| 老熟妇乱子伦视频在线观看| 我的女老师完整版在线观看| 精品久久久久久久人妻蜜臀av| 精品久久久久久,| 亚洲精华国产精华精| 成人美女网站在线观看视频| 亚洲欧美日韩无卡精品| 高清毛片免费观看视频网站| 亚洲av中文字字幕乱码综合| 亚洲精品日韩av片在线观看| 麻豆国产av国片精品| 18+在线观看网站| 精品久久久久久,| 色精品久久人妻99蜜桃| 免费观看精品视频网站| 中文字幕人成人乱码亚洲影| 成人av在线播放网站| 久久久久免费精品人妻一区二区| 色吧在线观看| 国产麻豆成人av免费视频| 国产伦在线观看视频一区| 国产一区二区在线观看日韩| 男人和女人高潮做爰伦理| 18+在线观看网站| 精品久久久久久久久亚洲 | 丰满人妻熟妇乱又伦精品不卡| 精品一区二区三区视频在线观看免费| 黄色视频,在线免费观看| 99热这里只有精品一区| 成人av一区二区三区在线看| 中亚洲国语对白在线视频| 看免费av毛片| 亚洲美女黄片视频| 久久性视频一级片| 国产毛片a区久久久久| 国产成年人精品一区二区| 老司机午夜十八禁免费视频| 在线观看66精品国产| 国产高清视频在线观看网站| 女人被狂操c到高潮| 国产亚洲精品久久久久久毛片| 国产一区二区亚洲精品在线观看| 成熟少妇高潮喷水视频| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久人妻精品电影| 亚洲在线观看片| 身体一侧抽搐| 搡老岳熟女国产| 久久国产精品人妻蜜桃| 99久久九九国产精品国产免费| 白带黄色成豆腐渣| 男人舔奶头视频| 日韩欧美三级三区| 狠狠狠狠99中文字幕| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久久久免费视频| 日韩精品中文字幕看吧| 日韩人妻高清精品专区| 欧美黄色片欧美黄色片| 一边摸一边抽搐一进一小说| 婷婷丁香在线五月| 熟妇人妻久久中文字幕3abv| 波多野结衣高清无吗| 床上黄色一级片| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 少妇高潮的动态图| 久久久久久国产a免费观看| 亚洲avbb在线观看| 每晚都被弄得嗷嗷叫到高潮| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 亚洲精品在线观看二区| 国模一区二区三区四区视频| 两性午夜刺激爽爽歪歪视频在线观看| 床上黄色一级片| 欧美另类亚洲清纯唯美| 国产高潮美女av| 欧美zozozo另类| 日日夜夜操网爽| 日韩中字成人| x7x7x7水蜜桃| 国产精品一区二区性色av| 淫秽高清视频在线观看| 三级毛片av免费| 十八禁网站免费在线| 日韩人妻高清精品专区| 国产野战对白在线观看| 亚洲美女视频黄频| 99久久无色码亚洲精品果冻| 日韩有码中文字幕| 国产在视频线在精品| 免费av不卡在线播放| 亚洲精品日韩av片在线观看| 欧美性猛交╳xxx乱大交人| 亚洲国产色片| av在线老鸭窝| av在线蜜桃| 精品乱码久久久久久99久播| 久久九九热精品免费| 十八禁国产超污无遮挡网站| 国语自产精品视频在线第100页| 成人三级黄色视频| 日本免费a在线| 热99re8久久精品国产| 99精品在免费线老司机午夜| 麻豆久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 热99re8久久精品国产| 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡| 