• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Renewable Porous Carbons Prepared by KOH Activation as Oxygen Reduction Electrocatalysts

    2019-12-24 09:25:50HEWangTaoMARuGuangZHUYuFangYANGMingJieWANGJiaCheng
    無機材料學報 2019年10期
    關鍵詞:氫氧化鉀電催化商用

    HE Wang-Tao, MA Ru-Guang, ZHU Yu-Fang, YANG Ming-Jie, WANG Jia-Cheng

    Renewable Porous Carbons Prepared by KOH Activation as Oxygen Reduction Electrocatalysts

    HE Wang-Tao1,2, MA Ru-Guang2, ZHU Yu-Fang1, YANG Ming-Jie3, WANG Jia-Cheng2

    (1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 3. Department of Chemical Engineering, Monash University, Victoria 3800, Australia)

    The nitrogen-doped porous carbon applied for oxygen reduction reaction (ORR) has aroused extensive interests due to its unique physical and chemical properties. However, the complicated nitrogen-doping strategy and high cost limit its extensive application. In this work, a series of nitrogen-doped porous carbons were prepared by a facile pyrolysis process coupling with subsequent KOH activation using renewable N-enriched biomass potato as carbon source. Effects of activation temperature and KOH amounts on the textural properties and electrocatalytic ORR activities of the final samples were investigated in detail. The KOH activation treatment results in a high specific surface area (SSA) and hierarchical porous structure, which is beneficial for improved ORR performance. The optimized NPC-750 possesses a high SSA of 1134.2 m2?g–1, developed hierarchical pores as well as moderate nitrogen content (1.57at%). It also exhibits a positive onset potential of 0.89 V (RHE) and half-wave potential of 0.79 V (RHE). Simultaneously, the advanced long-time stability and methanol-tolerance capacity were also obtained, implying that these biomass-derived porous carbons are potential low-cost ORR electrocatalysts. Moreover, these porous carbons show great potential in various fields including supercapacitors, adsorption/separation, catalysis and batteries as well.

    biomass; porous; nitrogen-doped carbons; KOH activation; oxygen reduction reaction

    The low kinetics of oxygen reduction reaction (ORR) on the cathode is a main barrier for the commercial proton- exchange membrane fuel cells (PEMFCs)[1-2]. Pt is generally considered as one of the best catalysts towards ORR. However, high-cost and low stability limits its widespread application[3-5]. Therefore, it is urgent to find new low-cost and high activity alternatives for Pt-based catalysts. Recently, nitrogen-doped porous carbon materials (NPCs) have been recognized as a promising type of ORR catalyst for PEMFCs[6]. The carbon matrix possesses excellent electrical conductivity and stability which can promote electronic transmission process during ORR[7]. On the other hand, the introduction of nitrogen atoms can create more active sites due to the changes of electron structure of carbon framework, leading to improvement of catalytic performance towards ORR[8-10].

    Recently, the use of agricultural by-products as precursor materials to prepare nitrogen-doped carbons attracted much attention[11-13]. Precursor materials have lots of advantages such as environment-friendliness, low-cost and abundance on the earth. Moreover, there are various hetero-elements such as N, S, Fe,in biomass materials[14-15]. Therefore, it is convenient to obtain nitrogen- doped carbons by direct pyrolysis of biomass materials without additional nitrogen sources[16]. However, the specific surface area (SSA) and porosity of nitrogen doped carbons obtained from simply pyrolysis of biomass materials are too low to match the demand of exposing enough active sites, leading to poor electrochemical performance[17-18]. Thus, it is highly desirable to improve the SSA and porosity of nitrogen doped carbons derived from biomass.

    To our knowledge, there are various activating agents and templates applied in preparation of porous carbons with high SSA and high porosity, such as CO2, ZnCl2, KOH, H3PO4and SiO2[19-23]. In particular, KOH is one of the most common activating agents. The porous carbons obtained from KOH activation have a high SSA with considerable micro-pores[24]. Simultaneously, biomass derived carbons usually possess lots of macropores. Thus, KOH activated nitrogen-doped porous carbons always have well-developed hierarchical pore structure which could significantly enhance the transport of electrons[25]. Moreover, KOH activation process is also suitable for large scale production of porous carbons due to its mature technology and convenient operation. Compared with other activating reagents, KOH activation prefers to obtain porous carbons with high SSAs and lots of micro-pores.

    Herein, we report a facile strategy of preparing KOH activated nitrogen-doped porous carbons using agriculture products potato as a precursor which possesses abundant nitrogen atoms and developed porous texture. The optimal catalyst NPC-750 obtains a high SSA of 1134 m2?g–1and a suitable nitrogen content of 1.57at% which provides sufficient active sites for ORR electro- catalysis. Moreover, the well-defined hierarchical pore structure boosts the transport of ORR-relevant species. Their combination endows it outstanding ORR activity in an O2-saturated 0.1 mol?L–1KOH solution. It exhibits an onset potential of 0.89 V (RHE) and a half-wave potential of 0.79 V (RHE) which is comparable to most state-of-the-art non-metal catalysts for ORR in an alkaline media. In addition, it has only 12% degradation of current density after 5 h of ORR, indicating excellent long-time stability.

    1 Experimental

    1.1 Synthesis of nitrogen-doped carbons (NCs)

    The nitrogen doped carbons (NCs) were prepared from biomass potato as a single carbon and nitrogen sou-rce. Typically, a steamed potato was grounded into mas-hed potatoes and then dried in an oven at 60 ℃. Subse-quently, 3 g dried mashed potatoes were put into a porcelain boat, and transferred to the tube furnace, followed by carbonization under argon atmosphere at 900 ℃ for 2 h with a heating rate of 5 ℃?min–1. The final product was named as nitrogen-doped carbons (NCs).

