• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Evaluation of Ca-doped Sr2Fe1.5Mo0.5O6–δ as Symmetrical Electrodes for High Performance Solid Oxide Fuel Cells

    2019-12-24 09:26:08XIATianMENGXieLUOTingZHANZhongLiang
    無機(jī)材料學(xué)報(bào) 2019年10期
    關(guān)鍵詞:鈣鈦礦氧化物燃料電池

    XIA Tian, MENG Xie, LUO Ting, ZHAN Zhong-Liang

    Synthesis and Evaluation of Ca-doped Sr2Fe1.5Mo0.5O6–δas Symmetrical Electrodes for High Performance Solid Oxide Fuel Cells

    XIA Tian1,2, MENG Xie1, LUO Ting1, ZHAN Zhong-Liang1

    (1. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

    A series of Ca-substituted Sr2Fe1.5Mo0.5O6–δoxides, Sr2–xCaFe1.5Mo0.5O6–δ(SCFMO,=0, 0.2, 0.4 and 0.6), were synthesized and evaluated as potential electrodes for symmetrical solid oxide fuel cells. X-ray diffraction examination showed that all samples maintained cubic perovskite structure in both air and wet hydrogen atmospheres. Temperature programmed reduction measurements indicated that the Ca2+substitution promoted the catalytic activity of SCFMO toward oxygen evolution reactions. Symmetrical anode fuel cell measurements showed the lowest polarization resistance in humidified hydrogen emerged at=0.6. Single cells-SC0.6FMO|La0.9Sr0.1Ga0.8Mg0.2O3(LSGM)|SC0.6FMO, fabricatedtape-casting and impregnation methods, produced peak power densities of 1.05 W·cm–2at 800 ℃ and 0.41 W·cm–2at 650 ℃ when operating on hydrogen fuels and air oxidants. These results demonstrate SC0.6FMO is a potential electrode material for symmetrical solid oxide fuel cells.

    Symmetrical Solid Oxide Fuel Cells; perovskite; electrode materials

    Solid Oxide Fuel Cells (SOFCs) have attracted considerable attention as a promising power generation technology due to their high efficiencies and low emissions[1-3]. However, high manufacturing cost and poor long-term stability prevent their widespread implementation. SOFCs were typically composed of three ceramic components: a porous anode, a porous cathode and the dense electrolyte sandwiched between two electrodes to separate fuels from air[4]. Different materials were usually adopted for anode and cathode due to their different requirements, resulting in at least two separate thermal processing steps for fabrication of single cells. Recently, some materials appeared suitable as both electrodes in the symmetrical SOFCs (SSOFCs)[5]. Compared with the traditional SOFCs, SSOFCs showed advantages of simplified production process, reduced manufacturing cost as well as improved thermo-mechanical compatibility with only one type of interface present[6]. Nonetheless, the very different operating conditions of anodes and cathodes posed harsh requirements on the symmetrical electrodes. For example, the symmetrical electrode materials should show adequate chemical stability and acceptable electronic conductivities in both the oxidizing and re-ducing atmospheres with high catalytic activities towards both oxygen reduction and fuel oxidation reactions[7-8].

    Until now, only a few number of oxides could fulfil almost all requirements for symmetrical electrodes. In particular, LaCrO3based perovskite exhibited good stability and conductivities over a wide range of oxygen partial pressures. Partial substitution of Ca or Sr in the A-site, and Mn or Fe in the B-site yielded promising symmetrical electrodes such as La0.7Ca0.3Cr0.97O3[9], La0.75Sr0.25Cr0.5Mn0.5O3[10], and La0.75Sr0.25Cr0.7Fe0.3O3[11]with good catalytic activities for both electrode reactions. Maximum power densities of 300 mW·cm–2were achieved in humidified hydrogen for the symmetrical La0.75Sr0.25Cr0.5Mn0.5O3electrode fuel cells at 900 ℃[10]. La(Sr)TiO3-based oxide were usually used as anodes due to their high conductivities in hydrogen and excellent catalytic activities for hydrogen oxidation reactions. Doping Fe or Co in the B-site substantially improved their conductivities under oxidizing atmospheres. La4Sr8Ti6Fe6O38–δ[12]and La0.5Sr0.5Ti0.5Co0.5O3–δ(LSTC)[13]were explored as symmetrical electrodes with maximum power densities of 110 mW·cm–2obtained at 800 ℃ for symmetrical cells-LSTC|LSGM|LSTC[13]. Alternatively, introducing the chemically stable metal element Mo in the B-site of commonly used SOFC cathodes could also enhance their structural stability under highly reducing anode atmospheres, e.g., SrFe0.75Mo0.25O3–δ(SFMO)[14]. Power densities as high as 0.83 W·cm–2were achieved at 900 ℃ for symmetrical SFMO electrode fuel cells in hydrogen fuels[15]. Optimizing the cell microstructureliquid infiltration technique[16]or phase inversion method[17]could further improve the cell performance.

    Modification of the electrode materials by metal substitution or doping while maintaining the original crystal structure may also improve the cell performance[6,18]. It was reported that partial substitution of Ca2+for Sr2+changed the cationic valence and oxygen-vacancy concentration, yielding increase of electrical conductivity and reduction of cathode polarization resistance in air[19]. Here, partial substitution of Sr2+in SFMO by Ca2+was explored with the aim of improving their performance as the symmetrical electrodes. A series of samples Sr2–xCaFe1.5Mo0.5O6–δ(SCFMO,=0, 0.2, 0.4 and 0.6) were synthesized and their structural stabilities in hydrogen were examined. The chemical stability and the catalytic activities toward oxygen evolution reactions (OER) of SCFM in hydrogen were evaluated by temperature programmed reduction. Thin LSGM electrolyte fuel cells with symmetrical SCFMO electrodes were fabricated by tape casting and liquid impregnation methods. The structures and electrochemical characteristics of single cells were examined to explore their potential applications in SSOFCs.