青草久久国产| 免费无遮挡裸体视频| 亚洲狠狠婷婷综合久久图片| 久久久精品大字幕| 国产精品av视频在线免费观看| 欧美xxxx性猛交bbbb| 欧美区成人在线视频| 偷拍熟女少妇极品色| 日本一本二区三区精品| 亚洲片人在线观看| 欧美成人免费av一区二区三区| 日本免费一区二区三区高清不卡| 国产成人福利小说| 欧美xxxx性猛交bbbb| 国产精品人妻久久久久久| 男女做爰动态图高潮gif福利片| 亚洲av免费高清在线观看| 天堂影院成人在线观看| 国产老妇女一区| 国产欧美日韩精品亚洲av| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看| АⅤ资源中文在线天堂| 国产精品伦人一区二区| 午夜福利在线观看免费完整高清在 | 亚洲在线观看片| 久久精品国产自在天天线| 九九热线精品视视频播放| aaaaa片日本免费| 91在线观看av| 亚洲av成人不卡在线观看播放网| 免费观看人在逋| 国产探花在线观看一区二区| 成人三级黄色视频| 日本 av在线| 欧美成人a在线观看| 久久99热6这里只有精品| 特大巨黑吊av在线直播| 久久精品国产亚洲av天美| 午夜精品在线福利| 老司机福利观看| 黄色配什么色好看| 亚洲美女黄片视频| 欧美性猛交黑人性爽| 欧美日韩福利视频一区二区| 久久人妻av系列| 夜夜看夜夜爽夜夜摸| 亚洲自偷自拍三级| 亚洲国产色片| 亚洲欧美日韩高清在线视频| 久久热精品热| 听说在线观看完整版免费高清| 色综合欧美亚洲国产小说| h日本视频在线播放| 欧美午夜高清在线| 亚洲av免费高清在线观看| 免费观看精品视频网站| 99国产极品粉嫩在线观看| 露出奶头的视频| 色视频www国产| 日本黄色视频三级网站网址| 免费人成视频x8x8入口观看| 99久久九九国产精品国产免费| 一级毛片久久久久久久久女| 欧美+日韩+精品| 国产精品三级大全| a级一级毛片免费在线观看| 亚洲精品色激情综合| www.熟女人妻精品国产| 中文字幕人成人乱码亚洲影| 又爽又黄无遮挡网站| 国产三级中文精品| 少妇人妻精品综合一区二区 | 免费av毛片视频| 亚洲欧美精品综合久久99| 日韩免费av在线播放| 黄色视频,在线免费观看| 男女床上黄色一级片免费看| 日本 av在线| 极品教师在线免费播放| 国产单亲对白刺激| 国产探花极品一区二区| 精品人妻偷拍中文字幕| 国产伦在线观看视频一区| 日本黄色视频三级网站网址| 婷婷六月久久综合丁香| 国产成人影院久久av| 人妻久久中文字幕网| 国内精品美女久久久久久| 中文字幕人成人乱码亚洲影| 观看美女的网站| 97超视频在线观看视频| 久久精品国产亚洲av香蕉五月| 免费观看人在逋| 亚洲精品乱码久久久v下载方式| 亚洲第一区二区三区不卡| 国产三级黄色录像| 欧美中文日本在线观看视频| 欧美日韩瑟瑟在线播放| 亚洲综合色惰| 国产淫片久久久久久久久 | 特级一级黄色大片| 国产精品免费一区二区三区在线| www.www免费av| 在线观看舔阴道视频| 搡女人真爽免费视频火全软件 | 内射极品少妇av片p| 男人舔女人下体高潮全视频| 一边摸一边抽搐一进一小说| 欧美绝顶高潮抽搐喷水| 69人妻影院| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 欧美激情国产日韩精品一区| 两个人视频免费观看高清| 日本熟妇午夜| 国产精品久久久久久人妻精品电影| 少妇熟女aⅴ在线视频| 免费大片18禁| 