    1.2 Synthesis of nitrogen-doped porous carbons (NPCs)

    NPCs were synthesizedchemical activation of NCs using KOH as activating reagent. For instance, 3 g KOH was dissolved in 50 mL deionized water, and 1 g NC was added into the KOH solution followed by stirring for 30 min to ensure uniform dispersion. After drying at 80 ℃, the black powder was annealed in argon atmosphere at 700, 750 and 800 ℃ for 1 h with a heating rate of 3 ℃?min–1, respectively. Finally, the product was washed by 1 mol?L–1HCl solution and deionized water for several times in order to remove residual KOH and other impurities. The final products were donated as NPC-(means the activating temperature, ℃).

    1.3 Characterization

    The morphologies of samples were characterized by using scanning electron microscopy (SEM, Magellan 400) at an accelerating voltage of 2 kV. The transmission electron microscopy (TEM, JEM-2100F) was carried out at an accelerating voltage of 200 kV. Raman spectra were recorded by Raman spectrometer (LABRAM HR800). The pore structure properties of samples were studied by ASAP 2010 instrument with the nitrogen adsorption tem-perature of 77 K. The specific surface area was calcula-ted from the Brunner-Emmett-Teller (BET) method. The X-ray photoelectron spectroscopy (XPS) was investig-ated on the X-ray photoelectron spectrometer (ESCALAB 250).

    1.4 Electrochemical characterization

    The electrochemical properties of samples were performed on an electrochemical station of bipotentiostat (Pine instrument Co. LTD. USA). The electro-catalytic ORR performance was measured in a three-electrode system using a saturated calomel electrode (SCE) as reference electrode and a Pt plate as counter electrode in O2-saturated 0.1 mol?L–1KOH aqueous solution. Working electrode was the glassy carbon electrode coated with catalyst ink. Typically, 5 mg samples and 20 μL Nafion (5wt%) were dispersed into the solution containing 500 μL deionized water and 500 μL ethanol followed by ultrasonic treatment for 1 h to form homogenous ink. Subsequently, 20 μL ink was dropped on the surface of glassy carbon electrode, followed by drying to form the working electrode. Electrochemical measurements including cyclic voltammetry (CV), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) were tested at a potential range from –1.0 to 0.1 V (SCE).

    2 Results and discussion

    The morphology of as-prepared samples was chara-cterized by SEM and TEM. As shown in Fig. 1(a), the SEM image of NC particle reveals a smooth surface with a few small holes. After subjecting the subsequent activation by KOH (NC/KOH=1/3), the smooth surface became rough and porous, as evidenced by increased density of small holes on the surface which resulted from the combination of micropores. Moreover, the porous structure especially in the range of nanoscales of NPC particles was more obvious with the activating temperature increasing (Fig. 1(b)). TEM image of NPC-750 in Fig. 1(c) also shows the existence of large amount of pores within carbon matrix. Such a porous texture is beneficial for mass transfer during ORR, thereby improving the electrocatalytic performance of NPCs[26]. In addition, the HRTEM image in Fig. 1(d) as well as the SAED (inset in Fig. 1(d)) reveals the amo-rphous structure of the activated sample (NPC-750).

    Fig. 1 SEM images of (a) NC and (b) NPC-750; (c) TEM and (d) HRTEM images of NPC-750 (inset in (d): corresponding SAED pattern of NPC-750)

    Raman spectra of NPCs in Fig. 2(a) exhibit two strong peaks located at about 1305 and 1596 cm–1. The peak at 1596 cm–1(G band) is attributed to E2gmode of graphite and related to the vibration of sp2-bonded carbon atoms in a 2D hexagonal lattice, while the peak at 1305 cm–1(D band) corresponds to vibrations of carbon atoms with dangling bonds in plane terminations of diso-rdered[27-28]. Therefore, the lower intensity ratio of D band to G band (D/G) suggested higher graphitization degree of carbon materials. As we all know, KOH activation can generate a lot of micropores and defects into the carbon matrix[29]. As shown in Fig. 2(a), the higherD/Gvalues (1.15–1.16) of NPCs activated by KOH reveals increasing defects in carbon frameworks compared with NCs (~1.01), which results in high porosity and surface area. The defects could act as adsorption and active sites during the ORR process, thus leading to enhanced ORR performance.

    Fig. 2(b) exhibits the N2adsorption and desorption isotherms of all samples. NCs prepared from direct car-bonization of mashed potatoes have no obvious uptake of N2, suggesting its low porosity and specific surface area (SSA). However, the NPCs all show the type IV iso-therms with H3 hysteresis loops at 0.4

    Fig. 2 (a) Raman spectra, (b) nitrogen adsorption-desorption isotherms and (c) pore size distribution curves of NPCs with inset in (c) showing the enlarged part

    Table 1 Summary of porosity parameters of all samples

    As shown in Fig. 3(a), XPS spectra reveals the different composition of surface atoms for all of the samples. Peaks located at 285, 400, 532 eV suggest C1s, N1s and O1s, respectively[32], and the N contents of NPCs decreases with increasing temperature because the KOH activation could lead to the loss of the doped heteroatoms. Moreover, the NPC-750 has a most suitable N content of 1.57at% which could provide sufficient active sites for ORR process. The high resolution N1s spectra of NPCs (Fig. 4(b-d)) can be deconvoluted into four peaks at 398.77, 399.7, 401.58 and 403.69 eV[33-36], which can be assigned to pyridinic N, pyrrolic N, graphitic N and oxidized nitrogen species (N-O), respectively. As we all know, KOH activation could destroy the graphene layer and expose more edges in the carbon framework. Furthermore, pyridinic and pyrrolic N atoms bonded with two sp2carbon atoms will contribute electron lone pairs into carbon conjugated systems, consequently inducing electron donor effects. On the other side, graphitic N atoms take the position inside an aromatic ring with sp2hybridization could further enhance the electrical conductivity of the carbon material (Fig. 3(f)). Therefore, improved ORR performance is expected for NPC-750 due to its sufficient pyridinic N content of 33.2at% and suitable graphitic N content of 19.7at% (Fig. 3(e)). Moreover, the existence of O functionalities could enable participation in Faradaic reactions and the combined effect between N and O groups is also beneficial for capacitance enhancement[37-38].

