• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Fine AlN Powders by Foamed Precursor-assisted Carbothermal Reduction-nitridation Method

    2019-12-24 09:25:52MAOXiXiXUYongGangMAOXiaoJianZHANGHaiLongLIJunWANGShiWei
    無機(jī)材料學(xué)報(bào) 2019年10期
    關(guān)鍵詞:鋁粉氮化硅酸鹽

    MAO Xi-Xi, XU Yong-Gang, MAO Xiao-Jian, ZHANG Hai-Long, LI Jun, WANG Shi-Wei

    Synthesis of Fine AlN Powders by Foamed Precursor-assisted Carbothermal Reduction-nitridation Method

    MAO Xi-Xi1,2,3, XU Yong-Gang1,2,3, MAO Xiao-Jian1,2, ZHANG Hai-Long2, LI Jun1, WANG Shi-Wei1,2

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. CAS Key Laboratory of Transparent and Opto-functional Advanced Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)

    A modified carbothermal reduction-nitridation (CRN) method was proposed to synthesize fine AlN particles using-Al2O3and sucrose as raw materials which were pre-treated as cellular foams. The reaction procedure and the produced AlN were investigated by XRD, SEM and TEM. XRD result suggests that-Al2O3transferred into AlN without transformation into-Al2O3. HRTEM shows that-Al2O3particles are covered by amorphous carbon from sucrose inhibiting the transformation of-Al2O3from-Al2O3in the synthesis procedure. The foamed structure is of benefit to the diffusion of N2and the produced CO. The minimum reaction temperature is 1450 ℃ for full conversion of Al2O3to AlN. SEM photographs show the particle size of synthesized AlN is 50 nm. This study demonstrated an efficient way to synthesize fine AlN powders which are urgently required for the manufacture of advanced AlN ceramics.

    aluminum nitride; foams; particles; synthesis

    Aluminum nitride (AlN) is one of the most important advanced ceramics and an ideal substrate material for semiconductor package because of the remarkably high thermal conductivity, low dielectric constant, high elec-trical resistivity, high mechanical strength, and low the-rmal expansion coefficient that matches well with sili-con[1-4]. As well known, the property of the advanced cer-amics are critically influenced by the characterization of raw powders. The manufacture of advanced AlN ceram-ics is the same case. It is still a challenge to fabricate high quality AlN powders with efficient sintering activity. Presently, the most practical method to synthesize AlN ceramic powders is the carbothermal reduction-nitridation (CRN) of Al2O3[5]. Compared with direct nitridation from aluminum[6], the CRN process is more appropriate to synthesize AlN powder, since it produces powders with high purity, high uniformity, high yield and low cost[7-10]. However, the CRN process requires high synthesis temperature[11], which leads to particle growth and agglutination. Furthermore, it is important to mix carbon and alumina particles in a very small scale, because the CRN reaction is the reaction involved two solid phases. Otherwise, much higher temperature and longer time are necessary in order to convert all Al2O3into AlN[12-14].

    In order to decrease the synthesis temperature and time, much attention was attracted on using fine alumina and carbon particles or precursors. For example,-Al2O3[15], Al(OH)3[16], and-AlOOH[16]were used instead of-Al2O3. And nano-sized carbon particle was used to replace graphite particles. However, their effects are very limited in the respect of synthesis temperature and particle size. Other research work focused on applying soluble precursors which may transform into alumina and carbon afterwards. The idea is that the mixture of solution could reach atom level, compared with the mixture of solid particles. Mylinh,[17]prepared AlN particles using phenol resin as precursor at a temperature above 1700 ℃. Baik,[18]employed sucrose as carbon source and converted Al2O3fully to AlN at 1600 ℃. Chu,[19]prepared Al/C precursor by combustion synthesis using a mixed solution of aluminum nitrate, glucose, and urea, which was then nitrided into pure AlN at 1500 ℃. Jung,[20]obtained AlN particles by calcining basic dicarboxylate Al(III) complexes under flowing nitrogen at 1450 ℃ for 15 h. These efforts focused on reactants, but didn’t effectively decrease the synthesis temperature. The reason is that it is difficult for nitrogen to diffuse into the interior of the reactant through the gap between the sub-micron particles, as well as for CO escaping as by-product. Besides, the using of aluminum organics lead to much higher cost which will, of course, restrict the application of obtained AlN powders.

    To accelerate the reaction, the diffusion of N2into the interphase draws our attention. Recently, we employed a slurry foaming method, which is normally used to make ceramic foams[21-22], to prepare porous-Al2O3/carbon foam, where plenty of connected pores act as channels for N2transportation during the following CRN procedure[23]. In this method, Al2O3starts to transfer to AlN at 1400 ℃, and is completely converted at 1550 ℃ for only 2 h.

    In the present work, we combined the foaming tech-nology with sucrose as carbon source to ensure all-Al2O3particles are covered by the resulting carbon. Excessive sucrose was used in order to form residual carbon to avoid the particle growth and agglutination of AlN powders. The effects of reaction temperature and sucrose/Al2O3ratio on the nitridation rate and morphology of AlN powder were investigated.