两性午夜刺激爽爽歪歪视频在线观看| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| 国产探花极品一区二区| 亚洲黑人精品在线| 国产白丝娇喘喷水9色精品| 啪啪无遮挡十八禁网站| 白带黄色成豆腐渣| 日韩欧美精品免费久久 | 成人性生交大片免费视频hd| 中文字幕av成人在线电影| 欧美日韩福利视频一区二区| 99国产极品粉嫩在线观看| 国内精品久久久久久久电影| 色在线成人网| 人妻久久中文字幕网| 久久精品国产自在天天线| 久久精品国产99精品国产亚洲性色| 村上凉子中文字幕在线| 精品午夜福利视频在线观看一区| 久久精品国产亚洲av香蕉五月| 日本在线视频免费播放| 婷婷六月久久综合丁香| 在线播放国产精品三级| 日韩欧美三级三区| 99精品在免费线老司机午夜| 淫秽高清视频在线观看| 99国产精品一区二区三区| 嫩草影院精品99| 波多野结衣巨乳人妻| 午夜福利免费观看在线| 欧美乱色亚洲激情| 国产精品久久久久久人妻精品电影| 白带黄色成豆腐渣| 18禁裸乳无遮挡免费网站照片| 动漫黄色视频在线观看| 可以在线观看的亚洲视频| 嫩草影视91久久| 很黄的视频免费| 国产乱人视频| 亚洲欧美激情综合另类| www日本黄色视频网| 99热这里只有精品一区| 久久99热这里只有精品18| 亚洲天堂国产精品一区在线| 十八禁网站免费在线| 国产探花在线观看一区二区| 中文字幕熟女人妻在线| 国内精品一区二区在线观看| 色精品久久人妻99蜜桃| 日本黄大片高清| 精品人妻熟女av久视频| 国产野战对白在线观看| 欧美极品一区二区三区四区| 高清日韩中文字幕在线| 免费人成在线观看视频色| 成年女人永久免费观看视频| 真实男女啪啪啪动态图| 国产三级中文精品| 精品人妻视频免费看| 97热精品久久久久久| 国内精品久久久久精免费| 日本五十路高清| 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| 变态另类成人亚洲欧美熟女| 国产在线精品亚洲第一网站| 色在线成人网| 他把我摸到了高潮在线观看| 丰满的人妻完整版| xxxwww97欧美| 黄色配什么色好看| 久久精品影院6| 欧美黄色淫秽网站| 内射极品少妇av片p| 国产精品一及| 欧美性猛交╳xxx乱大交人| 51国产日韩欧美| 12—13女人毛片做爰片一| 欧美成人一区二区免费高清观看| 老司机深夜福利视频在线观看| 九九热线精品视视频播放| 亚洲在线观看片| 美女免费视频网站| 精品熟女少妇八av免费久了| 永久网站在线| www.www免费av| 婷婷亚洲欧美| 搡老妇女老女人老熟妇| 日韩大尺度精品在线看网址| 亚洲av美国av| 亚洲久久久久久中文字幕| 亚洲精品一区av在线观看| 成人av在线播放网站| 亚洲电影在线观看av| 91在线精品国自产拍蜜月| 在线播放无遮挡| 亚洲精品粉嫩美女一区| 久久人妻av系列| av中文乱码字幕在线| 能在线免费观看的黄片| 亚洲精品在线美女| 桃红色精品国产亚洲av| .国产精品久久| 69人妻影院| 国产免费男女视频| 少妇裸体淫交视频免费看高清| 熟妇人妻久久中文字幕3abv| 丰满乱子伦码专区| 中文字幕av在线有码专区| 亚洲av日韩精品久久久久久密| 看免费av毛片| 国产欧美日韩精品亚洲av| 亚洲三级黄色毛片| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 国产精品一区二区三区四区久久| 男女那种视频在线观看| 亚洲av美国av| 中文字幕久久专区| 国产欧美日韩精品亚洲av| 国产精品野战在线观看| 长腿黑丝高跟| 