    Fig. 3 (a) XPS survey spectra of NPCs, high resolution N 1s spectra of (b) NPC-700, (c) NPC-750 and (d) NPC-800; (e) Contents of pyridinic N, graphitic N and pyrrolic N for NPCs at different activation temperature; (f) Illustration of three types of nitrogen in NPCs

    The ORR activity and four electron selectivity of all samples were investigated by rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) in a three-electrode system, respectively. Fig. 4(a) shows CV curves of NPC-750 in 0.1 mol?L–1O2or N2saturated KOH aqueous solution. An evident peak was obtained in O2saturated electrolyte, while it disappeared in N2saturated electrolyte at the same conditions, suggesting the obvious ORR occurred on the electrode. As shown in Fig. 4, the linear sweep voltammetry (LSV) curves at the rotating speed of 1600 r?min–1for all samples were recorded. NC shows poor activity for ORR as expected due to its low SSA and low porosity which limit the exposure of the surface active sites. In contrast, the enhanced ORR activity with the increase of activating temperature for NPCs was observed, indicating that more nanopores introduced by KOH activation in carbon matrix lead to larger SSA and porosity. However, it shows a dramatically decrease of ORR activity owing to the absence of nitrogen while the temperature exceeds 800 ℃. Therefore, NPC-750 (KOH/carbon=3/1) exhibits the best catalytic performance for ORR with a positive onset potential of 0.89 V (RHE) and half-wave potential of 0.79 V (RHE) (Fig. 4(c)). The limited current density of NPC-750 also reaches 5.53 mA?cm–2, indicating a higher density of surface active sites as well as the best ORR performance. Simultaneously, the KOH/carbon mass ratio dependent activity for NPCs catalyst was also determined. When the KOH/carbon mass ratio keeps 3, the NPC-700 shows the best ORR performance.

    Fig. 4 (a) CV curves of NPC-750 in N2 and O2-saturated electrolyte; (b) LSV curves of all samples at 1600 r?min–1; (c) Bar plots of EOnset and EHalf-Wave for all samples; (d) LSV curves of NPC-750 at different rotating rates from 400 to 2025 r?min–1 with inset showing the corresponding Kouteckey-Levich plots at different potentials; (e) RRDE polarization curves of NPC-750 at 1600 r?min–1; (f) Electron transfer number and hydrogen peroxide yield of NPC-750 ORR performance was recorded in 0.1 mol?L–1 KOH solution

    The four electron selectivity of NPCs catalyst was evaluated by Koutechy-Levich(K-L) equation and RRDE measurement[39-40]. Fig. 4(d) shows the LSV curves of NPC-750 at different rotating speeds from 400 to 2025 r?min–1. Obviously, the increased current density was observed as the enhanced rotating speed due to the shortened diffusion layer for electrode material. Furthermore, the electron transfer number of NPC-750 calculated by the K-L equation is 3.66 (inset in Fig. 4(d)), indicating the ORR process mainly transformed through a four electron pathway which is important for fuel cells, because peroxides produced by a two-electron process could poison the cellscorroding the membrane and catalyst layer[41-42]. As shown in Fig. 4(e-f), the RRDE measurement was also taken to comprehend the reaction pathway of NPC-750. The ring current is close to zero, implying its weak selectivity of two electron pathway for ORR. The electron transfer numbers () is 3.08–3.81 at a potential range of 0–1.0 V (RHE) and the hydrogen peroxide yield is 9.5%–45.2%. It suggests that the ORR process catalyzed by NPC-750 is a combination of two electron and four electron reaction pathway, although the four electron process is dominant.

    The long-time stability is a key factor for excellent ORR catalysts. As shown in Fig. 5(a), after 5 h of ORR process, there are 88% of the initial current remained for NPC-750, which is far superior to Pt/C. Moreover, the methanol-tolerance capacity of NPC-750 was also evaluated (Fig. 5(b)). Pt/C suffered a dramatic decline of the current when 3 mol?L–1methanol was added at 200 s during the chronoamperometric measurement. In contrast, a slight increase of the current was observed for NPC-750, indicating the excellent methanol-tolerance capacity which could meet the demands of the practical applica-tions.

    3 Conclusions

    In summary, nitrogen-doped porous carbons were prepared from renewable nitrogen-rich potato by the direct pyrolysis process followed by KOH activation. High temperature pyrolysis leads to the outstanding electrical conductivity. The KOH activation treatment results in a high SSA and increased porosity, which could facilitate the mass transfer during ORR process. The high specific surface area of 1134.2 m2?g–1, hierarchical porous structure and moderate nitrogen content of 1.57at% make NPC- 750 own an excellent oxygen reduction reaction performance. It shows a positive onset potential of 0.89 V (RHE) and half-wave potential of 0.79 V (RHE). The limited current density of NPC-750 reaches 5.53 A?cm–2. Furthermore, NPC-750 exhibits superior long-time stability and methanol-tolerance capacity to commercial Pt/C catalyst, implying that potato-derived NPC-750 has great potential as an excellent catalyst for oxygen reduction reaction in the future practical appli-cations.

    Fig. 5 (a) Long-time stability, (b) methanol-tolerance capacity of NPC-750 and Pt/C in 0.1 mol?L–1 KOH solution

    [1] GUO DA-KAI, TIAN ZHENG-FANG, WANG JIA-CHENG,. Co2N nanoparticles embedded N-doped mesoporous carbon as eff-icient electrocatalysts for oxygen reduction reaction., 2019, 473: 555–563.

    [2] KIM SEOK-JIN, MAHMOOD JAVEED, KIM CHANG-MIN,. Defect-free encapsulation of Fe(0) in 2D fused organic net-works as a durable oxygen reduction electrocatalyst., 2018, 140(5): 1737–1742.

    [3] HAN YUN-HU, WANG YANG-GANG, CHEN WEN-XING,. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction., 2017, 139(48): 17269–17272.

    [4] ZHANG LONG-ZHOU, JIA YI-ALEC, YAN XUE-CHENG,. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction., 2018, 140(34): 10757–10763.

    [5] HE DA-PING, ZHANG LI-BO, HE DONG-SHENG,. Amor-phous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction., 2016, 7: 12362.