    1 Experimental

    Commercial-Al2O3with the average particle size of 13 nm (purity 99.99%, specific surface area 120 m2/g, Dalian Hiland Photoelectric Material Co., Dalian, China), and sucrose (C12H22O11, purity 99.5%; Sinopharm Che-mical Reagent Co., Ltd., Shanghai, China) were used as starting raw materials. The weight ratio of sucrose to alumina was 2.0. The corresponding carbon addition is 1.2 times of that required for the reduction of alumina. The existence of excess carbon, which originally covered on alumina particles, is expected to separate the formed AlN particles to avoid the agglutination. The forming procedure was described elsewhere[23]. Sucrose,-Al2O3, and copolymers of isobuthylene and maletic anhydride[24-25](Isobam104# and Isobam600AF, Kuraray; Osaka, Japan) were dispersed in deionized water. Then, Emal TD (triethanolamine laurylsulfate, with 40% active content, Kao Chemical Co., Tokyo, Japan) was added into the mixed slurries, which were then vigorously stirred for 3 min to generate foams. After gelation and drying, the sucrose/Al2O3precursor foams were pyrolysed for 1 h at 1000 ℃ with a heating rate of 10 ℃/min in flowing N2in a graphite furnace (High-Multi 10000, Fujidempa Kogyo Co., Tokyo, Japan). Following CRN reaction was carried out at 1250–1600 ℃ for 2 h. After synthesis, residual carbon in the nitridation product was removed by firing at 650 ℃ in air for 6 h.

    The crystalline phase of the synthesized products was examined by X-ray diffraction (XRD, D8-Advance A25, Bruker Co., Karlsruhe, Germany) with Cu Kα radiation and a scan speed of 0.1 (°)/s. The AlN conversion fraction was determined on the basis of the relatively peak intensity of the AlN phase in XRD patterns. The morphologies of the products were observed by scanning electron microscopy (SEM, Hitachi, S-4800, Tokyo, Ja-pan). A field-emission transmission electron microscope (TEM, JEM-2100F, JEOL, Japan) was used for high resolution transmission electron microscopy (HRTEM). Differential thermal analysis/thermo gravimetric analysis of sucrose was studied in N2using a thermal analyzer (TG/DTA, Netzsch, STA449C, Germany). The oxygen content of the resultant AlN powder was measured by Oxygen-Azote mensuration equipment (TC600C, Leco Co., Chicago, America).

    2 Results and discussions

    In order to confirm the carbonization of sucrose, the TG/DTA curves of sucrose pyrolysis procedure from room temperature to 1000 ℃ in N2atmosphere is presented in Fig. 1. Two endothermic peaks take place at 172.9 and 219.4 ℃, revealing the carbonization of sucrose with a carbon yield of 21.41wt% according to the TG curve. The corresponding carbon addition is about 1.2 times of that required for the reduction of alumina, which agrees well with the design.

    The SEM images of the foam heated at 1000 ℃ in N2are shown in Fig. 2(a). The pyrolysis foam sustains the cellular structure of the precursor foam, where large number of spherical cells and interconnected windows act as the transportation channels for N2and the by- product CO. Fig. 2(b) shows the microstructure of the produced foam after CRN reaction at 1550℃. It could be observed that the struts and walls of the cells become loose with more interconnected windows.

    Fig. 3 shows X-ray diffraction patterns of the products from the foam with sucrose/Al2O3ratio of 2.0. It can be clearly seen that only-Al2O3phase is detected in the sample heated at 1300 ℃, which implies that the produced carbon is amorphous and the nitridation reaction did not occurr at this temperature. The diffraction peaks of AlN start appearing at 1350 ℃, and become stronger as the heating temperature increases. When the heating temperature is higher than 1450 ℃, only AlN diffraction peaks are detected, which infers that all alumina is transferred to AlN. It is notable that in the temperature range of 1300–1400 ℃, the unreacted alumina exists as-Al2O3instead of-Al2O3. It suggests that in the present case-Al2O3is transferred into AlN without any transformation into-Al2O3. However, in our previous work where nano-sized carbon black was used, all-Al2O3was changed to-Al2O3at 1300 ℃, which is consistent with the thermal stability of-Al2O3in literature that-Al2O3is transferred to-Al2O3at around 1200 ℃[26]. This phenomenon probably originates from the C/-Al2O3core shell structure.

    Fig. 1 DTA and TG analysis of sucrose pyrolysis procedure from room temperature to 1000℃ in N2 atmosphere

    Fig. 2 SEM images of the foam heated at (a) 1000 and (b) 1550 ℃ with sucrose/Al2O3 ratio of 2.0

    Fig. 3 XRD patterns of the sucrose/Al2O3 powders synthesized at different temperatures

    Fig. 4 shows morphologies of the corresponding particles synthesized at different temperatures. Fig. 4(a) is the microstructure of products after pyrolysis where the CRN reaction didn’t happen yet as indicated by the XRD results in Fig. 3. There are shuttle-like dark particles which are surrounded by the gray carbon decomposed from sucrose. The dark particles should be-Al2O3which remains until 1300 ℃ as shown in Fig. 3. In Fig. 4(b), however, it can be found that the dark particles have spherical shape with a diameter about 20 nm. The change of particle morphology relates to the transformation of Al2O3to AlN, which is confirmed by XRD results. As the synthesis temperature increases to 1450 and 1550 ℃, the diameters of the spherical particles increase to about 50 and 200 nm, as shown in Fig. 4(c, d). It is noted that the AlN particles are separated by the residual carbon, which could avoid the growth of AlN, because carbon are very stable in the synthesis temperature range.