    1 Experimental

    The Sr2–xCaFe1.5Mo0.5O6–δ(=0, 0.2, 0.4 and 0.6) powders were synthesizedSol-Gel method[20]. Stoichiometric amounts of Sr(NO3)2, Ca(NO3)2, Fe(NO3)3·9H2O and (NH4)6Mo7O24·4H2O were dissolved in deionized water with addition of citric acid to form the SCFMO precursor solution. The precursor solutions were evaporated at 80 ℃ to form gel. The gel was then dried at 250 ℃for 10 h to obtain dry precursor followed by calcination at 1100 ℃ in air for 5 h to obtain the final SCFMO pow-ders. Crystal structure of the as-synthesized and hydrogen- reduced powders were examined by X-ray diffractometer (XRD, Rigaku Smartlab9, Japan) at room temperature. Temperature-programmed reduction (TPR, Micromeritics ChemiSorb 2720) measurements were carried out to ana-lyze the catalytic activity of SCFMO anodes. 60~80 mg SCFMO powders were loaded into the quartz U-tube. After being pre-treated with high-purity He flow at 450 ℃ for 30 min, the samples were measured under 5vol% H2/He (20 mL·min–1) flow with a linear heating rate of 10 ℃?min–1from room temperature up to 850 ℃.

    Symmetrical fuel cells were fabricated with thin LSGM electrolytes and SCFMO catalysts, based upon the “porous|dense|porous” LSGM tri-layer backbones. Powders of LSGM (Praxair) and rice starch used as the fugitive material for the porous layers were ball-milled in a weight ratio of 60:40 for 12 h with appropriate amounts of dispersant, binder, plasticizer and solvent. The tri-layer structures were produced by laminating three tape-cast ceramic green tapes with subsequent co-firing at 1400 ℃ to produce the final ceramic structures. The electrode catalysts SCFMO were added by liquid infiltration method. The precursor solutions were simultaneously impregnated into both porous LSGM backbones, and then calcined at 700 ℃ for 30 min. The impregnation- calcination procedure was repeated until catalyst loading achieved 25wt% relative to the porous LSGM backbones, with a final calcination at 850 ℃ for 2 h to obtain the symmetrical cells. The cross-sectional morphologies of single cells were examined using the scanning electron microscopy (SEM, FEI Inspect F50, USA).

    For electrochemical measurement at 650–800 ℃, the symmetrical cells were sealed to alumina tubes using ceramic adhesive (Aremco, Ultra-Temp 552). Current- voltage curves (-) and electrochemical impedance spectra (EIS) were obtained by using Electrochemical Workstation (ZAHNER IM6e, Germany) with the cathode exposed to dry air (100 mL?min–1) and the anode to humidified (3vol% H2O) hydrogen (100 mL?min–1). To determine the individual electrode polarization resis-tances, impedance measurements were also performed on symmetrical cells in homogeneous environments,., in dry air for symmetrical cathode cells and in humidified (3vol% H2O) hydrogen for symmetrical anode cells. The impedance data were recorded at open circuits over the frequency range from 0.1 Hz to 100 kHz with a 20 mV AC perturbation.

    2 Results and discussion

    Fig. 1(a) summarized the room temperature XRD patterns of as-synthesized SCFMO powders, showing cubic perovskite crystal structure for all powders as previously reported[19]. In order to examine their structural stability as the SOFC anode, these powders were thermally treated in 97vol% H2–3vol% H2O at 800 ℃ for 4 h, with XRD patterns of the reduced powders summarized in Fig. 1(b). Notably, the cubic perovskite structures for all samples were well maintained with little impurities detected, indicating that SCFMO oxides could be adopted as the symmetrical electrodes in SOFCs. The magnified XRD patterns at 67.5° in Fig. 1(c) showed that the peak shifted toward higher angle with Ca2+substitution increasing, due to smaller ionic radius of Ca2+compared with Sr2+. Fig. 1(c) also showed increased lattice parameter after reduction in hydrogen due to the reduction of Fe and Mo elements as previously reported for the SFMO-based oxides[21].

    Fig. 1 XRD patterns of Sr2–xCaxFe1.5Mo0.5O6–δ powders synthetized in air (a) and reduced in humidified hydrogen (b) at 800 ℃ for 4 h; (c) Magnified view of the diffraction peak at 67.5°

    Temperature programmed reduction measurements were used to evaluate the stability and catalytic activities of the SCFMO anode materials. Fig. 2 showed the TPR profiles of all SCFMO samples, showing only one peak for the pure SFMO and two peaks for the Ca2+-substituted samples. Similar profiles were observed by Xiao,[22]and Wang,[23]in the TPR curves of SFMO materials, related to reduction of Fe3+and Mo6+. Kubo,[24]assigned the ~550 ℃ peak to the red-uction of AMoVIO4 to AMoIVO3. Thus it was reason-able to attribute the peaks at ~490 and ~550 ℃ in TPR curves to reductions of Fe3+and Mo6+, respectively. TPR curves shifted towards lower temperature with increasing substitution of Ca2+, indicative of enhanced OER catalytic activity[23]. Furthermore, no reduction peak reflecting the formation of metal Fe was observed in the TPR profiles, confirming the structural stability of all the SCFMO oxides in hydrogen as consistent with the XRD results.

    Fig. 2 Measured H2-TPR profiles for Sr2–xCaxFe1.5Mo0.5O6–δ powders with a ramp rate of 10 ℃·min?1

    Fig. 3(a) showed SEM micrograph of the thin LSGM electrolyte fuel cell with symmetrical SCFMO electrodes. The LSGM electrolyte layer was fully dense with ~35 μm thickness. Higher-magnification micrograph (Fig. 3(b)) of the impregnated composite electrode showed a homogeneous distribution of 70 nm SCFMO catalysts on the internal surfaces of the porous LSGM backbones. Fig. 3(b)also showed well-connected catalysts and sufficient porosities that were conducive to current collection and gas transport.