    [6] ZHANG YA-QING, ZHANG XIAN-LEI, MA XIU-XIU,. A facile synthesis of nitrogen-doped highly porous carbon nanopla-telets: efficient catalysts for oxygen electroreduction., 2017, 7: 43366.

    [7] LIANG HAI-WEI, WE WEI, WU ZHONG-SHUAI,. Meso-porous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction., 2013, 135(43): 16002.

    [8] ZHOU TING-SHENG, ZHOU YAO, MA RU-GUANG,.formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts., 2016, 8(42): 18134–18142.

    [9] GUO DA-KAI, HAN SAN-CAN, WANG JIA-CHENG,. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction., 2018, 434: 1266–1273.

    [10] WEI WEI, LIANG HAI-WEI, PARVEZ KHALED,. Nitrogen- doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction., 2014, 53(6): 1570–1574.

    [11] WEI JING, LIANG YAN, HU YAP-XIN,. A versatile iron- tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction., 2016, 55(4): 1355–1359.

    [12] LIU XIAO-JUN, ZHOU YU-CHENG, ZHOU WEI-JIA,. Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction., 2015, 7(14): 6136–6142.

    [13] CHEN PING, WANG LI-KUN, WANG GAN,. Nitrogen- doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction., 2014, 7(12): 4095–4103.

    [14] WAN WEI, WANG QIANG, ZHANG LI,. N-, P- and Fe-tridoped nanoporous carbon derived from plant biomass: an excellent oxygen reduction electrocatalyst for zinc–air batteries., 2016, 4(22): 8602–8609.

    [15] GAO SHU-YAN, CHEN YAN-LI, FAN HAO,. Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors., 2014, 2(10): 3317.

    [16] GU DA-GUO, ZHOU YAO, MA RU-GUANG,. Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction., 2018, 10(2): 29.

    [17] ZHANG MAN, JIN XIN, WANG LI-NAN,. Improving biomass- derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction., 2017, 411: 251–260.

    [18] LIN GAO-XIN, MA RU-GUANG, ZHOU YAO,. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction., 2018, 261: 49–57.

    [19] XING RUO-HAO, ZHOU TING-SHENG, ZHOU YAO,. Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction., 2018, 10(1): 3.

    [20] PEZOTI OSVALDO, CAZETTA ANDRE-L, SOUZA ISIS-P A F,. Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.)., 2014, 20(6): 4401–4407.

    [21] WANG BIN, QIU JIAN-HUI, FENG HUI-XIA,. KOH- activated nitrogen doped porous carbon nanowires with superior performance in supercapacitors., 2016, 190: 229–239.

    [22] SHAMSUDDIN M S, YUSOFF N R N, SULAIMAN M A. Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4activation., 2016, 19: 558–565.

    [23] NAN DING, WANG JIAN-GAN, HUANG ZHENG-HONG,. Highly porous carbon nanofibers from electrospun polyimide/SiO2hybrids as an improved anode for lithium-ion batteries., 2013, 34: 52–55.

    [24] WANG JIA-CHENG, KASKAL STEFAN. KOH activation of carbon- based materials for energy storage., 2012, 22(45): 23710.

    [25] DUTTA SAIKAT, BHAUMIK ASIM, WU KELVIN C W. Hierar-chically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications., 2014, 7(11): 3574–3592.

    [26] ZHANG LIN-JIE, SU ZI-XUE, JIANG FEI-LONG,. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions., 2014, 6(12): 6590–602.

    [27] ZHOU HUANG, ZHANG JIAN, AMIINU IBRAHIM SAANA,. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction., 2016, 18(15): 10392–10399.

    [28] CHEN YU-ZHEN, WANG CHENG-MING, WU ZHEN-YU,. From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis., 2015, 27(34): 5010–5016.

    [29] QIE LONG, CHEN WEI-MIN, XU HENG-HUI,. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors., 2013, 6(8): 2497.

    [30] LI MIN, LI WEI, LIU SHOU-XIN. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose., 2011, 346(8): 999–1004.

    [31] YU MIAO, LI JIAN, WANG LI-JUAN. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high- performance supercapacitors and dye adsorption., 2017, 310: 300–306.

    [32] ZHOU TING-SHENG, MA RU-GUANG, ZHOU YAO,. Efficient N-doping of hollow core-mesoporous shelled carbon sphereshydrothermal treatment in ammonia solution for the electrocatalytic oxygen reduction reaction., 2018, 261: 88–97.

    [33] ZHOU TING-SHENG, ZHOU YAO, MA RU-GUANG,. Nitrogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction., 2017, 114: 177–186.

    [34] ZHOU MIN, PU FAN, WANG ZHAO,. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors., 2014, 68: 185–194.

    [35] LIANG JI, JIAO YAN, JARONIEC MIETEK,. Sulfur and ni-tr-ogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance., 2012, 51(46): 11496–11500.

    [36] ZHONG HAI-XIA, WANG JUN, ZHANG YU-WEI,. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts., 2014, 53(51): 14235–14239.

    [37] YANG MEI, ZHOU ZHEN. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials., 2017, 4(8): 1600408.

    [38] MA YI-FAN, GUO QIU-BO, YANG MEI,. Highly doped gra-ph-ene with multi-dopants for high-capacity and ultrastable sodium- ion batteries., 2018, 13: 134–141.

    [39] WU ZHONG-SHUAI, YANG SHU-BIN, SUN YI,. 3D nitrogen- doped graphene aerogel-supported Fe3O4nanoparticles as efficient electrocatalysts for the oxygen reduction reaction., 2012, 134(22): 9082–9085.

    [40] BING YONG-HONG, LIU HAN-SAN, ZHANG LEI,. Nano-structured Pt-alloy electrocatalysts for PEM fuel cell oxygen redu-ction reaction., 2010, 39(6): 2184–2202.

    [41] ZHANG LI-PENG, XIA ZHEN-HAI. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells., 2011, 115(22): 11170–11176.