    Fig. 4 TEM images of particles heated at different temperatures

    (a) 1250 ℃; (b) 1350 ℃; (c) 1450 ℃; (d) 1550 ℃

    The HRTEM image of the particles after pyrolysis at 1250 ℃ is shown in Fig. 5(a) with a selective electron diffraction spot pattern indicated in Fig. 5(b). The periodic lattice in Fig. 5(a) has a periodic distance of 0.458 nm, which is proximate to the interplanar distance of {111} plane of-Al2O3. The diffraction spots in Fig. 5(b) is consistent with the diffraction pattern of the-Al2O3phase along the [011] zone axis, with spots corresponding to crystal plane {111} and {400}. It is obvious that the inside dark particles are-Al2O3, which is consistent with the XRD results (Fig. 3). The-Al2O3particles are covered by amorphous carbon with the boundary appearing a quasi-ordered structure, with an interplanar distance thickness of 0.395 nm. The boundary layer is considered as the critical factor for the existence of-Al2O3at high temperature. Confined by the boundary layer, the growth of-Al2O3is prevented even the temperature is over 1200 ℃. Hence, the nucleation of-Al2O3becomes difficult. Another reason might be attributed to the surface energy barrier from the interlayer.

    Fig. 5 (a) HRTEM image of particles synthesized at 1250 ℃ and (b) selective electron diffraction pattern

    The formation of AlN is directly from-Al2O3in the present study, which has much larger specific surface area than that of-Al2O3. Compared with our previous study[23], this transformation procedure is beneficial to the CRN reaction. Fig. 6 shows the microstructures of the AlN particles synthesized at different temperatures after de-carbon calcination. The particle size increases from about 50 nm to 200 nm as the reaction temperature raises from 1450 ℃ to 1600 ℃, which are much smaller than that reported in previous study[23], where the average AlN particles size is 300 nm when synthesized at 1450 ℃.

    In an early study where sucrose was also used as carbon source[18], the minimum reaction temperature for full conversion of Al2O3to AlN is 1600 ℃, even a fine and reactive precursor boehmite was used. The high reaction temperature results in agglutination of the produced AlN particles. The lower minimum full conversion temperature at 1450 ℃ in our study, which could be attributed to porous structure of foamed precursor, is the key to gain fine particle size. The interconnected channels make it possible that the rapid diffusion of N2and easy removal of produced CO, eliminating the screening effect of CO[11]. Considering the chemical reaction formula of the CRN, lower pressure of CO corresponds to lower energy barrier for the AlN formation and thus higher reaction rate[27].

    Fig. 6 SEM photographs of the AlN powders synthesized at different temperatures for 2 h

    (a) 1450 ℃; (b) 1500 ℃; (c) 1550 ℃; (d) 1600 ℃

    Table 1 Nitrogen and oxygen content of AlN powders with various sucrose/Al2O3 ratios and synthesizing at 1550℃

    The nitrogen and oxygen content of the AlN powder synthesized at 1550 ℃ with different sucrose/Al2O3weight ratio are also investigated and are listed in Table 1. An increase of nitrogen from 29.3wt% to 30.2wt% can be seen with the oxygen decreasing from 2.4wt% to 1.6wt% when sucrose/Al2O3weight ratio increases from 2.0 to 3.0. Taken the low cost and non-pollution of sucroseand the simple starting materials mixing process into consideration, the current modified CRN process shows great potential for a convenient and efficient method to fabricated AlN powder.

    3 Conclusions

    AlN powders were synthesized by the novel sucrose/-Al2O3foam assisted CRN method. The inter-connected channels in the foam structure facilities N2and CO diffusion and supplies larger effective reaction area. The-Al2O3particles, covered by the pyrolytic carbon from sucrose, convert directly to AlN without the appearance of-Al2O3. The residual carbon from extra sucrose can effectively avoid the growth of AlN particles. Size controllable AlN particles from 50 nm to 200 nm can be obtained by correspondingly varying the synthesis temperature from 1450 ℃ to 1600 ℃.

    [1] TAYLOR K M, LENIE CAMILLE. Some properties of aluminum nitride., 1960, 107(4): 308–314.

    [2] VIRKAR ANIL-V, JACKSON T-BARRETT, CUTLER RAYMOND-A. Thermodynamic and kinetic effects of oxygen removal on the thermal-conductivity of aluminum nitride., 1989, 72(11): 2031–2042.

    [3] BAIK Y, DREW R A W, Aluminum nitride: processing and applications., 1996, 122: 553–570.

    [4] JACKSON T-BARRETT, VIRKAR ANIL-V, MORE KARREN-L,High-thermal-conductivity aluminum nitride ceramics: the effect of thermodynamic, kinetic, and microstructural factors., 1997, 80(6): 1421–1435.

    [5] SELVADURAY G, SHEET L. Aluminium nitride: review of synthesis methods., 1993, 9(6): 463–473.

    [6] TAJIKA MASAHIKO, RAFANIELLO WILLIAM, NIIHARA KOICHI. Sintering behavior of direct nitrided AlN powder., 2000, 46(23): 98–104.

    [7] HASHIMOTO NOBORU, YODEN HIROYOSHI, DEKI SHIGE-HITO. Effect of milling treatment on the particle size in the prepa-ration of AIN powder from aluminum poly-nuclear complexes., 1993, 76(2): 438–442.

    [8] PATHAK LOKESH-CHANDRA, RAY AJOY-KUMAR, DAS SAMAR,Carbothermal synthesis of nanocrystalline aluminum nitride powders., 1999, 82(1): 257–260.

    [9] GAO ZHI-FANG, WAN YI-ZAO, XIONG GUANG-YAO,Synthesis of aluminum nitride nanoparticles by a facile urea glass route and influence of urea/metal molar ratio., 2013, 280: 42–49.

