• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and Property of Yb:CaF2 Laser Ceramics from Co-precipitated Nanopowders

    2019-12-28 01:28:14WEIJiaBeiTOCIGuidoPIRRIAngelaPATRIZIBarbaraFENGYaGangVANNINIMatteoLIJiang
    無機(jī)材料學(xué)報 2019年12期

    WEI Jia-Bei,TOCI Guido,PIRRI Angela,PATRIZI Barbara,FENG Ya-Gang,VANNINI Matteo,LI Jiang

    (1.Key Laboratory of Transparent Opto-Functional Inorganic Materials,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;2.Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;3.Istituto Nazionale di Ottica,Consiglio Nazionale delle Ricerche,CNR-INO,50019 Sesto Fiorentino (Fi),Italy;4.Istituto di Fisica Applicata “Carrara”,Consiglio Nazionale delle Ricerche,CNR-IFAC,50019 Sesto Fiorentino (Fi),Italy;5.Istituto Nazionale di Ottica,Consiglio Nazionale delle Ricerche,CNR-INO,56124 Pisa(Pi),Italy)

    Abstract:Transparent ytterbium doped calcium fluoride ceramics (Yb:CaF2) were successfully fabricated by vacuum sintering and hot pressing post-treatment from coprecipitated powders.In-line transmittance of 5at% Yb:CaF2 transparent ceramics fabricated by pre-sintering at 600 ℃ for 1 h and hot pressing post-treatment at 700 ℃ for 2 h,reaches 92.0% at the wavelength of 1200 nm.Microstructure,spectroscopic characteristics and laser performance of the ceramics were measured and discussed.The sample shows a homogeneous microstructure with average grain size of 360 nm.Furthermore,the absorption cross section at 977 nm and the emission cross section at the 1030 nm of the ceramics are calculated to 0.39×10-20 cm2 and 0.26×10-20 cm2,respectively.Finally,the laser behavior was tested,finding a maximum output power of 0.9 W while the highest slope efficiency was 23.6%.

    Key words:Yb:CaF2;co-precipitation synthesis;two-step sintering;laser ceramics;optical property

    In recent years,solid state lasers have been widely used in many fields,such as inertial confinement fusion,medical science and manufacturing.The gain medium is an important part of the laser system.The common materials used as gain media include glass,transparent ceramics and single crystals.Polycrystalline transparent ceramics have attracted considerable attention over the last few years.Compared with traditional optical glass,transparent ceramics show obvious superiorities on mechanical and thermal property.Generally transparent ceramics exhibit advantages over single crystals in many aspects,such as lower cost in preparation,higher homogeneity of the dopant and larger size[1-4].Many kinds of transparent ceramics have been studied and great achievements have already been acquired,such as YAG[5-9],sesquioxides[10-15],and fluorides[16-18].In the case of fluoride ceramics,the current progress of the researches and development fall behind oxide ceramic materials,although the first laser ceramics,Dy:CaF2,were fabricated by Hatch,et alin 1964[19].

    Fluoride crystalline hosts,such as CaF2and its Sr and Ba based isomorphs (i.e.SrF2and BaF2) possess excellent property such as broad range of transmittance,lower phonon energy and low refraction index than garnets and sesquioxides;in these hosts Yb3+features a very broad absorption and emission bands (useful for the generation and amplification of ultrashort laser pulses) and long fluorescence lifetime that ensures efficient energy storage for the laser operation[20-21].In addition,Yb:CaF2has a negative thermo-optical coefficient which is suitable for the high output power in lasers due to mitigation of the thermal lens effect[22-23].Due to these characteristics,crystalline CaF2is a widely used host for efficient Yb doped[20,24-27]and Nd doped materials for laser applications[28].

    The success of crystalline CaF2as laser host has stimulated the development of ceramics with the same composition for laser applications,in particular with Yb3+doping[18,21-22].

    A large number of scientific literatures have been published on Yb:CaF2transparent ceramics and some progresses have been made.Basiev,et al[17,29-30]successfully fabricated Yb:CaF2laser ceramics with high optical quality by the hot forming method and reported the laser operation.But this hot forming method needs corresponding single crystal as the starting material and therefore it does not have the general advantages of ceramics preparation,such as short sintering time and low fabrication cost.Mortier,et al[18,31-33]has investigated the fabrication of Yb:CaF2transparent ceramics by sintering under vacuum atmosphere combined with the hot pressing method and the reported laser oscillation.Li,et al[34]prepared Yb:CaF2by vacuum hot pressing and spark plasma sintering respectively.In 2015,Aballea,et al[35-36]reported the fabrication of Yb:CaF2transparent ceramics by sintering at moderate temperature in air and without any pressure assistance;moreover they demonstrated the laser operation of nano-powder based Yb:CaF2ceramics.In 2017,Kitajima,et al[37]studied Yb,La:CaF2transparent ceramics sintered by hot isostatic pressing (HIP) method.They reported the laser operation of the Yb3+- doped CaF2-LaF2ceramics with a maximum output power of 4.36 W and a maximum slope efficiency of 69.5%.