    [42] LIN ZI-YIN, WALLER GORDON, LIU YAN,. Facile synthesis of nitrogen-doped graphenepyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction., 2012, 2(7): 884–888.

    氫氧化鉀活化制備可再生多孔碳及其電催化氧還原性能研究

    何王濤1,2, 馬汝廣2, 朱鈺方1, 楊明杰3, 王家成2

    (1. 上海理工大學 材料科學與工程學院, 上海 200093; 2. 中國科學院 上海硅酸鹽研究所, 高性能陶瓷和超微結構國家重點實驗室, 上海 200050; 3. 莫納什大學 化學工程系, 維多利亞 3800, 澳大利亞)

    氧還原反應緩慢的動力學過程嚴重限制了燃料電池的能量轉換效率, 而商用Pt/C催化劑成本太高、資源稀缺、穩(wěn)定性差, 需要尋找合適的材料來取代商用的Pt/C催化劑。近年來, 氮摻雜多孔碳材料因其獨特的物理和化學特性吸引了大量的關注。本文使用富含氮元素的可再生土豆作為生物質前驅體, 通過簡單的一步熱解過程和KOH活化方法相結合制備出了一系列氮摻雜多孔碳電催化劑; 并系統(tǒng)研究了KOH用量和活化溫度對碳基體孔結構和電催化性能的影響。結果表明, 當活化溫度為750 ℃、KOH與碳的質量比為3/1時, 所制備的催化劑(NPC-750)的氧還原活性最高, 起始電位和半波電位分別達到0.89和0.79 V (RHE), 極限電流密度達到5.53 mA?cm–2。NPC-750優(yōu)異的氧還原催化活性主要歸因于其發(fā)達的孔結構、高的比表面積(1134.2 m2?g–1)和合適的氮含量(1.57at%)。同時, 優(yōu)異的循環(huán)穩(wěn)定性和抗甲醇中毒性能進一步說明這些生物多孔碳材料是潛在的低成本氧還原電催化劑。此外, 這些高比表面積多孔碳在超級電容、吸附/分離、催化以及電池等領域也具有潛在的應用前景。

    生物質; 多孔; 氮摻雜碳; 氫氧化鉀活化; 氧還原反應

    TQ174

    A

    2019-01-17;

    2019-03-04

    National Natural Science Foundation of China (51572172, 51602332); Equipment Research Program (6140721050215); One-Hundred Talent Plan of Chinese Academy of Sciences

    HE Wang-Tao(1994-), male, candidate of Master degree. E-mail: 1402250556@qq.com

    ZHU Yu-Fang, professor. E-mail: yfzhu@usst.edu.cn; WANG Jia-Cheng, professor. E-mail: jiacheng.wang@mail. sic.as.cn