    [10] NIU JING, SUZUKI SHOTA, YI XUEMEI,Fabrication of AlN particles and whiskerssalt-assisted combustion synthesis., 2015, 41(3): 4438–4443.

    [11] FORSLUND B, ZHENG J. Carbothermal synthesis of aluminium nitride at elevated nitrogen pressures., 1993, 28: 3125–3131.

    [12] QIN MING-LI, DU XUE-LI, LI ZI-XI,Synthesis of aluminum nitride powder by carbothermal reduction of a combustion synthesis precursor., 2008, 43(11): 2954–2960.

    [13] JUNG WOO-SIK. Synthesis of aluminum nitride powder from-alumina nanopowders under a mixed gas flow of nitrogen and hydrogen., 2012, 38(1): 871–874.

    [14] KIM KYUNG-IN, CHOI SUNG-CHURL, KIM JIN-HO,Synthesis and characterization of high-purity aluminum nitride nanopowder by RF induction thermal plasma., 2014, 40(6): 8117–8123.

    [15] TSUGE A, INOUE H, KASORI M,Raw material effect on AlN powder synthesis from Al2O3carbothermal reduction., 1990, 25: 2359–2361.

    [16] CHO Y W, CHARLES J A. Synthesis of nitrogen ceramic powder by carbothermal reduction-nitridation Part 3 aluminium nitride., 1991, 7(6): 495–504.

    [17] MYLINH DANG-THY, YOON DAE-HO, KIM CHANG-YEOUL. Aluminum nitride formation from aluminum oxide/phenol resin solid-gel mixture by carbothermal reduction nitridation method., 2015, 60(2): 1551–1555.

    [18] BAIK YOUNGMIN, SHANKER KARTIK, MCDERMID JOSEPH-R,Carbothermal synthesis of aluminum nitride using sucrose., 1994, 77(8): 2165–2172.

    [19] CHU AI-MIN, QIN MINGLI, DIN RAFIUD,Effect of urea on the size and morphology of AlN nanoparticles synthesized from combustion synthesis precursors., 2012, 530: 144–151.

    [20] JUNG WOO-SIK, AHN SANG-KYEUNG. Synthesis of aluminum nitride by a modified carbothermal reduction and nitridation method using basic dicarboxylate Al (III) complexes Al(OH)(C+2H2nO4)?H2O (=3,6,8)., 2001, 21: 79–85.

    [21] YANG YAN, SHIMAI SHUNZO, SUN YI,Fabrication of porous Al2O3ceramics by rapid gelation and mechanical foaming., 2013, 28(15): 2012–2016.

    [22] ZHANG XIAO-QIANG, SUN YI, SHIMAI SHUNZO Z,Effect of water-soluble epoxy resin on microstructure and properties of porous alumina ceramics by gel-casting., 2015, 30(10): 1085–1088.

    [23] MAO XI-XI, LI JUN, ZHANG HAI-LONG,Synthesis of AlN powder by carbothermal reduction-nitridation of alumina/ carbon black foam., 2017, 32(10): 1115–1120.

    [24] YANG YAN, SHIMAI SHUNZO, WANG SHI-WEI. Room- temperature gelcasting of alumina with a water-soluble copolymer., 2013, 28(11): 1512–1516.

    [25] SUN YI, SHIMAI SHUNZO, PENG XIANG,A method for gelcasting high-strength alumina ceramics with low shrinkage., 2014, 29(2): 247–251.

    [26] LEVIN IGOR, BRANDON DAVID. Metastable alumina polymorphs: crystal structures and transition sequences., 1998, 81(8): 1995–2012.

    [27] Wang QI, Cui WEI, Ge YI-YAO,. Preparation of spherical AlN granules directly by carbothermal reduction-nitridation method., 2015,98(2): 392–397.

    碳熱還原氮化法結(jié)合泡沫前驅(qū)體制備超細(xì)氮化鋁粉體

    茅茜茜1,2,3, 徐勇剛1,2,3, 毛小建1,2, 張海龍2, 李軍1, 王士維1,2

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國科學(xué)院上海硅酸鹽研究所, 中國科學(xué)院光功能無機(jī)材料重點(diǎn)實(shí)驗(yàn)室, 上海 200050;3. 中國科學(xué)院大學(xué), 北京 100049)

    本研究使用改良的碳熱還原氮化法合成超細(xì)氮化鋁粉體。以氧化鋁和蔗糖作為鋁源和碳源, 先預(yù)處理制備成多孔泡沫, 再通過碳熱還原氮化法合成氮化鋁粉體。反應(yīng)過程和產(chǎn)物通過X射線衍射分析、SEM和TEM確定。X射線衍射分析表明整個(gè)反應(yīng)過程不存在氧化鋁的相轉(zhuǎn)變。高分辨透射電子顯微鏡顯示-Al2O3顆粒被無定型碳包裹, 從而抑制了-Al2O3到-Al2O3的相轉(zhuǎn)變。泡沫的多孔結(jié)構(gòu)促進(jìn)了氮?dú)獾臄U(kuò)散和反應(yīng)副產(chǎn)物的釋放, 使得最低反應(yīng)溫度降低至1450 ℃。SEM結(jié)果表明得到的氮化鋁顆粒粒徑大約為50 nm。本研究合成的氮化鋁粉體可用于制備高熱導(dǎo)氮化鋁陶瓷。

    氮化鋁; 泡沫; 粉體; 合成

    TQ174

    A

    2019-01-28;

    2019-05-12

    National Key R&D Program of China (2017YFB0310500); National Natural Science Foundation of China (51772309)