    In this study we report on the fabrication,spectroscopic investigation and laser behavior of a 5at%Yb:CaF2transparent ceramic obtained by vacuum sintering and hot pressing post-treatment.The nano-powders were synthesized by the co-precipitation method.Then the FT-IR spectrum,phase composition and morphology of these powders were measured.The microstructure and in-line transmittance of the samples were investigated.Meanwhile,the fundamental spectroscopic characteristics of 5at% Yb:CaF2transparent ceramics were systematically studied.Finally,we test the laser characteristic of the sample finding encouraging results.

    1 Experimental

    5at% Yb:CaF2nano-scale powders were synthesized by the co-precipitation method.Commercially available chemical reagent included hydrated calcium nitrate(99.90%,Sinopharm Chemical Reagent Co.,Ltd.,Shanghai,China),hydrated potassium fluoride (99.90%,Sinopharm Chemical Reagent Co.,Ltd.,Shanghai,China),Ytterbium oxide (99.99%,Alfa Aesar,USA).Ca(NO3)2solution and KF solution were prepared by dissolving hydrated calcium nitrate and hydrated potassium fluoride in deionized water,respectively.The Yb(NO3)3solution was obtained by dissolving Yb2O3powders in nitric acid at 80 ℃.Then the solutions were filtered to remove the undissolved particles and impurities with 0.3 μm aperture size filter paper.The solution of potassium fluoride was added to the mixed solution of calcium nitrate and yttrium nitrate using a peristaltic pump under magnetic stirring.Next,the obtained solution was aged for 12 h at room temperature.The suspension was washed and centrifuged with deionized water for several times.Subsequently,the washed suspension was dried at 70 ℃ for 48 h in an oven,and the dried powders were sieved through a 74-μm screen.Finally,5at% Yb:CaF2nanopowders were obtained.

    The synthesized nano-powders were dry-pressed in a 34 mm diameter die at 20 MPa,followed by cold isostatic pressing (CIP) at 250 MPa.The green body was sintered under vacuum at 600 ℃ for 1 h.Then,the presintered sample was hot pressed at 700 ℃ with 30 MPa pressure under vacuum.The obtained Yb:CaF2ceramic sample was polished into 1.5 mm for the further characterizations.

    The phase of the powders was determined by X-ray diffraction (XRD,Model D/max2200 PC,Rigaku,Japan)in the range of 2θbetween 10° and 80° using nickelfiltered Cu-Kα radiation.Fourier transform infrared spectroscopy (FT-IR) was performed on an infrared spectrometer (FT-IR,Bruker VERTEX 70 spectrophotometer,Ettlingen,Germany) using the standard KBr method in the range of 4000-400 cm-1.The specific surface area (SBET) of the powders was performed by Norcross ASAP 2010 Micromeritics with N2as the absorption gas at 77 K.The morphologies of powders and microstructures of the fracture surfaces of ceramics were observed by a scanning electron microscope (FESEM,SU8220,Hitachi,Japan).The absorption intensity and in-line transmittance of the transparent ceramics were measured by a UV-VIS-NIR spectrophotometer (Model Cray-5000,Varian,CA,USA).The emission spectrum excited by a 915 nm laser beam was measured by a low temperature absorption spectrometer (FLS980,Edinburgh Instruments,Edinburgh,UK) at room temperature.The decay curve of the ceramics was measured using a pulsed Ti:Sapphire laser at 900 nm for excitation,using the so-called pinhole method for the correction of the radiation trapping effects[38-39].The laser emission of 5at% Yb:CaF2transparent ceramics was tested in an end pumped cavity,using a fiber coupled diode laser as pumping source.

    2 Results and discussion

    Fig.1 shows the FT-IR spectrum of 5at% Yb:CaF2powders.The wide absorption band around 3420 cm-1is related to the stretching vibrations of OH-group.The band around 1644 cm-1corresponds to H-O-H bending mode.Nevertheless,the hygroscopic property of matrix material KBr must be taken into consideration when analyzing the information provided by OH-and H-O-H vibration band during the measurements,which affects the test results.The absorption peak at 2364 cm-1is caused by the adsorption of CO2in the air and provides no information as a consequence.The absorption peak at 1383 cm-1is due to NO3-elongation mode.An effective washing process can decrease absorbed nitrate content and impurity ions like K+ions in the powders.The residual nitrates and absorbed water in the powders are decomposed during pre-sintering process.

    Fig.2 shows the XRD pattern of 5at% Yb:CaF2powders.It can be seen that all diffraction peaks of the powders are well matched with those of the cubic CaF2phase(PDF# 35-0816) and no secondary phase can be detected.Meanwhile,all the peaks of the powders shift to a lower angle,which reveals that the lattice parameter increases.This occurs because Yb3+enters into the CaF2structure by substituting for a Ca2+and creating an extra F-for charge compensation;as a consequence,the charge repulsion between F-ions increases the lattice parameter.The grain size (DXRD) of the powders can be calculated by the Scherrer equation:

    whereβis the full width at half-maximum (FWHM) of a diffraction peak at Bragg angleθandλis the wavelength of CuKα radiation used in the measurements.The calculated average grain size of 5at% Yb:CaF2powders is 32 nm.