    1000-324X(2019)10-1115-08

    10.15541/jim20190036

    猜你喜歡
    氫氧化鉀電催化商用
    KOH活化法聚丙烯腈基活性炭纖維的制備及表征
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    兵學商用人物
    ——徐小林
    孫子研究(2022年2期)2022-06-09 08:21:36
    2022 年《商用汽車》回顧
    商用汽車(2022年12期)2022-04-24 01:29:10
    2021年《商用汽車》回顧
    商用汽車(2021年12期)2021-07-14 02:13:28
    氫氧化鉀乙醇標準溶液的濃度和儲存條件對玉米脂肪酸值測定的影響
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    填充床電極反應器在不同電解質中有機物電催化氧化的電容特性
    商用WiFi蓄勢待發(fā)BAT360謹慎布局前景存疑
    IT時代周刊(2015年7期)2015-11-11 05:49:55
    高壓電致淋洗液發(fā)生器的研制與評價
    分析化學(2015年10期)2015-11-03 07:44:10
    免费一级毛片在线播放高清视频| 麻豆国产av国片精品| 国产av一区二区精品久久| 成人av一区二区三区在线看| 久久热在线av| 两人在一起打扑克的视频| 久久午夜亚洲精品久久| 久久久久国内视频| 精华霜和精华液先用哪个| 一级黄色大片毛片| 国产av一区在线观看免费| 午夜精品久久久久久毛片777| 免费高清在线观看日韩| 日韩精品免费视频一区二区三区| 日韩中文字幕欧美一区二区| 麻豆一二三区av精品| 校园春色视频在线观看| a级毛片在线看网站| 18禁国产床啪视频网站| 99久久久亚洲精品蜜臀av| 欧美性长视频在线观看| 两个人看的免费小视频| 首页视频小说图片口味搜索| 精品欧美国产一区二区三| 99国产综合亚洲精品| 深夜精品福利| 国产一区在线观看成人免费| 欧美+亚洲+日韩+国产| 99国产精品一区二区三区| 真人一进一出gif抽搐免费| 国产午夜精品久久久久久| 国内少妇人妻偷人精品xxx网站 | 日韩精品免费视频一区二区三区| 国产亚洲精品久久久久久毛片| 国产精品乱码一区二三区的特点| 日韩欧美国产在线观看| 操出白浆在线播放| 丝袜人妻中文字幕| 久久中文看片网| 老司机靠b影院| 好看av亚洲va欧美ⅴa在| 91大片在线观看| 久久这里只有精品19| 最近最新中文字幕大全免费视频| 欧美zozozo另类| 俄罗斯特黄特色一大片| 精华霜和精华液先用哪个| 中文亚洲av片在线观看爽| 日韩大尺度精品在线看网址| 国产区一区二久久| 免费搜索国产男女视频| 国产91精品成人一区二区三区| 婷婷精品国产亚洲av在线| 欧美日韩瑟瑟在线播放| 日日爽夜夜爽网站| 99热这里只有精品一区 | 亚洲精品中文字幕一二三四区| 两个人免费观看高清视频| avwww免费| 亚洲精品在线观看二区| 精品不卡国产一区二区三区| 一区二区三区国产精品乱码| svipshipincom国产片| 成人国语在线视频| 亚洲成人久久爱视频| 亚洲aⅴ乱码一区二区在线播放 | 一级a爱片免费观看的视频| 亚洲一区二区三区色噜噜| 欧美乱色亚洲激情| 午夜久久久久精精品| 夜夜夜夜夜久久久久| 99riav亚洲国产免费| а√天堂www在线а√下载| 久久久久久国产a免费观看| 男女做爰动态图高潮gif福利片| 又黄又粗又硬又大视频| 黄色毛片三级朝国网站| 国产又黄又爽又无遮挡在线| 成人国语在线视频| 国产av又大| 欧美在线一区亚洲| 99国产精品一区二区蜜桃av| 美女高潮到喷水免费观看| 午夜福利18| 国内少妇人妻偷人精品xxx网站 | 变态另类丝袜制服| 亚洲成人国产一区在线观看| 欧美黄色片欧美黄色片| 久久欧美精品欧美久久欧美| 亚洲人成网站在线播放欧美日韩| 热re99久久国产66热| 日本一本二区三区精品| 精品日产1卡2卡| 99热6这里只有精品| 毛片女人毛片| 亚洲av熟女| 国产一区二区三区在线臀色熟女| 国产精品一区二区三区四区久久| 精品久久久久久久久亚洲| 大型黄色视频在线免费观看| 精品不卡国产一区二区三区| 特级一级黄色大片| 中文字幕久久专区| 日本三级黄在线观看| 久久久国产成人精品二区| 熟女人妻精品中文字幕| 一本久久中文字幕| 久久天躁狠狠躁夜夜2o2o| 欧美激情在线99| or卡值多少钱| 波多野结衣高清作品| 看非洲黑人一级黄片| 日韩精品青青久久久久久| 成年女人看的毛片在线观看| 老熟妇乱子伦视频在线观看| 国产精品99久久久久久久久| av在线亚洲专区| 校园春色视频在线观看| 老司机午夜福利在线观看视频| 99热6这里只有精品| 一本久久中文字幕| 欧美成人一区二区免费高清观看| 六月丁香七月| 欧美成人a在线观看| 色播亚洲综合网| 免费搜索国产男女视频| 日韩成人av中文字幕在线观看 | 欧美另类亚洲清纯唯美| 男人狂女人下面高潮的视频| 在线看三级毛片| 国产精品一区www在线观看| 韩国av在线不卡| 桃色一区二区三区在线观看| 午夜福利视频1000在线观看| 卡戴珊不雅视频在线播放| 日日摸夜夜添夜夜爱| 校园人妻丝袜中文字幕| 日韩欧美免费精品| 少妇裸体淫交视频免费看高清| 少妇裸体淫交视频免费看高清| 噜噜噜噜噜久久久久久91| 欧美一区二区国产精品久久精品| 丰满人妻一区二区三区视频av| 久久精品国产亚洲av香蕉五月| 色综合亚洲欧美另类图片| 黄片wwwwww| 在线观看一区二区三区| 婷婷色综合大香蕉| 日韩中字成人| 日韩制服骚丝袜av| 国产伦精品一区二区三区视频9| 亚洲18禁久久av| 色吧在线观看| 五月伊人婷婷丁香| 男人舔女人下体高潮全视频| 国产精品1区2区在线观看.| 欧美+日韩+精品| 在线播放无遮挡| 国产成人一区二区在线| 日日摸夜夜添夜夜添av毛片| 日韩国内少妇激情av| 伦理电影大哥的女人| 婷婷精品国产亚洲av| 免费av不卡在线播放| 国产一级毛片七仙女欲春2| 高清午夜精品一区二区三区 | 亚洲中文日韩欧美视频| 日韩成人伦理影院| 色5月婷婷丁香| 成人高潮视频无遮挡免费网站| 熟女电影av网| 三级男女做爰猛烈吃奶摸视频| 两个人的视频大全免费| 成年女人看的毛片在线观看| 精品不卡国产一区二区三区| 22中文网久久字幕| 97人妻精品一区二区三区麻豆| 日韩欧美精品v在线| 香蕉av资源在线| 舔av片在线| 午夜亚洲福利在线播放| 综合色丁香网| 亚洲av熟女| 久久国内精品自在自线图片| 欧美xxxx性猛交bbbb| 在线免费十八禁| 秋霞在线观看毛片| 国产精品久久久久久久久免| 亚洲国产精品久久男人天堂| 又黄又爽又刺激的免费视频.