    MAO Xi-Xi (1991?), female, candidate of Master degree. E-mail: 112113192@qq.com

    MAO Xiao-Jian, professor. E-mail: maoxiaojian@mail.sic.ac.cn; WANG Shi-Wei, professor. E-mail: swwang51@ mail.sic.ac.cn

    1000-324X(2019)10-1123-05

    10.15541/jim20190055

    猜你喜歡
    鋁粉氮化硅酸鹽
    納米鋁粉的反應(yīng)性研究進(jìn)展及趨勢
    礦化劑對硅酸鹽水泥煅燒的促進(jìn)作用
    氮化鋁粉末制備與應(yīng)用研究進(jìn)展
    納米材料改性硅酸鹽水泥研究進(jìn)展
    納米鋁粉對RDX基炸藥爆速的影響
    火工品(2019年1期)2019-04-29 03:03:44
    XD超級氮化催滲劑的運(yùn)用
    以氮化鎵/氮化鋁鎵超晶格結(jié)構(gòu)優(yōu)化氮化銦鎵LED
    電子制作(2018年12期)2018-08-01 00:47:48
    鉬酸鹽與硅酸鹽復(fù)合鈍化膜耐蝕性的研究
    基于20 L球形爆炸裝置的微米級鋁粉爆炸特性實(shí)驗(yàn)
    40CrH鋼氣體軟氮化-后氧化復(fù)合處理的組織性能
    上海金屬(2016年2期)2016-11-23 05:34:32
    建设人人有责人人尽责人人享有的 | 亚洲婷婷狠狠爱综合网| 18禁在线无遮挡免费观看视频| 在线免费观看不下载黄p国产| 高清毛片免费看| 日韩欧美在线乱码| 国产精品久久久久久久电影| 日本午夜av视频| 久久精品综合一区二区三区| 欧美zozozo另类| 最近2019中文字幕mv第一页| 国产乱人偷精品视频| kizo精华| 中文天堂在线官网| 国产私拍福利视频在线观看| 亚洲av熟女| 国产乱来视频区| 在线播放国产精品三级| 亚洲成av人片在线播放无| 亚洲第一区二区三区不卡| 日韩中字成人| 日韩强制内射视频| 麻豆成人午夜福利视频| 尤物成人国产欧美一区二区三区| 国内精品一区二区在线观看| 中文天堂在线官网| 久久久成人免费电影| 综合色av麻豆| 一本久久精品| 美女高潮的动态| 亚洲在线自拍视频| 麻豆成人av视频| 亚洲电影在线观看av| 日产精品乱码卡一卡2卡三| 久久久成人免费电影| 乱人视频在线观看| 国语对白做爰xxxⅹ性视频网站| 99热这里只有是精品在线观看| videos熟女内射| 国产伦一二天堂av在线观看| 亚洲电影在线观看av| 精品人妻视频免费看| 国产精品一区二区三区四区久久| av视频在线观看入口| 国产在视频线精品| 18禁裸乳无遮挡免费网站照片| 最近手机中文字幕大全| 成人性生交大片免费视频hd| 女人被狂操c到高潮| 又爽又黄无遮挡网站| 国产久久久一区二区三区| 亚洲三级黄色毛片| 少妇熟女aⅴ在线视频| 最近中文字幕2019免费版| 国产不卡一卡二| 免费观看性生交大片5| 国产单亲对白刺激| 欧美不卡视频在线免费观看| 国产精品av视频在线免费观看| 卡戴珊不雅视频在线播放| 中文字幕免费在线视频6| 亚洲国产精品合色在线| 精品久久久久久电影网 | 最近中文字幕2019免费版| 美女国产视频在线观看| 亚洲欧美日韩高清专用| 久久久欧美国产精品| 午夜日本视频在线| 少妇裸体淫交视频免费看高清| 国产69精品久久久久777片| 国产精品不卡视频一区二区| 精品人妻视频免费看| 一区二区三区四区激情视频| 国产乱人偷精品视频| 夜夜看夜夜爽夜夜摸| 国产亚洲91精品色在线| 国产中年淑女户外野战色| 久久久欧美国产精品| av在线观看视频网站免费| 一级二级三级毛片免费看| 啦啦啦啦在线视频资源| 女人久久www免费人成看片 | a级一级毛片免费在线观看| 久久热精品热| 我要搜黄色片| 欧美高清性xxxxhd video| 国产白丝娇喘喷水9色精品| 久久亚洲精品不卡| 国产亚洲av嫩草精品影院| av在线老鸭窝| 久久精品人妻少妇| 青青草视频在线视频观看| 国产v大片淫在线免费观看| 天天一区二区日本电影三级| 草草在线视频免费看| 亚洲国产最新在线播放| 乱码一卡2卡4卡精品| 国产精品久久久久久久电影| 国产精品日韩av在线免费观看| 简卡轻食公司| 日韩国内少妇激情av| 欧美bdsm另类| 一级毛片我不卡| 老女人水多毛片| 亚洲电影在线观看av| 长腿黑丝高跟| 三级国产精品片| 内射极品少妇av片p| 国产一区二区在线观看日韩| 一区二区三区乱码不卡18| 国产色爽女视频免费观看| 亚洲欧美中文字幕日韩二区| 啦啦啦韩国在线观看视频| 日韩精品青青久久久久久| 深爱激情五月婷婷| 亚洲不卡免费看| 中文亚洲av片在线观看爽| 