    Fig.3(a) shows the SEM micrograph of 5at% Yb:CaF2powders.It appears that the powders are well-distributed and slightly agglomerated.The shape of the small particles is close to cubic.The average particle size (DBET) is 45 nm,which is calculated from the following formula

    Fig.1 FT-IR spectrum of 5at% Yb:CaF2 powders

    Fig.2 XRD pattern of 5at% Yb:CaF2 powders

    Fig.3 SEM micrographs of 5at% Yb:CaF2 powders (a) and the fracture surface of 5at% Yb:CaF2 ceramics (b)

    where (ρ=3.473 g/cm3) is the theoretical density of the powders calculated from their lattice parameters.SBETis the specific surface area determined by BET measurement.Meanwhile,it can be found that the size of 5at%Yb:CaF2powders calculated by BET method is larger than the value calculated by the Scherrer equation,indicating the existence of weak agglomerates,which can be observed from SEM micrograph of the powders.

    Fig.3(b) shows the SEM micrograph of the fracture surface of 5at% Yb:CaF2transparent ceramics fabricated by vacuum pre-sintering at 600 ℃ for 1 h and hot pressing at 700 ℃ for 2 h.It reveals that the ceramics have an homogeneous structure and the average grain size is about 360 nm.The fracture mode is mainly transgranular.Moreover,it can be observed that some residual pores exist at the grain boundaries.It is known that these residual pores cause scattering loss in the transparent ceramics,which can decrease their optical quality.The work in future will focus on the complete elimination of the residual pores by HIP post-treatment.

    The in-line transmittance and the photograph of 5at%Yb:CaF2transparent ceramics are shown in Fig.4.As it can be seen in the inset of Fig.5,the size of ceramics is 16 mm×6.8 mm while the thickness is 1.5 mm.At a visual inspection,ceramics have good transparency and the letters on the underlying paper can be clearly recognized.

    According to Krell[40],without scattering or absorption losses,the theoretical maximum of transmission is 100%minus reflection on both surfaces of a window.At normal incidence,the reflectionR1on one surface is governed by the refractive indexnas:

    Fig.4 The in-line transmittance and the photograph of 5at%Yb:CaF2 transparent ceramics

    Fig.5 Absorption coefficient and emission spectra of 5at%Yb:CaF2 transparent ceramics at room temperature

    And the total reflection loss (including multiple reflection) is:

    Thus,the theoretical limit is:

    It is well known that the refractive index of CaF2single crystal decreases as the wavelength increases.At 1200 nm,the un-doped CaF2single crystal has a refractive index of 1.4277[41].Based on the above equation,the theoretical transmittance of CaF2single crystal is 93.97%at 1200 nm.The transmittance of 5at% Yb:CaF2transparent ceramics we have prepared reaches 92.0%,which is very close to the theoretical value.However,at the wavelength of 400 nm,the transmittance is 74.3%.The transmittance in visible range decreases rapidly,which can be attributed to the residual nanoscale pores in the ceramics.

    The room temperature absorption coefficient and emission spectrum of 5at% Yb:CaF2transparent ceramics are shown in Fig.5.The pump source used to excite the sample to measure the emission spectrum is a fibercoupled laser diode (LD) with center wavelength at 915 nm.It can be seen that the spectrum has broad absorption band.There are two main strong absorption peaks at 925 and 977 nm,corresponding to the transition from the ground state2F7/2to the excited state2F5/2of Yb3+ions.The absorption coefficient is calculated by the following equations:

    WhereTis the transmittance of the ceramics,αandbare the absorption coefficient and the thickness of the sample,respectively.At 977 nm,the absorption coefficient is 4.8 cm-1,which is suitable for pumping by high powder InGaAs laser diodes.The emission spectrum has a broad emission band,ranging from 960 nm to 1040 nm.The main emission peaks that can be seen are near 977,1010,1030 nm,which can be attributed to2F5/2→2F7/2transition of Yb3+ions.

    Fig.6 (a) shows the absorption cross section spectrum of 5at% Yb:CaF2transparent ceramics at room temperature.The absorption cross sectionσabscan be calculated by the following formula:

    Fig.6 Absorption cross section spectrum (a) and emission cross section spectrum (b) of 5at% Yb:CaF2 transparent ceramics at room temperature

    Whereαis the absorption coefficient calculated above;Nis the number of the doping ions per unit volume.The absorption cross section at 977 nm is calculated to 0.39×10-20cm2.

    The Fuchtbauer-Ladenburg equation was used to calculate the emission cross section,with the expression of the Eq.(9).

    Wherecis light speed:3.0×108m/s;λis wavelength;nis the refractive index;τradis upper level radiation lifetime:2.4 ms[42];I(λ) is fluorescence intensity at a certain wavelength in the fluorescence spectrum.The emission cross section spectrum of 5at% Yb:CaF2transparent ceramics is showed in Fig.6(b).The value of the emission cross section at the 1030 nm is 0.26 ×10-20cm2.

    The gain cross section of 5at% Yb:CaF2transparent ceramics was calculated by the formula:

    Whereβis particle inversion number.The gain cross section with differentβare reported in Fig.7.It can be observed that the gain cross-section curves show wide and flat shapes,which are very helpful to realize broadband tuning and ultra-short pulse laser output.