| 99热精品在线国产| 国产伦一二天堂av在线观看| 亚洲av二区三区四区| 亚洲电影在线观看av| 国内少妇人妻偷人精品xxx网站| 波多野结衣高清无吗| 精华霜和精华液先用哪个| 丰满的人妻完整版| 国产国拍精品亚洲av在线观看| 舔av片在线| 亚洲七黄色美女视频| 日日摸夜夜添夜夜爱| 最后的刺客免费高清国语| 国产精品美女特级片免费视频播放器| a级毛色黄片| 国产av一区在线观看免费| 中文字幕久久专区| av在线亚洲专区| 国产午夜福利久久久久久| 亚洲欧美日韩无卡精品| a级毛片免费高清观看在线播放| 乱系列少妇在线播放| 中文在线观看免费www的网站| 亚洲经典国产精华液单| 香蕉av资源在线| 久久久色成人| 99久久精品一区二区三区| 久久欧美精品欧美久久欧美| 一级毛片久久久久久久久女| 男人舔奶头视频| 免费高清视频大片| 精品人妻熟女av久视频| 国产在线男女| 少妇熟女aⅴ在线视频| 国产精品一区二区性色av| 成人三级黄色视频| 亚洲精品色激情综合| 九九热线精品视视频播放| 男人和女人高潮做爰伦理| 男插女下体视频免费在线播放| 午夜激情欧美在线| 久久精品国产鲁丝片午夜精品| 久久久久久久久久成人| 不卡一级毛片| 无遮挡黄片免费观看| 少妇丰满av| 亚洲国产欧美人成| 亚洲精品国产av成人精品 | 十八禁国产超污无遮挡网站| 天堂av国产一区二区熟女人妻| 国产亚洲精品综合一区在线观看| 国产精品国产高清国产av| 1000部很黄的大片| 日韩欧美精品v在线| 97超视频在线观看视频| 欧美性感艳星| 嫩草影院入口| 久久精品夜色国产| 国产久久久一区二区三区| 国产精品电影一区二区三区| 亚洲欧美日韩东京热| 久久精品91蜜桃| 亚洲av中文av极速乱| 精品国产三级普通话版| 国产黄a三级三级三级人| 卡戴珊不雅视频在线播放| 麻豆成人午夜福利视频| 中出人妻视频一区二区| 国产色婷婷99| 亚洲av五月六月丁香网| 在线观看av片永久免费下载| 少妇被粗大猛烈的视频| 国产国拍精品亚洲av在线观看| 嫩草影院新地址| 亚洲欧美清纯卡通| 国产亚洲欧美98| 亚洲三级黄色毛片| 伦理电影大哥的女人| ponron亚洲| 久久久成人免费电影| 两个人视频免费观看高清| 精品一区二区三区视频在线| 久久精品国产99精品国产亚洲性色| 真实男女啪啪啪动态图| 欧美+日韩+精品| 嫩草影视91久久| 亚洲av美国av| 精品久久久久久久末码| 成年av动漫网址| 欧美日韩国产亚洲二区| 麻豆久久精品国产亚洲av| 久久精品国产自在天天线| 长腿黑丝高跟| 免费人成视频x8x8入口观看| 日本撒尿小便嘘嘘汇集6| 最近最新中文字幕大全电影3| 精品福利观看| 2021天堂中文幕一二区在线观| 亚州av有码| 亚洲欧美日韩卡通动漫| 美女 人体艺术 gogo| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精华国产精华液的使用体验 | 亚洲人成网站在线观看播放| 在线观看免费视频日本深夜| 村上凉子中文字幕在线| 国产男人的电影天堂91| av在线播放精品| 午夜激情福利司机影院| 亚洲不卡免费看| 国产探花在线观看一区二区| 精品不卡国产一区二区三区| eeuss影院久久| 日本爱情动作片www.在线观看 | 国产精品野战在线观看| 日韩,欧美,国产一区二区三区 | 国产成人影院久久av| 麻豆乱淫一区二区| 国产精品一区二区免费欧美| 欧美不卡视频在线免费观看| 国产精品无大码| 欧美一区二区国产精品久久精品| 欧美成人一区二区免费高清观看| 亚洲欧美精品综合久久99| 日韩在线高清观看一区二区三区| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av香蕉五月| 免费大片18禁| 99热6这里只有精品| 人妻丰满熟妇av一区二区三区| 人人妻人人澡人人爽人人夜夜 | 国产av麻豆久久久久久久| 亚洲av二区三区四区| 亚洲精品日韩av片在线观看| 嫩草影院精品99| 国产美女午夜福利| 亚洲人成网站高清观看| 99视频精品全部免费 在线| av国产免费在线观看| 黑人高潮一二区| 99国产精品一区二区蜜桃av| 乱系列少妇在线播放| 国产在线男女| 天天躁夜夜躁狠狠久久av| 久久中文看片网| 日韩av在线大香蕉| 性欧美人与动物交配| 伦精品一区二区三区| 亚洲一区二区三区色噜噜| 国产成人91sexporn| av卡一久久| 又爽又黄无遮挡网站| 中国美白少妇内射xxxbb| 男女啪啪激烈高潮av片| 97在线视频观看| 亚洲最大成人手机在线| 老女人水多毛片| 老熟妇仑乱视频hdxx| 久久久久久久久久黄片| 成人无遮挡网站| 色尼玛亚洲综合影院| 成人特级黄色片久久久久久久| 九色成人免费人妻av| 精品午夜福利视频在线观看一区| 欧美日韩综合久久久久久| av国产免费在线观看| 夜夜爽天天搞| 久久久国产成人精品二区| 日韩成人伦理影院| 亚洲成人精品中文字幕电影| 日韩欧美免费精品| 性欧美人与动物交配| 内射极品少妇av片p| 久久人人精品亚洲av| 我要看日韩黄色一级片| 最新在线观看一区二区三区| 欧美不卡视频在线免费观看| 久久久久久国产a免费观看| 国产精品久久电影中文字幕| 高清午夜精品一区二区三区 | 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 一本久久中文字幕| 亚洲av成人精品一区久久| 国产午夜福利久久久久久| 亚洲国产欧美人成| 国产中年淑女户外野战色| 国产伦一二天堂av在线观看| 亚洲成人精品中文字幕电影| 天天躁日日操中文字幕| 亚洲av成人精品一区久久| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 免费在线观看成人毛片| 国产探花极品一区二区| 日韩精品有码人妻一区| 性色avwww在线观看| 啦啦啦观看免费观看视频高清| 国产精品综合久久久久久久免费| 九九热线精品视视频播放| 一级黄片播放器| 搡老熟女国产l中国老女人| 五月伊人婷婷丁香| 性色avwww在线观看| 国产av麻豆久久久久久久| 欧美日韩在线观看h| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站高清观看| 