长腿黑丝高跟| 久久草成人影院| 欧美不卡视频在线免费观看| АⅤ资源中文在线天堂| 国产精品久久久久久久久免| 你懂的网址亚洲精品在线观看 | 午夜精品一区二区三区免费看| 小说图片视频综合网站| 五月玫瑰六月丁香| 又爽又黄无遮挡网站| 免费无遮挡裸体视频| 国产精品av视频在线免费观看| 亚洲婷婷狠狠爱综合网| 欧美变态另类bdsm刘玥| 久久精品夜夜夜夜夜久久蜜豆| 青春草亚洲视频在线观看| 亚洲国产最新在线播放| 两个人视频免费观看高清| 国产精品精品国产色婷婷| 欧美性感艳星| 久久久久网色| 亚洲国产精品国产精品| 国产又色又爽无遮挡免| 婷婷色麻豆天堂久久 | 性插视频无遮挡在线免费观看| 国产真实乱freesex| 国产91av在线免费观看| 亚洲无线观看免费| 91aial.com中文字幕在线观看| 国产一区亚洲一区在线观看| 一个人免费在线观看电影| 国产高清有码在线观看视频| 一二三四中文在线观看免费高清| 乱系列少妇在线播放| 国产av一区在线观看免费| 国产午夜精品论理片| 国产一级毛片七仙女欲春2| 亚洲精品成人久久久久久| 国产欧美另类精品又又久久亚洲欧美| 高清av免费在线| 日韩av在线大香蕉| 美女高潮的动态| 国产精品电影一区二区三区| www.av在线官网国产| 婷婷色麻豆天堂久久 | 蜜桃亚洲精品一区二区三区| 中文资源天堂在线| 欧美一区二区精品小视频在线| 汤姆久久久久久久影院中文字幕 | 国产精品麻豆人妻色哟哟久久 | 日韩欧美在线乱码| 国产三级中文精品| 久久久久久伊人网av| 性色avwww在线观看| 成年av动漫网址| 成人午夜精彩视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 日本wwww免费看| 床上黄色一级片| 久久6这里有精品| 欧美xxxx性猛交bbbb| 欧美3d第一页| 久久精品国产亚洲av天美| 久久久久久久久中文| 精品一区二区三区人妻视频| 2021天堂中文幕一二区在线观| 久久久精品94久久精品| 2021少妇久久久久久久久久久| 国产色爽女视频免费观看| 国产精品一区二区在线观看99 | 欧美高清成人免费视频www| 中国美白少妇内射xxxbb| 尾随美女入室| 精品国产露脸久久av麻豆 | 国产综合懂色| 啦啦啦啦在线视频资源| 国产色婷婷99| 精品久久久久久久人妻蜜臀av| 伊人久久精品亚洲午夜| 国产乱人视频| 精品一区二区免费观看| 偷拍熟女少妇极品色| 简卡轻食公司| 真实男女啪啪啪动态图| 国产毛片a区久久久久| 国产高潮美女av| 日日啪夜夜撸| www.色视频.com| 亚洲av成人av| 亚洲aⅴ乱码一区二区在线播放| 最近2019中文字幕mv第一页| 日本黄色片子视频| 中文字幕人妻熟人妻熟丝袜美| 国产大屁股一区二区在线视频| 色5月婷婷丁香| 国产精品综合久久久久久久免费| 精品一区二区免费观看| 听说在线观看完整版免费高清| 亚洲欧美一区二区三区国产| 两性午夜刺激爽爽歪歪视频在线观看| 国产男人的电影天堂91| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 最近中文字幕高清免费大全6| 久久久a久久爽久久v久久| 2022亚洲国产成人精品| 毛片女人毛片| 国产探花极品一区二区| 久久精品综合一区二区三区| 久久久a久久爽久久v久久| 亚洲欧美精品专区久久| 一本久久精品| 欧美激情久久久久久爽电影| 男女边吃奶边做爰视频| 国产久久久一区二区三区| 精品人妻偷拍中文字幕| 能在线免费看毛片的网站| 中国美白少妇内射xxxbb| 五月玫瑰六月丁香| 精品久久久久久久久久久久久| 亚洲精品自拍成人| 最近手机中文字幕大全| 国产精品国产高清国产av| 中文字幕熟女人妻在线| 日本三级黄在线观看| 亚洲av中文av极速乱| 一本久久精品| 日韩,欧美,国产一区二区三区 | 少妇的逼水好多| 高清日韩中文字幕在线| 女的被弄到高潮叫床怎么办| 久久热精品热| 好男人在线观看高清免费视频| 色5月婷婷丁香| 久久99热这里只有精品18| 亚洲最大成人手机在线| 中文字幕免费在线视频6| 午夜免费激情av| 别揉我奶头 嗯啊视频| 亚洲中文字幕日韩| 搡女人真爽免费视频火全软件| 嫩草影院新地址| 能在线免费观看的黄片| 亚洲人成网站在线观看播放| 欧美一区二区精品小视频在线| 亚洲欧洲日产国产| 久久国内精品自在自线图片| 在线播放国产精品三级| av天堂中文字幕网| 久久这里只有精品中国| 日日摸夜夜添夜夜爱| 99热这里只有精品一区| 色网站视频免费| 菩萨蛮人人尽说江南好唐韦庄 | 婷婷色av中文字幕| 国内精品一区二区在线观看| 哪个播放器可以免费观看大片| 日日干狠狠操夜夜爽| 内地一区二区视频在线| 国产高清不卡午夜福利| 久久久成人免费电影| 丰满少妇做爰视频| 观看免费一级毛片| 欧美日韩综合久久久久久| 