    The catalytic activities of SCFMO nano particles toward hydrogen oxidation at the anode and oxygen reduction at the cathode were evaluated by electrochemical impedance spectroscopy (EIS). Fig. 4(a) showed Nyquist plots of impedance data measured on the symmetrical anode cells at 800 ℃ in the homogeneous environment of 97vol% H2–3vol% H2O, where the ohmic resistances were omitted for easy comparison among different samples. The anode polarization resistances (,) were 0.23, 0.21, 0.20 and 0.18 Ω?cm2for SCFMO at= 0, 0.2, 0.4 and 0.6, respectively. Fig. 4(b) showed the temperature dependence of the,value on the substitution amounts of Ca2+.,decreased with the Ca2+substitution increasing over the whole temperature range from 650 to 800 ℃ with the minimized,values observed at=0.6. Moreover, the slope of Arrhenius plots in Fig. 4(b) also decreased with increasing Ca2+substitution. The activation energy decreased from 0.93 to 0.77 eV, which were slightly smaller than 1.07 eV in previous report[25]. These results indicated that Ca2+substitution could effectively enhance the anode catalytic activities with reduced anode polarization resistances, especially at lower temperatures.

    Fig. 3 Cross-sectional SEM micrographs showing impregnated fuel cells

    (a) Low magnification; (b) High magnification

    Fig. 4 (a) EIS plots of the Sr2–xCaxFe1.5Mo0.5O6–δ symmetrical cells measured in humidified hydrogen at 800 ℃, and (b) Arrhenius plots of the anode polarization resistances over the temperature range of 650–800 ℃

    Fig. 5(a) showed Nyquist plots of impedance data measured on the symmetrical cathode cells at 800 ℃ in homogeneous air environment. The cathode polarization resistances (,) were 0.104, 0.056, 0.058 and 0.077 Ω·cm2at=0, 0.2, 0.4 and 0.6, respectively. Fig. 5(b) showed the temperature dependence of the,value on the substitution amounts of Ca2+at 650–800 ℃. Minimized,values emerged at=0.2 with all tem-peratures, similar to the observation in previous report[19]. However, the slope of the curve in Arrhenius plots was close to each other for all SCFMO cathodes, indicating that Ca2+substitution might not alter the cathode reaction mechanism. And the increase in conductivity may be the reason for improvement of cathode performance[19]. How-ever, compared with the resistance of cathode, higher anode impedance of the SCFMO electrode showed more significant impact on the cell performance, especially at lower temperatures. Although the cathode impedances of the electrode were low at=0.2, the minimum value of the total polarization impedance of the cells was achieved at=0.6.

    Fig. 5 (a) EIS plots of the Sr2–xCaxFe1.5Mo0.5O6–δsymmetrical cells measured in air at 800 ℃, and (b) Arrhenius plots of the cathode polarization resistances over the temperature range of 650–800 ℃

    Fuel cell performances were measured in humidified hydrogen fuels and dry air oxidants both at a flow rate of 100 mL?min–1. Fig. 6(a) showed the polarization curves of the cell voltages () and power densities () as a fun-ction of current densities () measured over 650–800 ℃ for the symmetrical SCFMO electrodes with=0.6. The open circuit voltage (OCV) values increased from 1.103 V at 800 ℃ to 1.127 V at 650 ℃, which were close to the theoretical values (1.12–1.15 V) calculated from Nernst equation over the very temperature range. The maximum power densities were 1.05, 0.88, 0.66 and 0.41 W·cm–2at 800, 750, 700 and 650 ℃, respectively. Fig. 6(b) showed Nyquist plots of impedance data obtained at open circuit, and the combined anode and cathode interfacial polarization resistances were 0.155, 0.179, 0.230 and 0.359 ?·cm2at 800, 750, 700 and 650 ℃, respectively. The polarization impedance and the ohmic impedance increased gradually with the operating temperature decreasing in Nyquist plots, indicating decrease in the catalytic activity of the electrodes and the electrical conductivity of the electrolyte. Compared with our prior symmetrical SFMO electrode cells[16], the present fuel cell showed lower polarization resistance and higher power density, even though the electrolyte of the present fuel cell in Fig. 3(a) was almost twice thick. Decreasing the electrolyte thickness will further enhance the fuel cell performance. Fig. 6(c) summarized the maximum power densities for all symmetrical fuel cells with different Ca2+substitutions at 650–800 ℃. The samples with=0.6 exhibited the highest power densities at all temperatures, in agreement with the observed total polarization impedance and the H-TPR measurements. These results demonstrate that Sr1.4Ca0.6Fe1.5Mo0.5O6–δis a kind of promising symmetrical fuel cell electrode material.

    Fig. 6 (a) Voltage and power density versus current density for a symmetrical fuel cell with Sr2–xCaxFe1.5Mo0.5O6–δ(x=0.6) electrode measured in humidified hydrogen fuel and dry air over the temperature range of 650–800 ℃; (b) Nyquist plots of impedance data measured at open circuits; (c) Maximum power densities of the symmetrical SCFMO electrode cells at different Ca2+ substitutions over the temperature range of 650–800 ℃

    3 Conclusion

    In summary, we synthesized and evaluated a series of Sr2–xCaFe1.5Mo0.5O6–δ(=0, 0.2, 0.4 and 0.6) oxides as potential electrode catalysts for symmetrical fuel cells. These oxides maintained cubic perovskite crystal structure under both oxidizing and reducing conditions. H2-TPR measurements indicated that substituting Ca2+for Sr2+reduced the onset temperature of hydrogen oxidation reactions. Impedance analysis showed that Sr1.4Ca0.6Fe1.5Mo0.5O6–δexhibited the lowest anode polarization resistances among all samples with slighltly higher cathode polarization resistances than those of Sr1.6Ca0.4Fe1.5Mo0.5O6–δ. Fuel cell measurements also showed the highest power densities for symmetrical Sr1.4Ca0.6Fe1.5Mo0.5O6–δelectodes, e.g., 1.05, 0.88, 0.66 and 0.41 W·cm–2at 800, 750, 700 and 650 ℃, respectively. These results indicate that Ca2+substitution is effective in enhancing the catalytic activity of SFMO oxides toward hydrogen oxidation and oxygen reduction reactions, and Sr1.4Ca0.6Fe1.5Mo0.5O6–δis a promising symmetrical electrode material.