    For the measurement of the upper laser level lifetime,the sample was excited using a pulsed Ti:Sapphire laser emitting at 900 nm with a pulse duration of about 100 ns FWHM.To correct for radiation trapping effects,the fluorescence was excited and detected through a small pinhole placed in contact with the surface of the sample,following the method outlined in Ref.[38-39].Several pinholes with diameters from 1.1 mm to 200 μm were used,and the lifetime of the detected fluorescence was calculated by fitting the temporal decay with a single exponential function (Eq.(11)).

    Fig.7 The calculated gain cross section of 5at% Yb:CaF2 ceramics

    Fig.8 The fluorescence decay curve of 5at% Yb:CaF2 transparent ceramics at room temperature.The time constant τ of the fitting curve is 1.974 ms

    Fig.9 Experimental set-up

    WhereIandI0are the fluorescence intensities at the timetand 0.

    The actual lifetime was calculated as the extrapolation to null pinhole diameter of the decay times obtained with the different pinholes[38-39].The resulting value of the upper level lifetime was 1.95 ms.

    Fig.8 shows the room temperature fluorescence decay curve of 5at% Yb:CaF2transparent ceramics obtained with a pinhole with 200 μm diameter.The small deviation from a pure single exponential decay is due to radiation trapping effects[39].

    Finally,we tested the laser emission property of the sample.It was tested using the laser cavity layout shown in Fig.9.The cavity is end pumped.The sample used in the experiments had a thickness of 1.5 mm and it was welded by a sheet of indium on a copper heat-sink and cooled by water at 19 ℃.The sample was pumped by a fiber-coupled laser-diode which emits at 929.4 nm with a Gaussian pump intensity distribution in the region of the focal plane (i.e.waist radius around 65 μm at 1/e2,measured with a CCD camera),numerical aperture of the pump beam 0.22.The other elements of the cavity are EM:End-Mirror,dichroic (high transmission for the pump wavelength,high reflection for the laser wavelength);FM:Folding-Mirror (spherical,ROC 100 mm);OC:Flat Output Coupler mirror;M1 and M2:Power Meters,DM:Dichroic Mirror.The distance between EM and FM was 60 mm,while the distance between FM and OC was 270 mm.

    The sample was pumped in Quasi-CW mode (QCW),with rectangular pump pulses at 10 Hz of repetition rate with a Duty Factor of DF=20%,in order to limit the thermal load into the sample.As the samples had different thickness and thus different absorption,the maximum incident pump power was adjusted to have about the same pump absorption for both samples.The sample absorbed about 14% of the incident pump,under lasing conditions.The maximum absorbed pump power was about 5 W for the sample (peak value during the pump on period),corresponding to about 38 W of incident pump power for the sample (peak values under the pump on period).

    Several OC mirrors were used,with different values of transmission (fromToc=2% toToc=12%),to find the optimal output coupling transmission.

    The lasing wavelength was measured by means of a grating spectrometer equipped with a multichannel detector head,with a resolution of about 0.4 nm.

    The graph of Fig.10 shows the output power as a function of the absorbed pump power for the sample under test.The actual value of the absorbed pump power was assessed under lasing conditions,by means of the auxiliary power meter M2 shown in Fig.9.The reported values of the pump and of the output power correspond to the value during the “on” period of the pump.For the sample,and in all the output coupling conditions the free running lasing wavelength is about 1028.5 nm.In QCW pumping conditions the maximum output power is 0.9 W,corresponding to an optical to optical efficiencyηO=17.6%,obtained with a value ofToc=7.2%.The maximum value of the slope efficiency isηS=23.6% obtained withToc=12.4%.The main parameters of the laser emission are reported in Table 1.

    Fig.10 Laser output power vs.incident pump power for different values of the output coupler mirror transmission Toc

    Table 1 Main laser emission parameters with slope efficiency being calculated with respect to the absorbed pump power

    3 Conclusion

    In this work,5at% Yb:CaF2transparent ceramics were successfully fabricated by vacuum sintering at 600 ℃ for 1 h and hot pressing post-treatment at 700 ℃ for 2 h from powders synthesized by the co-precipitation method.An effective washing process is necessary to remove some impurity ions in the powders.The used powders are pure cubic phase without secondary phase.The grain size of the powders is calculated to be 32 nm and the powders are agglomerated slightly.5at% Yb:CaF2transparent ceramics have the homogeneous microstructure and the average grain size is about 360 nm.The in-line transmittance of the sample with the thickness of 1.5 mm reaches 92.0% at the wavelength of 1200 nm,which is close to the theoretical value.Furthermore,5at%Yb:CaF2transparent ceramics have broad absorption and emission band.The strongest absorption and emission peaks are both at 977 nm.Meanwhile,the absorption cross section at 977 nm and the emission cross section at the 1030 nm of the ceramics are 0.39×10-20and 0.26×10-20cm2,respectively.The lifetime of the5F5/2level of the Yb3+is 1.95 ms.In the laser experiment,the maximum slope efficiency of 23.6% and the maximum output power of 0.9 W under QCW pump conditions were obtained from the ceramics.