国产成年人精品一区二区| av女优亚洲男人天堂| 国产精品人妻久久久久久| 亚洲欧美精品专区久久| 好男人视频免费观看在线| 国产淫语在线视频| 亚洲自拍偷在线| 插阴视频在线观看视频| 国产69精品久久久久777片| 亚洲国产成人一精品久久久| 国产黄片美女视频| av又黄又爽大尺度在线免费看 | 午夜免费激情av| 国产成人午夜福利电影在线观看| 国产一区二区三区av在线| 国产成人a∨麻豆精品| 久久久久久久久久黄片| 69av精品久久久久久| 丝袜喷水一区| 欧美日韩一区二区视频在线观看视频在线 | 国产精品av视频在线免费观看| 国模一区二区三区四区视频| 午夜视频国产福利| 国产精品国产三级专区第一集| 精品久久久久久久久av| 亚洲国产精品成人综合色| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 99久久精品热视频| 午夜福利高清视频| 亚洲熟妇中文字幕五十中出| 99热这里只有是精品在线观看| 白带黄色成豆腐渣| 亚洲精品色激情综合| 人妻系列 视频| av福利片在线观看| 日韩强制内射视频| 99热这里只有精品一区| 日韩av不卡免费在线播放| av在线播放精品| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 搡老妇女老女人老熟妇| 女人被狂操c到高潮| 成人亚洲欧美一区二区av| 免费不卡的大黄色大毛片视频在线观看 | 少妇被粗大猛烈的视频| 欧美成人午夜免费资源| 又粗又爽又猛毛片免费看| 亚洲美女视频黄频| 嫩草影院新地址| 九九爱精品视频在线观看| 两个人视频免费观看高清| 18禁动态无遮挡网站| 人妻制服诱惑在线中文字幕| 色综合亚洲欧美另类图片| 日韩 亚洲 欧美在线| 国产欧美日韩精品一区二区| 2022亚洲国产成人精品| 嫩草影院入口| 男女那种视频在线观看| 男人舔奶头视频| 色播亚洲综合网| 夜夜爽夜夜爽视频| 亚洲激情五月婷婷啪啪| 亚洲国产精品专区欧美| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频 | av卡一久久| 国产成人精品一,二区| 亚洲精品日韩在线中文字幕| 亚洲欧美日韩卡通动漫| 久久久久久久久久久丰满| 国产精品一区二区性色av| 欧美zozozo另类| 赤兔流量卡办理| 七月丁香在线播放| 麻豆成人午夜福利视频| 久久精品夜色国产| 国产毛片a区久久久久| 日本wwww免费看| 男人和女人高潮做爰伦理| 大香蕉久久网| 精品午夜福利在线看| 高清毛片免费看| 亚洲精品日韩在线中文字幕| 午夜福利视频1000在线观看| www.av在线官网国产| 久久久久久国产a免费观看| 观看免费一级毛片| 婷婷六月久久综合丁香| 在线免费观看不下载黄p国产| 内射极品少妇av片p| 麻豆国产97在线/欧美| 人妻系列 视频| 久久鲁丝午夜福利片| 在线免费观看的www视频| 麻豆av噜噜一区二区三区| 午夜精品国产一区二区电影 | 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 久久精品久久久久久噜噜老黄 | 精品久久久久久久人妻蜜臀av| 免费观看a级毛片全部| 一区二区三区四区激情视频| 直男gayav资源| 亚洲电影在线观看av| 日韩强制内射视频| 美女高潮的动态| 免费看光身美女| 国产成人91sexporn| 18禁在线无遮挡免费观看视频| 日本一本二区三区精品| 麻豆久久精品国产亚洲av| 国产高清国产精品国产三级 | 国产午夜精品论理片| 国产亚洲5aaaaa淫片| 欧美成人一区二区免费高清观看| 亚洲丝袜综合中文字幕| 看非洲黑人一级黄片| 麻豆成人午夜福利视频| 免费看光身美女| 国产精品日韩av在线免费观看| 老司机福利观看| 国产高潮美女av| 亚洲av熟女| 秋霞伦理黄片| 最新中文字幕久久久久| 美女cb高潮喷水在线观看| 久久久久免费精品人妻一区二区| 久久久久久伊人网av| 一级黄片播放器| 美女脱内裤让男人舔精品视频| 免费观看性生交大片5| 99久久精品一区二区三区| 国产成人91sexporn| 国产精品美女特级片免费视频播放器| a级一级毛片免费在线观看| 人人妻人人澡人人爽人人夜夜 | kizo精华| 日本免费一区二区三区高清不卡| 亚洲av电影在线观看一区二区三区 | 精品久久久噜噜| 午夜福利高清视频| 毛片一级片免费看久久久久| 天堂网av新在线| 美女大奶头视频| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 1024手机看黄色片| 天天躁夜夜躁狠狠久久av| 青春草国产在线视频| 日本色播在线视频| av黄色大香蕉| 国产欧美另类精品又又久久亚洲欧美| 午夜免费男女啪啪视频观看| 校园人妻丝袜中文字幕| 女人久久www免费人成看片 | 男人舔奶头视频| 一级av片app| 一区二区三区高清视频在线| 一区二区三区免费毛片| 中国美白少妇内射xxxbb| 久久精品影院6| 色视频www国产| 国产精品.