    [1] ORMEROD R M. Solid oxide fuel cells., 2003, 32(1): 17–28.

    [2] MINH N Q. Solid oxide fuel cell technology—features and applications., 2004, 174(1): 271–277.

    [3] IRVINE J T S, CONNOR P. SOFC Facts and Figures: Past Present and Future Perspectives for SOFC Technologies. London: Springer London, 2013.

    [4] STEELE B C H, HEINZEL A. Materials for fuel-cell technologies., 2001, 414: 345–352.

    [5] CARLOS RUIZ-MORALES J, MARRERO-LOPEZ D, CANALES-VAZQUEZ J,Symmetric and reversible solid oxide fuel cells., 2011, 1(8): 1403–1414.

    [6] SU C, WANG W, LIU M,Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes., 2015, 5(14): 1500188.

    [7] DOS SANTOS-GóMEZ L, PORRAS-VáZQUEZ J M, LOSILLA E R,Ti-doped SrFeO3nanostructured electrodes for symmetric solid oxide fuel cells.., 2015, 5(130): 107889–107895.

    [8] BIAN L, DUAN C, WANG L,Ce-doped La0.7Sr0.3Fe0.9Ni0.1O3?δas symmetrical electrodes for high performance direct hydrocarbon solid oxide fuel cells., 2017, 5(29): 15253–15259.

    [9] LIN B, WANG S, LIU X,Simple solid oxide fuel cells., 2010, 490(1): 214–222.

    [10] BASTIDAS D M, TAO S, IRVINE J T S. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes., 2006, 16(17): 1603–1605.

    [11] CHEN M, PAULSON S, THANGADURAI V,Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes., 2013, 236: 68–79.

    [12] CANALES-VáZQUEZ J, RUIZ-MORALES J C, MARRERO- LóPEZ D,Fe-substituted (La,Sr)TiO3as potential electrodes for symmetrical fuel cells (SFCs)., 2007, 171(2): 552–557.

    [13] MARTíNEZ-CORONADO R, AGUADERO A, PéREZ-COLL D,Characterization of La0.5Sr0.5Co0.5Ti0.5O3?δas symmetrical electrode material for intermediate-temperature solid-oxide fuel cells., 2012, 37(23): 18310–18318.

    [14] FERNANDEZ-ROPERO A J, PORRAS-VAZQUEZ J M, CABEZA A,High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs., 2014, 249: 405–413.

    [15] LIU Q, DONG X, XIAO G,A novel electrode material for symmetrical SOFCs., 2010, 22(48): 5478–5482.

    [16] MENG X, LIU X J, DA H,Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3–δelectrodes., 2014, 252: 58–63.

    [17] GAO J, MENG X, LUO T,Symmetrical solid oxide fuel cells fabricated by phase inversion tape casting with impregnated SrFe0.75Mo0.25O3–δ(SFMO) electrodes., 2017, 42(29): 18499–18503.

    [18] LIU F, ZHANG L, HUANG G,High performance ferrite– based anode La0.5Sr0.5Fe0.9Mo0.1O3–δfor intermediate–temperature solid oxide fuel cell., 2017, 255: 118–126.

    [19] QIAO J, CHEN W, WANG W,The Ca element effect on the enhancement performance of Sr2Fe1.5Mo0.5O6?δperovskite as cathode for intermediate-temperature solid oxide fuel cells., 2016. 331: 400–407.

    [20] MENG X, HAN D, WU H,Characterization of SrFe0.75Mo0.25O3?δ–La0.9Sr0.1Ga0.8Mg0.2O3?δcomposite cathodes prepared by infiltration., 2014, 246(Supplement C): 906–911.

    [21] MU?OZ-GARCíA A B, BUGARIS D E, PAVONE M,Unveiling structure–property relationships in Sr2Fe1.5Mo0.5O6–δ, an electrode material for symmetric solid oxide fuel cells., 2012, 134(15): 6826–6833.

    [22] XIAO G L, CHAO J, QING L,. Ni modified ceramic anodes for solid oxide fuel cells., 2012, 201: 43–48.

    [23] WANG Y, LIU T, LI M,Exsolved Fe–Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6perovskite oxide as a cathode for solid oxide steam electrolysis cells., 2016, 4(37): 14163–14169.

    [24] KUBO J, UEDA W. Catalytic behavior of AMoO(A=Ba, Sr) in oxidation of 2-propanol., 2009, 44(4): 906–912.

    [25] HE B, ZHAO L, SONG S,Sr2Fe1.5Mo0.5O6–δ-Sm0.2Ce0.8O1.9composite anodes for intermediate-temperature solid oxide fuel cells., 2012, 159(5): B619–B626.