窝窝影院91人妻| 亚洲自偷自拍三级| 国产成人a区在线观看| 国产精品一区二区三区四区久久| 男女那种视频在线观看| 精品午夜福利在线看| 欧美一级a爱片免费观看看| 久久人人爽人人爽人人片va | 一本综合久久免费| 国产一区二区亚洲精品在线观看| 日日摸夜夜添夜夜添小说| 国产黄a三级三级三级人| 国产高清三级在线| 亚洲av免费在线观看| 国产又黄又爽又无遮挡在线| 少妇被粗大猛烈的视频| 精品午夜福利视频在线观看一区| 色噜噜av男人的天堂激情| 国产成人啪精品午夜网站| 精品国产三级普通话版| 极品教师在线视频| 精品久久久久久久久亚洲 | 十八禁人妻一区二区| 夜夜看夜夜爽夜夜摸| 国产精华一区二区三区| 亚洲成人久久性| 亚洲国产色片| 亚洲av成人不卡在线观看播放网| 两人在一起打扑克的视频| 美女大奶头视频| 如何舔出高潮| 久久这里只有精品中国| 欧洲精品卡2卡3卡4卡5卡区| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 婷婷六月久久综合丁香| 国产aⅴ精品一区二区三区波| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| 麻豆国产97在线/欧美| 午夜久久久久精精品| 美女高潮喷水抽搐中文字幕| 国内久久婷婷六月综合欲色啪| 久久久久久久久久黄片| 久久伊人香网站| 色吧在线观看| 午夜精品一区二区三区免费看| АⅤ资源中文在线天堂| 国产精品电影一区二区三区| 久久久久久久午夜电影| 成人精品一区二区免费| 99国产综合亚洲精品| 国产精品乱码一区二三区的特点| 一个人免费在线观看电影| 免费av观看视频| 午夜福利免费观看在线| 亚洲国产日韩欧美精品在线观看| or卡值多少钱| 9191精品国产免费久久| 成人特级av手机在线观看| 脱女人内裤的视频| 女生性感内裤真人,穿戴方法视频| 国产av麻豆久久久久久久| 国产三级黄色录像| 99精品在免费线老司机午夜| 人妻夜夜爽99麻豆av| 一本一本综合久久| 精品国产亚洲在线| 日韩亚洲欧美综合| 国产爱豆传媒在线观看| 亚洲人成电影免费在线| 好男人电影高清在线观看| 亚洲成人久久爱视频| 久久精品人妻少妇| 日韩亚洲欧美综合| 全区人妻精品视频| 全区人妻精品视频| 丝袜美腿在线中文| 全区人妻精品视频| 国产美女午夜福利| 少妇人妻一区二区三区视频| 精品久久久久久成人av| 免费av毛片视频| 国产精品永久免费网站| 久久久成人免费电影| 日日夜夜操网爽| 一级黄色大片毛片| 中文字幕人成人乱码亚洲影| 亚洲男人的天堂狠狠| 黄片小视频在线播放| 真人做人爱边吃奶动态| 免费看美女性在线毛片视频| 日韩欧美三级三区| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 最近最新免费中文字幕在线| 欧美最新免费一区二区三区 | 51国产日韩欧美| 午夜影院日韩av| 亚洲美女搞黄在线观看 | 成人国产综合亚洲| 国产亚洲精品久久久com| 欧美+亚洲+日韩+国产| 极品教师在线视频| 黄片小视频在线播放| 真人做人爱边吃奶动态| 少妇裸体淫交视频免费看高清| 国产老妇女一区| 成人性生交大片免费视频hd| 国产三级中文精品| 国产单亲对白刺激| 精品久久久久久久久亚洲 | 欧美日韩亚洲国产一区二区在线观看| 一进一出好大好爽视频| 丁香六月欧美| 制服丝袜大香蕉在线| 久久国产精品影院| 麻豆成人午夜福利视频| 国产三级在线视频| 欧美国产日韩亚洲一区| 亚洲熟妇熟女久久| 亚洲一区二区三区不卡视频|