久久久| 偷拍熟女少妇极品色| 真实男女啪啪啪动态图| 日本五十路高清| 少妇猛男粗大的猛烈进出视频 | 一级爰片在线观看| 久久精品综合一区二区三区| 国产伦在线观看视频一区| 搡老妇女老女人老熟妇| 欧美区成人在线视频| 国产淫片久久久久久久久| 亚洲精品久久久久久婷婷小说 | 亚洲国产高清在线一区二区三| 男人和女人高潮做爰伦理| 两个人的视频大全免费| 少妇熟女欧美另类| 日韩精品有码人妻一区| 日韩欧美国产在线观看| 国产精品三级大全| 国产精品日韩av在线免费观看| 国产精品熟女久久久久浪| 精品国产一区二区三区久久久樱花 | 日本-黄色视频高清免费观看| 日韩三级伦理在线观看| 成人鲁丝片一二三区免费| 在线a可以看的网站| 噜噜噜噜噜久久久久久91| 久久久久久久久久久丰满| 2021天堂中文幕一二区在线观| 2021少妇久久久久久久久久久| av天堂中文字幕网| 欧美激情在线99| 亚洲精华国产精华液的使用体验| 高清av免费在线| 内地一区二区视频在线| 精品人妻视频免费看| 最近的中文字幕免费完整| 身体一侧抽搐| 午夜老司机福利剧场| 国内精品一区二区在线观看| 天美传媒精品一区二区| 人人妻人人看人人澡| 乱人视频在线观看| av天堂中文字幕网| 最近2019中文字幕mv第一页| 久久精品国产自在天天线| 亚洲在线观看片| 深爱激情五月婷婷| 欧美日韩综合久久久久久| 人妻少妇偷人精品九色| av国产免费在线观看| av在线老鸭窝| 成人特级av手机在线观看| 欧美激情久久久久久爽电影| 精品欧美国产一区二区三| 日产精品乱码卡一卡2卡三| 精品99又大又爽又粗少妇毛片| 五月玫瑰六月丁香| 国产探花极品一区二区| 亚洲综合精品二区| 亚洲真实伦在线观看| 18禁动态无遮挡网站| 爱豆传媒免费全集在线观看| kizo精华| 午夜福利在线观看吧| 亚洲av日韩在线播放| 亚洲一区高清亚洲精品| 久久婷婷人人爽人人干人人爱| 国产精品国产三级国产av玫瑰| 精品久久国产蜜桃| 天天躁日日操中文字幕| 女人久久www免费人成看片 | 99久国产av精品| 日本与韩国留学比较| 日韩一区二区三区影片| 亚洲av中文av极速乱| 精品欧美国产一区二区三| 国产免费一级a男人的天堂| 国产淫片久久久久久久久| 欧美精品一区二区大全| 水蜜桃什么品种好| 亚洲精品亚洲一区二区| 色视频www国产| 久久久久精品久久久久真实原创| 老女人水多毛片| 亚洲18禁久久av| 一级毛片aaaaaa免费看小| 午夜亚洲福利在线播放| 亚洲国产高清在线一区二区三| 麻豆av噜噜一区二区三区| 丰满人妻一区二区三区视频av| 国产成人午夜福利电影在线观看| 国模一区二区三区四区视频| 人人妻人人澡欧美一区二区| 最近最新中文字幕大全电影3| 乱人视频在线观看| 成年女人看的毛片在线观看| 啦啦啦啦在线视频资源| 国产亚洲91精品色在线| 国产精品乱码一区二三区的特点| 一本一本综合久久| 日本午夜av视频| 国产日韩欧美在线精品| 日本免费a在线| 黄色日韩在线| 国产精品嫩草影院av在线观看| 日韩人妻高清精品专区| 建设人人有责人人尽责人人享有的 | 欧美日韩精品成人综合77777| 国产单亲对白刺激| 日韩中字成人| 亚洲不卡免费看| 亚州av有码| 青春草视频在线免费观看| 久久精品影院6| 亚洲精华国产精华液的使用体验| 欧美一区二区亚洲| 亚洲最大成人中文| 日日摸夜夜添夜夜爱| 国产白丝娇喘喷水9色精品| 亚洲婷婷狠狠爱综合网| 三级男女做爰猛烈吃奶摸视频| 97热精品久久久久久| av.在线天堂| 水蜜桃什么品种好| 中文欧美无线码| 亚洲美女搞黄在线观看| 久久久久久伊人网av| 亚洲,欧美,日韩| 老司机影院成人| 午夜a级毛片| 在线播放无遮挡| 男插女下体视频免费在线播放| 免费观看a级毛片全部| 久久这里有精品视频免费| 一边摸一边抽搐一进一小说| 深夜a级毛片| 秋霞伦理黄片| 一区二区三区乱码不卡18| 91av网一区二区| 亚洲av中文字字幕乱码综合| 亚洲va在线va天堂va国产| 91av网一区二区| 国产高清三级在线| 噜噜噜噜噜久久久久久91| 人妻制服诱惑在线中文字幕| 日本爱情动作片www.在线观看| 啦啦啦啦在线视频资源| 午夜a级毛片| 99热精品在线国产| 18禁在线播放成人免费| 看免费成人av毛片| 好男人在线观看高清免费视频| 久久99精品国语久久久| 直男gayav资源| 亚洲一级一片aⅴ在线观看| 秋霞伦理黄片| 校园人妻丝袜中文字幕| 亚洲中文字幕日韩| 日本黄色片子视频| 在线免费观看的www视频| 日日摸夜夜添夜夜添av毛片| 亚洲欧美日韩卡通动漫| 麻豆久久精品国产亚洲av| 久久久国产成人精品二区| 美女国产视频在线观看| 可以在线观看毛片的网站| 天美传媒精品一区二区| 日本黄色视频三级网站网址|