    婷婷色麻豆天堂久久| 2021少妇久久久久久久久久久| 国产精品 国内视频| 99久久人妻综合| 久久国产精品影院| 老熟女久久久| 欧美激情高清一区二区三区| 国产精品麻豆人妻色哟哟久久| 国产精品99久久99久久久不卡| 91精品伊人久久大香线蕉| 黄色片一级片一级黄色片| 亚洲人成电影观看| 美女脱内裤让男人舔精品视频| 精品一区二区三卡| 国产深夜福利视频在线观看| 手机成人av网站| 啦啦啦中文免费视频观看日本| 男女边摸边吃奶| 狠狠婷婷综合久久久久久88av| 一本一本久久a久久精品综合妖精| 国产精品久久久久久精品古装| 婷婷色综合www| 可以免费在线观看a视频的电影网站| 国产精品国产三级专区第一集| 亚洲国产精品999| 亚洲精品一区蜜桃| 九色亚洲精品在线播放| 欧美日韩亚洲国产一区二区在线观看 | 亚洲 国产 在线| 好男人视频免费观看在线| 9色porny在线观看| 日本一区二区免费在线视频| 欧美日韩成人在线一区二区| 最黄视频免费看| 老司机午夜十八禁免费视频| 亚洲精品乱久久久久久| 50天的宝宝边吃奶边哭怎么回事| 无限看片的www在线观看| 老司机在亚洲福利影院| 丰满少妇做爰视频| 色综合欧美亚洲国产小说| 国产亚洲午夜精品一区二区久久| 国产麻豆69| √禁漫天堂资源中文www| 男女国产视频网站| 日日爽夜夜爽网站| 日日摸夜夜添夜夜爱| xxxhd国产人妻xxx| 欧美性长视频在线观看| 热99国产精品久久久久久7| 黄网站色视频无遮挡免费观看| 18禁观看日本| 精品视频人人做人人爽| tube8黄色片| 久久久久国产精品人妻一区二区| 国产精品久久久久久精品电影小说| 婷婷色综合大香蕉| 91精品国产国语对白视频| 99精品久久久久人妻精品| 精品福利永久在线观看| 真人做人爱边吃奶动态| 人体艺术视频欧美日本| 男女床上黄色一级片免费看| 在线精品无人区一区二区三| 99热全是精品| 夫妻午夜视频| 午夜久久久在线观看| 一级毛片女人18水好多 | 热99久久久久精品小说推荐| 中文字幕人妻丝袜制服| 亚洲精品久久久久久婷婷小说| 成人三级做爰电影| 国产免费现黄频在线看| 亚洲av国产av综合av卡| 日韩大片免费观看网站| 国产精品一区二区免费欧美 | 五月天丁香电影| 欧美+亚洲+日韩+国产| 国产主播在线观看一区二区 | 国精品久久久久久国模美| 久久国产精品人妻蜜桃| 99久久精品国产亚洲精品| 中文精品一卡2卡3卡4更新| 欧美国产精品一级二级三级| 久久久久国产一级毛片高清牌| 少妇的丰满在线观看| 又粗又硬又长又爽又黄的视频| av网站在线播放免费| 日本猛色少妇xxxxx猛交久久| 香蕉国产在线看| 国产熟女欧美一区二区| 亚洲av日韩在线播放| 欧美精品人与动牲交sv欧美| 麻豆av在线久日| 欧美日韩综合久久久久久| 久久人妻福利社区极品人妻图片 | 亚洲av男天堂| 亚洲免费av在线视频| 精品国产乱码久久久久久小说| 人人妻人人澡人人看| 一级毛片 在线播放| 欧美黄色淫秽网站| 在线av久久热| 免费不卡黄色视频| 精品久久久久久电影网| 日韩制服骚丝袜av| 欧美日韩视频精品一区| 日韩一本色道免费dvd| 纵有疾风起免费观看全集完整版| 精品国产一区二区三区久久久樱花| 久久久精品免费免费高清| 日韩欧美一区视频在线观看| 极品少妇高潮喷水抽搐| 十八禁高潮呻吟视频| 三上悠亚av全集在线观看| 国产成人欧美| 蜜桃国产av成人99| 亚洲av综合色区一区| 亚洲三区欧美一区| 亚洲专区国产一区二区| 97人妻天天添夜夜摸| 国产精品久久久久成人av| 一区二区三区四区激情视频| bbb黄色大片| 日本色播在线视频| 国产在线免费精品| 免费黄频网站在线观看国产| 中文字幕精品免费在线观看视频| 人妻人人澡人人爽人人| 最近手机中文字幕大全| 亚洲欧美清纯卡通| 一二三四在线观看免费中文在| 久久 成人 亚洲| 久久99热这里只频精品6学生| 亚洲 欧美一区二区三区| 高潮久久久久久久久久久不卡| 国产成人av激情在线播放| 午夜久久久在线观看| 国产男女内射视频| 久久久国产一区二区| 各种免费的搞黄视频| 亚洲国产欧美在线一区| 婷婷丁香在线五月| 国产一区二区在线观看av| 两人在一起打扑克的视频| 两人在一起打扑克的视频| 操美女的视频在线观看| 国产熟女午夜一区二区三区| 国产熟女午夜一区二区三区| 久久久久视频综合| 熟女少妇亚洲综合色aaa.