    Ca摻雜Sr2Fe1.5Mo0.5O6–δ材料的合成與作為對稱固體氧化物燃料電池電極催化劑的性能研究

    夏天1,2, 孟燮1, 駱婷1, 占忠亮1

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 能量轉(zhuǎn)換材料重點(diǎn)實(shí)驗(yàn)室, 上海 200050;2. 中國科學(xué)院大學(xué), 北京 100049)

    對稱固體氧化物燃料電池由于生產(chǎn)過程簡單、成本低, 受到了研究者的廣泛關(guān)注。然而較低的電極催化性能制約了其進(jìn)一步的發(fā)展。本研究利用溶膠–凝膠法合成了一系列鈣取代Sr2Fe1.5Mo0.5O6的鈣鈦礦材料(Sr2–xCaFe1.5Mo0.5O6–δ,=0, 0.2, 0.4, 0.6), 并研究了其作為對稱固體氧化物燃料電池電極催化劑的性能。X射線衍射(XRD)測試表明所有樣品在空氣與氫氣氣氛中均能保持立方鈣鈦礦結(jié)構(gòu)。而在程序升溫還原(TPR)過程中, Ca2+的摻入能有效降低還原溫度, 提升其對析氧反應(yīng)的催化活性。對稱陽極電池在氫氣氣氛中的測試表明, 當(dāng)Ca2+的摻入量為0.6時(shí)電池極化阻抗最小。利用流延骨架與濕化學(xué)浸漬法制備了單電池SC0.6FMO|La0.9Sr0.1Ga0.8Mg0.2O3(LSGM)| SC0.6FMO。以氫氣作為燃料時(shí), 單電池在800與650 ℃的最大功率密度分別為1.05與0.41 W?cm–2。以上結(jié)果表明Sr2–xCaFe1.5Mo0.5O6–δ可以作為高效對稱燃料電池的電極催化劑。

    對稱固體氧化物燃料電池; 鈣鈦礦結(jié)構(gòu); 電極材料

    TQ174

    A

    2019-02-13;

    2019-04-22

    National Natural Science Foundation of China (51672298, 51702344, 51737011); The State of Grid (SGSDJN00FZQT1700446)

    XIA Tian (1993–), male, candidate of Master degree. E-mail: xiatian@student.mail.sic.ac.cn