日韩一本色道免费dvd| 亚洲国产欧洲综合997久久,| 国产美女午夜福利| 熟妇人妻久久中文字幕3abv| 午夜a级毛片| 高清毛片免费观看视频网站| 国产大屁股一区二区在线视频| 成年版毛片免费区| 国产精品一区二区三区四区久久| 国产精品美女特级片免费视频播放器| 欧美日本视频| 男人舔女人下体高潮全视频| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 婷婷精品国产亚洲av在线| 国产黄色小视频在线观看| 日本在线视频免费播放| 亚洲第一区二区三区不卡| 成年女人永久免费观看视频| 欧美色欧美亚洲另类二区| 伊人久久精品亚洲午夜| 久久久久久久久久黄片| 韩国av在线不卡| 国产黄片美女视频| 国产精品,欧美在线| 国产中年淑女户外野战色| 精品少妇黑人巨大在线播放 | 成年免费大片在线观看| 欧美不卡视频在线免费观看| 国产精品人妻久久久影院| 免费在线观看成人毛片| 亚洲国产精品合色在线| 香蕉av资源在线| 亚洲成人久久爱视频| 欧美日本视频| 国产男靠女视频免费网站| 亚洲aⅴ乱码一区二区在线播放| 久久久精品大字幕| 国产精品一区二区性色av| 亚洲精品粉嫩美女一区| 亚洲人与动物交配视频| 两性午夜刺激爽爽歪歪视频在线观看| www.色视频.com| 可以在线观看的亚洲视频| 久久久久国产网址| 日韩三级伦理在线观看| 久久人人爽人人片av| 欧美激情久久久久久爽电影| 精品久久久久久久久av| 麻豆av噜噜一区二区三区| 尾随美女入室| ponron亚洲| 免费看美女性在线毛片视频| 欧美成人免费av一区二区三区| 久久久久久久久中文| 久久精品夜夜夜夜夜久久蜜豆| 国产成人影院久久av| 国产乱人视频| 国内少妇人妻偷人精品xxx网站| 亚洲熟妇熟女久久| 如何舔出高潮| 1000部很黄的大片| 日韩成人av中文字幕在线观看 | 91午夜精品亚洲一区二区三区| 国产高清有码在线观看视频| 天堂网av新在线| 亚洲成人中文字幕在线播放| 欧美色视频一区免费| 国产精品99久久久久久久久| 精品乱码久久久久久99久播| 九九爱精品视频在线观看| 国产av在哪里看| 免费观看的影片在线观看| 天堂av国产一区二区熟女人妻| 日韩精品有码人妻一区| 精品人妻熟女av久视频| 日韩精品中文字幕看吧| 亚洲内射少妇av| 亚洲久久久久久中文字幕| 中文字幕av成人在线电影| 欧美成人a在线观看| 国产在线男女| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| 一级黄色大片毛片| 噜噜噜噜噜久久久久久91| 国产aⅴ精品一区二区三区波| 男人舔奶头视频| 最近中文字幕高清免费大全6| av在线老鸭窝| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 不卡视频在线观看欧美| 长腿黑丝高跟| 亚洲人成网站在线播| 亚洲av中文av极速乱| 亚洲va在线va天堂va国产| 在线播放无遮挡| 黑人高潮一二区| 成年女人毛片免费观看观看9| 1000部很黄的大片| 国产精品久久久久久av不卡| 人人妻人人看人人澡| 精品乱码久久久久久99久播| 女的被弄到高潮叫床怎么办| 99久久久亚洲精品蜜臀av| 亚洲国产精品成人综合色| 国产在线男女| 久久久久久久久大av| 人妻久久中文字幕网| 午夜福利在线在线| 国内精品宾馆在线| 大香蕉久久网| 久久久精品欧美日韩精品| 免费人成在线观看视频色| 亚洲综合色惰| 亚洲不卡免费看| 看非洲黑人一级黄片| 久久久久性生活片| 日本黄色视频三级网站网址| 欧美激情在线99| 欧美日韩国产亚洲二区| 亚洲精品粉嫩美女一区| 久久久久精品国产欧美久久久| 美女免费视频网站| 午夜激情欧美在线| 成人av一区二区三区在线看| 性插视频无遮挡在线免费观看| 在线国产一区二区在线| 波多野结衣高清作品| 国产综合懂色| 丰满的人妻完整版| 蜜桃久久精品国产亚洲av| 蜜臀久久99精品久久宅男| 一进一出抽搐动态| 精品一区二区三区人妻视频| 18禁在线无遮挡免费观看视频 | 久久中文看片网| 亚洲图色成人| 搡老岳熟女国产| 在线免费观看不下载黄p国产| 亚洲一区二区三区色噜噜| 最后的刺客免费高清国语| 日韩精品中文字幕看吧| 我要搜黄色片| 中国美白少妇内射xxxbb| 床上黄色一级片| 真实男女啪啪啪动态图| 99热网站在线观看| 国产精品久久久久久久久免| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 99久久久亚洲精品蜜臀av| 99riav亚洲国产免费| 三级经典国产精品| 日本a在线网址| 欧美+日韩+精品| 噜噜噜噜噜久久久久久91| 少妇的逼水好多| АⅤ资源中文在线天堂| 久久久a久久爽久久v久久| 一a级毛片在线观看| 国产v大片淫在线免费观看| 亚洲自拍偷在线| 欧美色欧美亚洲另类二区| 久久人人精品亚洲av| 亚洲成a人片在线一区二区| 又粗又爽又猛毛片免费看| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区色噜噜| 18禁裸乳无遮挡免费网站照片| 国产高清不卡午夜福利| 欧美xxxx黑人xx丫x性爽| av天堂中文字幕网| 免费人成视频x8x8入口观看| 欧美+日韩+精品| 免费观看人在逋| 精品少妇黑人巨大在线播放 | 国产精品一区二区免费欧美| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久久久成人| 18禁在线播放成人免费| 亚洲国产日韩欧美精品在线观看| 中文字幕熟女人妻在线| 久久久久久久久中文| 欧美一区二区国产精品久久精品| 99精品在免费线老司机午夜| 国产精品人妻久久久影院| 男女那种视频在线观看| 美女黄网站色视频| 精品久久久久久久久久免费视频| 亚洲av美国av| 青春草视频在线免费观看| 亚洲自偷自拍三级| 精品久久久噜噜| 欧美精品国产亚洲| 国产探花在线观看一区二区| 国产欧美日韩精品亚洲av| 联通29元200g的流量卡| 国产国拍精品亚洲av在线观看| 99精品在免费线老司机午夜| 女生性感内裤真人,穿戴方法视频| 可以在线观看毛片的网站| 九色成人免费人妻av| 日日摸夜夜添夜夜添小说| 丰满乱子伦码专区| 午夜日韩欧美国产| 我要看日韩黄色一级片| 日日摸夜夜添夜夜添av毛片| 激情 狠狠 欧美| av在线亚洲专区| 校园人妻丝袜中文字幕| 亚洲欧美日韩东京热| 丝袜美腿在线中文| 亚洲中文字幕日韩| 天堂网av新在线| 美女黄网站色视频|