| 欧美少妇被猛烈插入视频| 777米奇影视久久| 2018国产大陆天天弄谢| 欧美另类一区| 丰满迷人的少妇在线观看| 亚洲欧美色中文字幕在线| 免费在线观看视频国产中文字幕亚洲 | 999精品在线视频| 国产一级毛片在线| av天堂在线播放| 久热这里只有精品99| 1024香蕉在线观看| 老汉色av国产亚洲站长工具| 精品国产乱码久久久久久男人| 人体艺术视频欧美日本| 黄色一级大片看看| 久久女婷五月综合色啪小说| 午夜福利免费观看在线| 欧美激情高清一区二区三区| 久久久久久久久久久久大奶| 免费高清在线观看日韩| 少妇裸体淫交视频免费看高清 | 日日摸夜夜添夜夜爱| 91精品伊人久久大香线蕉| 国产av国产精品国产| 亚洲av片天天在线观看| 人妻人人澡人人爽人人| 咕卡用的链子| 无限看片的www在线观看| a 毛片基地| 国产精品久久久久久精品古装| 丝瓜视频免费看黄片| 国产真人三级小视频在线观看| 久久精品熟女亚洲av麻豆精品| 国产午夜精品一二区理论片| 国产欧美日韩精品亚洲av| 19禁男女啪啪无遮挡网站| 亚洲av日韩精品久久久久久密 | 日本黄色日本黄色录像| 国产高清不卡午夜福利| 日韩大码丰满熟妇| 久久久精品国产亚洲av高清涩受| 亚洲成国产人片在线观看| 高清av免费在线| 亚洲国产中文字幕在线视频| 久久ye,这里只有精品| 国精品久久久久久国模美| av在线播放精品| 脱女人内裤的视频| 国产男人的电影天堂91| 欧美日韩亚洲国产一区二区在线观看 | 国产片特级美女逼逼视频| 亚洲精品中文字幕在线视频| 曰老女人黄片| 好男人电影高清在线观看| 久久精品熟女亚洲av麻豆精品| 欧美在线黄色| 精品人妻在线不人妻| 久久天堂一区二区三区四区| 午夜福利,免费看| 久久女婷五月综合色啪小说| 一级,二级,三级黄色视频| 18禁裸乳无遮挡动漫免费视频| 久久ye,这里只有精品| 免费一级毛片在线播放高清视频 | 国产成人啪精品午夜网站| 免费久久久久久久精品成人欧美视频| www.熟女人妻精品国产| 校园人妻丝袜中文字幕| 黄色视频在线播放观看不卡| 精品人妻一区二区三区麻豆| 一区二区日韩欧美中文字幕| 国产精品.久久久| cao死你这个sao货| 亚洲天堂av无毛| 777米奇影视久久| 免费av中文字幕在线| 啦啦啦视频在线资源免费观看| 色播在线永久视频| 欧美日韩亚洲高清精品| av天堂在线播放| 亚洲第一av免费看| 免费观看人在逋| 少妇人妻久久综合中文| svipshipincom国产片| 久久青草综合色| 精品国产超薄肉色丝袜足j| 国产又色又爽无遮挡免| 国产av精品麻豆| 亚洲欧美精品自产自拍| 欧美日韩成人在线一区二区| 色婷婷av一区二区三区视频| 欧美日韩视频高清一区二区三区二| 老司机亚洲免费影院| 999精品在线视频| 超碰97精品在线观看| 亚洲三区欧美一区| 精品国产一区二区三区四区第35| 大话2 男鬼变身卡| 母亲3免费完整高清在线观看| 大香蕉久久成人网| 婷婷色综合大香蕉| 精品欧美一区二区三区在线| 亚洲 欧美一区二区三区| 亚洲一区中文字幕在线| 亚洲专区中文字幕在线| 18禁国产床啪视频网站| 色精品久久人妻99蜜桃| 亚洲国产欧美在线一区| 2021少妇久久久久久久久久久| 亚洲专区中文字幕在线| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 一级毛片 在线播放| 精品少妇久久久久久888优播| 建设人人有责人人尽责人人享有的| 久热这里只有精品99| 交换朋友夫妻互换小说| 国产成人av教育| 人人澡人人妻人| 国产老妇伦熟女老妇高清| 午夜免费成人在线视频| 男女床上黄色一级片免费看| 中国美女看黄片| 啦啦啦在线观看免费高清www| 丝袜美足系列| 欧美亚洲日本最大视频资源| 午夜免费男女啪啪视频观看| 99精国产麻豆久久婷婷| 后天国语完整版免费观看| 一级片'在线观看视频| 美国免费a级毛片| 每晚都被弄得嗷嗷叫到高潮| 国产伦理片在线播放av一区| 免费高清在线观看视频在线观看| 热re99久久国产66热| 亚洲少妇的诱惑av| 亚洲av日韩在线播放| 国产男女内射视频| a 毛片基地| 久久亚洲精品不卡| 嫁个100分男人电影在线观看 | 999久久久国产精品视频| 国产成人精品在线电影| 国产成人免费观看mmmm| 国产精品熟女久久久久浪| av线在线观看网站| 精品国产一区二区三区久久久樱花| 中文字幕色久视频| 亚洲一区中文字幕在线| 一区二区日韩欧美中文字幕| 丝袜人妻中文字幕| 久久影院123| 水蜜桃什么品种好| 午夜免费男女啪啪视频观看| 