    ZHAN Zhong-Liang, professor. E-mail: zzhan@mail.sic.ac.cn

    1000-324X(2019)10-1109-06

    10.15541/jim20190067

    猜你喜歡
    鈣鈦礦氧化物燃料電池
    相轉(zhuǎn)化法在固體氧化物燃料電池中的應(yīng)用
    燃料電池題解法分析
    細(xì)說『碳和碳的氧化物』
    氧化物的分類及其中的“不一定”
    試駕豐田氫燃料電池車“MIRAI未來”后的六個(gè)疑問?
    車迷(2017年12期)2018-01-18 02:16:11
    燃料電池的維護(hù)與保養(yǎng)
    電子制作(2017年10期)2017-04-18 07:23:13
    當(dāng)鈣鈦礦八面體成為孤寡老人
    幾種新型鈣鈦礦太陽電池的概述
    鈣鈦礦型多晶薄膜太陽電池(4)
    太陽能(2015年4期)2015-02-28 17:08:19
    鈣鈦礦型多晶薄膜太陽電池(2)
    太陽能(2015年2期)2015-02-28 17:07:18
    亚洲av免费高清在线观看| 亚洲国产高清在线一区二区三| 国产视频一区二区在线看| 深夜a级毛片| 久久精品久久久久久噜噜老黄 | 亚洲人成网站高清观看| 亚洲国产色片| 中亚洲国语对白在线视频| 国产成人影院久久av| 亚洲精品色激情综合| 国产精品综合久久久久久久免费| 在线播放无遮挡| 久久久久久久久久成人| 人妻制服诱惑在线中文字幕| 欧美日韩黄片免| 久久久久久九九精品二区国产| 亚洲 国产 在线| 99久久久亚洲精品蜜臀av| 日韩中字成人| 亚洲一区二区三区不卡视频| 99热这里只有是精品在线观看 | 在线播放无遮挡| 免费看光身美女| 99热精品在线国产| 我要看日韩黄色一级片| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩卡通动漫| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 别揉我奶头~嗯~啊~动态视频| 日韩欧美国产一区二区入口| 国产成人欧美在线观看| 最新中文字幕久久久久| 国产综合懂色| 床上黄色一级片| 9191精品国产免费久久| 精品免费久久久久久久清纯| 国语自产精品视频在线第100页| 桃红色精品国产亚洲av| 12—13女人毛片做爰片一| 在线免费观看不下载黄p国产 | 少妇高潮的动态图| 在线观看午夜福利视频| 国产高清视频在线播放一区| 午夜激情福利司机影院| 97人妻精品一区二区三区麻豆| 免费黄网站久久成人精品 | 三级毛片av免费| 久久国产乱子免费精品| 直男gayav资源| 国产成人福利小说| 亚洲一区二区三区不卡视频| 夜夜爽天天搞| 国产精品一区二区性色av| 在线看三级毛片| 男女下面进入的视频免费午夜| 国产大屁股一区二区在线视频| АⅤ资源中文在线天堂| 91狼人影院| 国产成人影院久久av| 此物有八面人人有两片| 色av中文字幕| 五月玫瑰六月丁香| 国产伦在线观看视频一区| 一区二区三区免费毛片| 久久精品人妻少妇| 亚洲av不卡在线观看| 美女高潮喷水抽搐中文字幕| 国产亚洲精品av在线| 欧美黑人巨大hd| 日韩欧美 国产精品| 中出人妻视频一区二区| 在线免费观看的www视频| 午夜日韩欧美国产| 精华霜和精华液先用哪个| 尤物成人国产欧美一区二区三区| 精品久久国产蜜桃| 欧美精品啪啪一区二区三区| 美女cb高潮喷水在线观看| av在线观看视频网站免费| 直男gayav资源| 国产一区二区三区在线臀色熟女| 成年版毛片免费区| 国产麻豆成人av免费视频| 午夜a级毛片| 赤兔流量卡办理| 国产精品久久视频播放| 男人舔奶头视频| 级片在线观看| av在线天堂中文字幕| 99视频精品全部免费 在线| 三级毛片av免费| 我的女老师完整版在线观看| 在线观看舔阴道视频| 亚洲成av人片免费观看| 男女下面进入的视频免费午夜| 日日摸夜夜添夜夜添小说| 国产精品久久视频播放| 午夜影院日韩av| 欧美一级a爱片免费观看看| 天美传媒精品一区二区| 我的老师免费观看完整版| 别揉我奶头 嗯啊视频| av在线天堂中文字幕| 国产免费一级a男人的天堂| 国产精品伦人一区二区| 国产成年人精品一区二区| 日韩国内少妇激情av| 一级作爱视频免费观看| 搡女人真爽免费视频火全软件 | 在线播放无遮挡| 国产精品嫩草影院av在线观看 | 最近最新中文字幕大全电影3| 国产精品女同一区二区软件 | www.999成人在线观看| 精品久久久久久久久亚洲 | 欧美日韩黄片免| 看十八女毛片水多多多| 12—13女人毛片做爰片一| 亚洲在线观看片| 一本久久中文字幕| 国产欧美日韩一区二区三| 亚洲国产精品合色在线| 美女高潮的动态| a级毛片免费高清观看在线播放| 亚洲电影在线观看av| 国产久久久一区二区三区| 久久6这里有精品| 亚洲自拍偷在线| 亚洲美女黄片视频| 男人舔女人下体高潮全视频| 亚洲真实伦在线观看| 亚洲一区二区三区色噜噜| 一级黄色大片毛片| 亚洲va日本ⅴa欧美va伊人久久| 看黄色毛片网站| 久久精品国产99精品国产亚洲性色| 极品教师在线免费播放| 免费在线观看影片大全网站| 十八禁国产超污无遮挡网站| 中国美女看黄片| 欧美午夜高清在线| 国产黄片美女视频| 亚洲avbb在线观看| 欧美性猛交╳xxx乱大交人| 亚洲 国产 在线| 欧美最黄视频在线播放免费| 久久久色成人| 日韩中字成人| 黄色丝袜av网址大全| 色精品久久人妻99蜜桃| 国产精品av视频在线免费观看| 国产精品乱码一区二三区的特点| 99热这里只有是精品在线观看 | 久久伊人香网站| 亚洲精华国产精华精| 一进一出好大好爽视频| 在线观看66精品国产| 欧洲精品卡2卡3卡4卡5卡区| 老鸭窝网址在线观看| 久久这里只有精品中国| 在线观看66精品国产| 国产大屁股一区二区在线视频| 一本久久中文字幕| 五月玫瑰六月丁香| 91久久精品电影网| 国产精品野战在线观看| 99精品久久久久人妻精品| 亚洲无线在线观看| 97碰自拍视频| 好看av亚洲va欧美ⅴa在| 国产成人欧美在线观看| 两个人视频免费观看高清| 一a级毛片在线观看| 黄色日韩在线| 国产又黄又爽又无遮挡在线| 亚洲精华国产精华精| 国产私拍福利视频在线观看| 999久久久精品免费观看国产| 99久久成人亚洲精品观看| 日本一二三区视频观看| 