最近中文字幕2019免费版| 1024视频免费在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲情色 制服丝袜| 日韩一区二区三区影片| 亚洲男人天堂网一区| 99热国产这里只有精品6| 欧美 亚洲 国产 日韩一| 日韩电影二区| 久久精品成人免费网站| 国产人伦9x9x在线观看| 妹子高潮喷水视频| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 丰满人妻熟妇乱又伦精品不卡| 每晚都被弄得嗷嗷叫到高潮| 天堂中文最新版在线下载| 色视频在线一区二区三区| av在线老鸭窝| 大香蕉久久成人网| av电影中文网址| 欧美黄色片欧美黄色片| 18禁裸乳无遮挡动漫免费视频| 午夜两性在线视频| 最近中文字幕2019免费版| 99热网站在线观看| 咕卡用的链子| 国产xxxxx性猛交| 99国产精品一区二区蜜桃av | 制服人妻中文乱码| 久久久久久久大尺度免费视频| 成人亚洲精品一区在线观看| 午夜老司机福利片| 99久久99久久久精品蜜桃| 亚洲精品一区蜜桃| 丝袜美腿诱惑在线| 亚洲伊人久久精品综合| 日本欧美国产在线视频| 尾随美女入室| 日韩一卡2卡3卡4卡2021年| 一级a爱视频在线免费观看| 91麻豆精品激情在线观看国产 | 亚洲午夜精品一区,二区,三区| 日韩欧美一区视频在线观看| 免费人妻精品一区二区三区视频| 50天的宝宝边吃奶边哭怎么回事| 国产一级毛片在线| 天天添夜夜摸| www.熟女人妻精品国产| 欧美亚洲日本最大视频资源| videosex国产| 激情五月婷婷亚洲| 国产日韩欧美亚洲二区| 在线看a的网站| 欧美日韩视频高清一区二区三区二| 欧美 日韩 精品 国产| 亚洲国产日韩一区二区| 精品久久久久久电影网| 免费日韩欧美在线观看| 18禁国产床啪视频网站| 最黄视频免费看| 国产在视频线精品| 午夜福利乱码中文字幕| 老鸭窝网址在线观看| 精品一区在线观看国产| 另类精品久久| 美女高潮到喷水免费观看| 欧美日韩福利视频一区二区| 久久精品久久精品一区二区三区| 好男人电影高清在线观看| avwww免费| 欧美日韩综合久久久久久| 日韩大片免费观看网站| 精品久久久精品久久久| 无遮挡黄片免费观看| 久久精品国产亚洲av高清一级| 美女扒开内裤让男人捅视频| 欧美精品亚洲一区二区| 黄色一级大片看看| 少妇人妻久久综合中文| 美国免费a级毛片| 国产淫语在线视频| 又大又爽又粗| 黄色毛片三级朝国网站| 亚洲精品第二区| 亚洲男人天堂网一区| 国产精品一国产av| 亚洲精品国产av成人精品| 日韩电影二区| 免费观看a级毛片全部| 亚洲av片天天在线观看| 久久国产精品男人的天堂亚洲| 大型av网站在线播放| 久久青草综合色| 精品人妻1区二区| 亚洲av日韩在线播放| 熟女少妇亚洲综合色aaa.| 侵犯人妻中文字幕一二三四区| 亚洲第一青青草原| 99热国产这里只有精品6| av电影中文网址| 国产又爽黄色视频| 日韩av在线免费看完整版不卡| 亚洲情色 制服丝袜| 欧美亚洲日本最大视频资源| videosex国产| 中文字幕色久视频| 一二三四在线观看免费中文在| 成年动漫av网址| 亚洲人成电影观看| 美女福利国产在线| 成年动漫av网址| 一区在线观看完整版| 丝袜美足系列| 美女中出高潮动态图| 只有这里有精品99| 亚洲国产欧美网| 成年动漫av网址| 大香蕉久久成人网| 91精品国产国语对白视频| 午夜免费成人在线视频| 日韩av在线免费看完整版不卡| 少妇猛男粗大的猛烈进出视频| 欧美+亚洲+日韩+国产| 亚洲av日韩在线播放| 制服人妻中文乱码| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 永久免费av网站大全| 亚洲国产精品一区三区| 久久久久久免费高清国产稀缺| 亚洲av电影在线进入| 亚洲熟女精品中文字幕| 精品一区二区三区av网在线观看 | 日韩制服骚丝袜av| 久久久久网色| 亚洲国产精品999| 国产成人av教育| 国产精品一区二区精品视频观看| 19禁男女啪啪无遮挡网站| 在线av久久热| 丰满饥渴人妻一区二区三| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| 九色亚洲精品在线播放| 老汉色av国产亚洲站长工具| 亚洲av男天堂| 秋霞在线观看毛片| 成人亚洲精品一区在线观看| 99久久精品国产亚洲精品| 一级a爱视频在线免费观看| 国产在线视频一区二区| 欧美激情高清一区二区三区| 91精品三级在线观看| 老司机午夜十八禁免费视频| 少妇 在线观看| 99国产综合亚洲精品| 激情五月婷婷亚洲| 在线观看人妻少妇| 99香蕉大伊视频| 午夜激情av网站| 成在线人永久免费视频| 国产高清国产精品国产三级| 国产成人系列免费观看| 男人操女人黄网站| 亚洲一区中文字幕在线| 久久国产精品大桥未久av| 欧美久久黑人一区二区| 午夜福利一区二区在线看| 日韩中文字幕视频在线看片| 男女午夜视频在线观看| 精品国产一区二区久久| 免费看av在线观看网站| 又大又爽又粗| 久热爱精品视频在线9| 麻豆av在线久日| 一级黄片播放器| cao死你这个sao货| av电影中文网址| 精品国产一区二区三区久久久樱花| 中文字幕av电影在线播放| 两个人免费观看高清视频| 女人精品久久久久毛片| 狠狠精品人妻久久久久久综合| 日韩av不卡免费在线播放| 久久精品亚洲熟妇少妇任你| 国产欧美亚洲国产| 制服人妻中文乱码| 久久国产精品男人的天堂亚洲| 一区二区av电影网| 老汉色∧v一级毛片| 亚洲激情五月婷婷啪啪| 女人爽到高潮嗷嗷叫在线视频| 深夜精品福利| 久久久国产一区二区| 少妇精品久久久久久久| 久久性视频一级片| 亚洲中文字幕日韩| 日韩av在线免费看完整版不卡| 国产片特级美女逼逼视频| 国产有黄有色有爽视频| 啦啦啦在线免费观看视频4| 成人午夜精彩视频在线观看| 99久久精品国产亚洲精品| 久久人人97超碰香蕉20202| 亚洲色图 男人天堂 中文字幕| 中文乱码字字幕精品一区二区三区| 免费高清在线观看日韩| 黄色视频不卡| 久久久精品94久久精品| 成年动漫av网址| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 色精品久久人妻99蜜桃| 高清欧美精品videossex| 美女高潮到喷水免费观看| 黄色怎么调成土黄色| 两个人免费观看高清视频| 熟女少妇亚洲综合色aaa.| 丝袜喷水一区| 性少妇av在线| 国产成人欧美| 亚洲人成电影观看| 九色亚洲精品在线播放| 国产伦人伦偷精品视频| 91九色精品人成在线观看| 日本黄色日本黄色录像| 国产亚洲午夜精品一区二区久久| 日本91视频免费播放| 老司机午夜十八禁免费视频| 国产深夜福利视频在线观看| 后天国语完整版免费观看| 秋霞在线观看毛片| 精品免费久久久久久久清纯 | 欧美日韩视频精品一区| 一二三四在线观看免费中文在| 国产女主播在线喷水免费视频网站| 久久精品亚洲熟妇少妇任你| 国产av精品麻豆| 热re99久久国产66热| 国产三级黄色录像| 精品一区二区三区av网在线观看 | 亚洲av电影在线进入| 精品高清国产在线一区| 99re6热这里在线精品视频| 精品一区在线观看国产| h视频一区二区三区| 操美女的视频在线观看| 蜜桃国产av成人99| 只有这里有精品99| 女性被躁到高潮视频| 黄频高清免费视频| 国产成人精品久久二区二区免费| 国产在线视频一区二区| 黄色毛片三级朝国网站| 成年人免费黄色播放视频| 免费在线观看日本一区| 久久av网站| 久久ye,这里只有精品| 日韩欧美一区视频在线观看| 国产激情久久老熟女| 在线观看免费视频网站a站| xxx大片免费视频| av在线老鸭窝| 亚洲精品乱久久久久久| 精品亚洲成a人片在线观看| 久久久久久亚洲精品国产蜜桃av| 国产日韩欧美亚洲二区| 免费不卡黄色视频| 午夜免费成人在线视频| 午夜老司机福利片| 国产爽快片一区二区三区| 亚洲人成电影免费在线| 三上悠亚av全集在线观看| 美女主播在线视频| 国产一级毛片在线| 国产国语露脸激情在线看| 亚洲欧美激情在线| 久久性视频一级片| 免费在线观看影片大全网站 | 日韩大片免费观看网站| 女人高潮潮喷娇喘18禁视频| 久久久久久亚洲精品国产蜜桃av| 老熟女久久久| 视频区图区小说| 乱人伦中国视频| 一级毛片 在线播放| 久久久国产欧美日韩av| 中文字幕色久视频| 久久精品熟女亚洲av麻豆精品| 国产男女内射视频| 亚洲人成网站在线观看播放| 搡老乐熟女国产| 亚洲久久久国产精品| 看免费av毛片| 日韩熟女老妇一区二区性免费视频| 91九色精品人成在线观看| videosex国产| 中文字幕精品免费在线观看视频| cao死你这个sao货| 精品国产超薄肉色丝袜足j| 欧美人与性动交α欧美精品济南到| 三上悠亚av全集在线观看| 日本wwww免费看| 无遮挡黄片免费观看| 啦啦啦在线观看免费高清www| 搡老岳熟女国产|