美女黄网站色视频| 身体一侧抽搐| 久久久久久久久中文| 国产69精品久久久久777片| 性色av乱码一区二区三区2| 丁香欧美五月| 麻豆成人av在线观看| 欧美一级a爱片免费观看看| 国产精品美女特级片免费视频播放器| 亚洲狠狠婷婷综合久久图片| 久久人人精品亚洲av| 天天一区二区日本电影三级| 欧洲精品卡2卡3卡4卡5卡区| 亚洲五月婷婷丁香| 久久久久久国产a免费观看| av在线观看视频网站免费| 欧美日韩瑟瑟在线播放| 免费黄网站久久成人精品 | 国产免费男女视频| 亚洲avbb在线观看| 久久性视频一级片| 国产一区二区在线av高清观看| 国产精品影院久久| 亚洲最大成人中文| 午夜久久久久精精品| 精品人妻熟女av久视频| 欧美日韩乱码在线| 久久精品国产清高在天天线| 精品一区二区三区人妻视频| 在线观看舔阴道视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美色视频一区免费| 乱人视频在线观看| 国产蜜桃级精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 怎么达到女性高潮| 首页视频小说图片口味搜索| 日本 欧美在线| 哪里可以看免费的av片| 精品人妻偷拍中文字幕| 人妻制服诱惑在线中文字幕| 99热这里只有是精品50| 国产中年淑女户外野战色| 日韩av在线大香蕉| 国产欧美日韩精品亚洲av| 深夜a级毛片| 午夜福利在线观看免费完整高清在 | 小说图片视频综合网站| 色尼玛亚洲综合影院| 欧美日韩福利视频一区二区| 一夜夜www| 天堂动漫精品| av中文乱码字幕在线| 久久香蕉精品热| 丁香六月欧美| 欧美极品一区二区三区四区| 亚洲最大成人手机在线| 国产精品女同一区二区软件 | 中亚洲国语对白在线视频| 亚洲18禁久久av| 午夜免费激情av| 非洲黑人性xxxx精品又粗又长| 国产成人av教育| 国产亚洲欧美98| 蜜桃久久精品国产亚洲av| 免费观看精品视频网站| 日本三级黄在线观看| 欧美丝袜亚洲另类 | 午夜福利免费观看在线| 高清日韩中文字幕在线| 亚洲成人中文字幕在线播放| 国产爱豆传媒在线观看| 国语自产精品视频在线第100页| 亚洲中文日韩欧美视频| 久久国产精品人妻蜜桃| 蜜桃亚洲精品一区二区三区| 精品一区二区三区视频在线| 亚洲欧美激情综合另类| 中出人妻视频一区二区| 99热这里只有是精品50| 久久久久久久久中文| 欧美日韩国产亚洲二区| 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区精品小视频在线| 久久国产乱子伦精品免费另类| 国内精品美女久久久久久| 麻豆成人av在线观看| 久久久久国产精品人妻aⅴ院| 真人做人爱边吃奶动态| 中文字幕人妻熟人妻熟丝袜美| 男人狂女人下面高潮的视频| 热99re8久久精品国产| 好男人在线观看高清免费视频| 97热精品久久久久久| 69av精品久久久久久| 一级毛片久久久久久久久女| 琪琪午夜伦伦电影理论片6080| 亚洲自偷自拍三级| 一进一出好大好爽视频| 午夜福利欧美成人| 国产av在哪里看| 91午夜精品亚洲一区二区三区 | 日日夜夜操网爽| 国产色爽女视频免费观看| 精品日产1卡2卡| 夜夜夜夜夜久久久久| 成人性生交大片免费视频hd| 久久九九热精品免费| 久久天躁狠狠躁夜夜2o2o| 午夜亚洲福利在线播放| av在线天堂中文字幕| a级毛片免费高清观看在线播放| 国产欧美日韩精品亚洲av| 精品乱码久久久久久99久播| 婷婷六月久久综合丁香| 3wmmmm亚洲av在线观看| 亚洲成人精品中文字幕电影| 此物有八面人人有两片| 91字幕亚洲| 老熟妇仑乱视频hdxx| 亚洲第一区二区三区不卡| 精品不卡国产一区二区三区| 激情在线观看视频在线高清| 欧美日韩国产亚洲二区| 好看av亚洲va欧美ⅴa在| 免费av观看视频| 9191精品国产免费久久| 色综合婷婷激情| 中文字幕av在线有码专区| 欧美潮喷喷水| 丁香六月欧美| 精品久久久久久久人妻蜜臀av| 啦啦啦韩国在线观看视频| 国产探花在线观看一区二区| 中文字幕久久专区| 国内精品久久久久精免费| 国产在线精品亚洲第一网站| 乱人视频在线观看| 日本精品一区二区三区蜜桃| 国产免费av片在线观看野外av| 国产蜜桃级精品一区二区三区| 男女做爰动态图高潮gif福利片| 国产精品av视频在线免费观看| 草草在线视频免费看| 日韩欧美一区二区三区在线观看| 精品国产三级普通话版| 日本 av在线| 床上黄色一级片| 五月玫瑰六月丁香| 国产av不卡久久| 国产成人福利小说| 90打野战视频偷拍视频| 99国产综合亚洲精品| 亚洲成av人片免费观看| 亚洲欧美日韩高清在线视频| 欧美潮喷喷水| 中文字幕av在线有码专区| 在线观看舔阴道视频| 内射极品少妇av片p| 国产精品99久久久久久久久| 免费看光身美女| 欧美最新免费一区二区三区 | 两个人的视频大全免费| 日韩欧美 国产精品| 婷婷精品国产亚洲av在线| 91av网一区二区| 九九久久精品国产亚洲av麻豆| 一进一出好大好爽视频| 亚洲av成人av| 欧美日韩中文字幕国产精品一区二区三区| 露出奶头的视频| 亚洲七黄色美女视频| 国模一区二区三区四区视频| 久久午夜亚洲精品久久| 精品熟女少妇八av免费久了| x7x7x7水蜜桃| 色av中文字幕| 十八禁国产超污无遮挡网站| 国产av麻豆久久久久久久| 9191精品国产免费久久| 757午夜福利合集在线观看| 国语自产精品视频在线第100页| 亚洲 欧美 日韩 在线 免费| 亚洲专区中文字幕在线| 色在线成人网| 久久这里只有精品中国| 久久人人爽人人爽人人片va | 日本 欧美在线| 别揉我奶头~嗯~啊~动态视频| 成年免费大片在线观看| 国产久久久一区二区三区| 脱女人内裤的视频| 中文资源天堂在线| 亚洲av二区三区四区| 12—13女人毛片做爰片一| 深夜a级毛片| 97超视频在线观看视频| 欧美性猛交黑人性爽| 99久久无色码亚洲精品果冻| 麻豆国产av国片精品| 夜夜夜夜夜久久久久| 久久久久精品国产欧美久久久| 啦啦啦韩国在线观看视频| 熟妇人妻久久中文字幕3abv| 99久久九九国产精品国产免费| 欧美日韩黄片免| 美女免费视频网站| 在线免费观看的www视频| 噜噜噜噜噜久久久久久91| 久久天躁狠狠躁夜夜2o2o| 狂野欧美白嫩少妇大欣赏| 蜜桃久久精品国产亚洲av| 国产av麻豆久久久久久久| 老熟妇乱子伦视频在线观看| 日韩欧美 国产精品| 一a级毛片在线观看| 国产成人福利小说| 69av精品久久久久久| 可以在线观看的亚洲视频| 中文字幕免费在线视频6| 成人高潮视频无遮挡免费网站| 国产91精品成人一区二区三区| 亚洲成av人片免费观看| 午夜精品一区二区三区免费看| 人妻夜夜爽99麻豆av| 国产成年人精品一区二区| 久99久视频精品免费| 韩国av一区二区三区四区| 亚洲精品粉嫩美女一区| АⅤ资源中文在线天堂| 日本 欧美在线| 日本黄色片子视频| 日韩大尺度精品在线看网址| 亚洲欧美日韩东京热| 久久久久九九精品影院| 国产精品久久久久久久久免 | 亚洲无线观看免费| 欧美日韩黄片免| 欧美性猛交╳xxx乱大交人| 久久久久久久久久成人| 丁香欧美五月| 男女视频在线观看网站免费| 亚洲第一电影网av| 亚洲电影在线观看av| 成年女人永久免费观看视频| 久久久久性生活片| 白带黄色成豆腐渣| 男人舔奶头视频| 麻豆国产97在线/欧美| 中国美女看黄片| 特大巨黑吊av在线直播| 欧美高清成人免费视频www| 亚洲电影在线观看av| 草草在线视频免费看| 最近中文字幕高清免费大全6 | 成人三级黄色视频| 亚洲国产欧美人成| 国产精品嫩草影院av在线观看 | 亚洲av免费在线观看| 欧美成人a在线观看| 婷婷丁香在线五月| 久久久久免费精品人妻一区二区| 国产高清视频在线播放一区| 美女黄网站色视频| 欧美成人一区二区免费高清观看| 久久99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 国内精品美女久久久久久| 91麻豆精品激情在线观看国产| 亚洲七黄色美女视频| 国产69精品久久久久777片| 在线国产一区二区在线| 成人av一区二区三区在线看| 久久精品国产清高在天天线| 亚洲无线在线观看| 简卡轻食公司| 国产探花在线观看一区二区| 亚洲电影在线观看av| 久久精品国产自在天天线| 国产黄色小视频在线观看| 国产精品亚洲av一区麻豆| 国产亚洲精品av在线| 国产精品久久久久久亚洲av鲁大| 国产av不卡久久| 国产欧美日韩一区二区精品| 亚洲在线自拍视频| 999久久久精品免费观看国产| 美女高潮喷水抽搐中文字幕| 男人的好看免费观看在线视频| 亚洲精品乱码久久久v下载方式| 欧美激情久久久久久爽电影| 精品久久久久久久久亚洲 | 国产高清激情床上av| 毛片一级片免费看久久久久 | 亚洲18禁久久av| 久久久色成人| 成人欧美大片| 日韩免费av在线播放| 久久久久久久午夜电影| 美女 人体艺术 gogo| 99久久99久久久精品蜜桃| 婷婷精品国产亚洲av在线| 亚洲性夜色夜夜综合| 色视频www国产| 国产精品乱码一区二三区的特点| av国产免费在线观看| 免费搜索国产男女视频| 国产av一区在线观看免费| 国产精品久久久久久久电影| 欧美黑人欧美精品刺激| 成年人黄色毛片网站| 脱女人内裤的视频| 国产三级中文精品| 欧美性感艳星| 99热这里只有是精品在线观看 | 国产高清视频在线观看网站| 最近在线观看免费完整版| 看片在线看免费视频| 亚洲真实伦在线观看| 日本a在线网址| 久久伊人香网站| 精品一区二区三区视频在线观看免费| 欧美精品国产亚洲| 午夜激情欧美在线| 搞女人的毛片| av欧美777| 国产亚洲精品久久久com| 日日夜夜操网爽| 人人妻人人澡欧美一区二区| 亚洲七黄色美女视频| 又爽又黄a免费视频| av在线蜜桃| 欧美性感艳星| 亚洲国产精品久久男人天堂| 国产一区二区三区视频了| 琪琪午夜伦伦电影理论片6080| 国产视频内射| 国语自产精品视频在线第100页| 欧美最黄视频在线播放免费| 波多野结衣高清无吗| 亚洲av熟女| 日韩欧美国产在线观看| 国产精品一区二区性色av| 亚洲最大成人av| 精品99又大又爽又粗少妇毛片 | 精品人妻视频免费看| av视频在线观看入口| 日本一本二区三区精品| 神马国产精品三级电影在线观看| 日本a在线网址| 又黄又爽又刺激的免费视频.| 成人国产一区最新在线观看| 亚洲欧美日韩卡通动漫| 日本一本二区三区精品| av中文乱码字幕在线| 色精品久久人妻99蜜桃| 欧美最黄视频在线播放免费| 日韩成人在线观看一区二区三区| 日韩高清综合在线| 99久久99久久久精品蜜桃| 久久亚洲精品不卡| 简卡轻食公司| 少妇高潮的动态图| 变态另类丝袜制服| 色综合欧美亚洲国产小说| 国产极品精品免费视频能看的| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久久久久| 又粗又爽又猛毛片免费看| 夜夜爽天天搞| 国产在线男女| 色综合亚洲欧美另类图片| 热99re8久久精品国产| 国产精品98久久久久久宅男小说| 国产精品日韩av在线免费观看| 国产精品久久久久久久久免 | 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 国产精品99久久久久久久久| 国产精品久久久久久亚洲av鲁大| 亚洲精华国产精华精| 在线播放无遮挡| 美女黄网站色视频| 成年女人毛片免费观看观看9| 国产精品一区二区性色av| 欧美成人性av电影在线观看| 国产精品电影一区二区三区| 精品国产三级普通话版| 中文字幕精品亚洲无线码一区| 精品福利观看| 黄色视频,在线免费观看| 亚洲人成网站高清观看| eeuss影院久久| 中文字幕精品亚洲无线码一区| av在线观看视频网站免费| 国产成人欧美在线观看| 精华霜和精华液先用哪个| 欧美中文日本在线观看视频| 91av网一区二区| 精品午夜福利视频在线观看一区| 精品人妻视频免费看| 国产视频内射| 2021天堂中文幕一二区在线观| 日本撒尿小便嘘嘘汇集6| 午夜福利在线观看免费完整高清在 | 亚洲,欧美,日韩| 亚洲内射少妇av| 久久久久精品国产欧美久久久| 久久国产乱子免费精品| 午夜激情欧美在线| 国产免费一级a男人的天堂| 欧美黑人巨大hd| 欧美+日韩+精品| 欧美一区二区国产精品久久精品| 十八禁国产超污无遮挡网站| 久久精品国产亚洲av香蕉五月| 男人狂女人下面高潮的视频| 日韩精品青青久久久久久| 亚洲国产色片| 国产一级毛片七仙女欲春2| 18美女黄网站色大片免费观看| 欧美日韩瑟瑟在线播放| 18禁在线播放成人免费| 真人做人爱边吃奶动态| 久久人人爽人人爽人人片va | 久久热精品热| 国产亚洲欧美98| 18禁黄网站禁片免费观看直播| 精品99又大又爽又粗少妇毛片 | 精华霜和精华液先用哪个| 精品日产1卡2卡| 草草在线视频免费看|