• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation and Simulation Verification of Thermal Insulation Property of Fiber Fabric Materials in Space Environment

    2019-12-16 08:22:20LUOCaiYunYANGLiPingTAOYeZHONGQiuLIHuiDong
    無機材料學報 2019年11期
    關鍵詞:絕熱材料織物纖維

    LUO Cai-Yun, YANG Li-Ping, TAO Ye, ZHONG Qiu, LI Hui-Dong

    Evaluation and Simulation Verification of Thermal Insulation Property of Fiber Fabric Materials in Space Environment

    LUO Cai-Yun, YANG Li-Ping, TAO Ye, ZHONG Qiu, LI Hui-Dong

    (Analysis and Testing Center for Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China)

    Equivalent experimental conditions to those in space were used to characterize the effective thermal conductivity of the fiber fabric insulation used in the multilayer insulation system of the material preparation furnace loaded on Tiangong-2 Space Station. By evaluating the material following variations in the on-orbit temperature and on-track pressure, the microscopic heat transfer mechanism was studied. The furnace internal temperature field under different working conditions was also simulated according to the characterization results, and the data reliability was verified. The results showed that the effective thermal conductivity of the fiber fabric increases non-linearly with rising temperature; moreover, with lower pressures, the growth trends are gentler. With a pressure drop, the results present the trend of a decaying exponential function with a critical pressure value. Radiation and gas phase heat conduction are the main factors affecting the heat transfer of the fiber fabric under the microgravity environment. Simulation results of the temperature field demonstrate that the temperature field distribution trend matches well with that of the measured results. The maximum calculation error of the furnace center is 1.3% of the measured temperature. This method can be used to evaluate the thermal insulation performance of the multilayer fiber material close to the practical working conditions more reasonably, and also to improve the accuracy of thermal simulation prediction models.

    space microgravity environment; fiber fabric insulation material; effective thermal conductivity; steady-state heat flow meter method; temperature field simulation

    In microgravity environments, the adverse factors such as floatation, convection, precipitation, and static pressure changes which affect the growth and quality of materials are inhibited at the ground level. Therefore, the space environment has ideal conditions for growing high-performance crystals and ceramics[1-5]. The space material furnace discussed herein is a comprehensive experimental device for material preparation that is operated under conditions of microgravity. The multilayer insulation system of the furnace adopts a composite structure comprising a metal reflective layer and glass fiber insulation layer that can maintain its integrity when subjected to the characteristic conditions of a high vacuum, large temperature gradient, and strong radiation. To meet the requirements for preparing high-quality materials, it is necessary to simulate the temperature field distribution, temperature field stability, and influence of the sample itself on the temperature field under different working conditions, and thus optimize the thermal environment inside the furnace and match the practical working conditions of space as much as possible. In this process, the thermal conductivity of the fiber insulation material next to the heating factor of the test furnace is the key calculation parameter, and its accuracy directly affects the consistency of the temperature field simulations, which in turn affects the scientific validity of the simulation calculations for the whole insulation system.

    Numerous studies have already been conducted on the thermal insulation properties of fiber materials in aerospace multilayer insulation systems, including test meth-ods as well as analysis of the heat transfer property with the microstructure modeling theory[6-9]. However, due to the structural complexity of the fiber materials, various internal heat transfer methods coexist. Consequently, the factors affecting the thermal insulation performance of the materials are also complex and diverse[10-11], especially in aerospace applications where the thermal conductivity of fiber materials changes with pressure. More-over, the different volume densities in different assembly modes can cause differences in the thermal insulation performance[12]. Therefore, in the application of space engineering simulations, the use of theoretical data or thermal conductivity values under general conditions often leads to a large deviation of the calculated data from the actual situation, thus making it difficult to obtain an accurate simulation model.

    For more accurate simulation of the thermal performance of the material preparation furnace loaded on Tiangong-2 Space Station under various working conditions, this study examined different pressures and temperatures similar to those of space trajectories under equivalent experimental conditions and used the steady-state heat flow method to measure the effective thermal conductivity of the multilayer fiber fabric in the furnace insulation system. The measurement results were analyzed from the perspective of the microscopic heat transfer mechanism. Subsequently, simulations of the furnace temperature field were conducted, and the results were compared with the measured temperature. It was found that the simulated data fitted the measured data well.

    1 Materials and methods

    1.1 Test material

    The test material was high silica glass fiber cloth. The scanning electron microscopy (SEM) image of the morphological structure of the fiber fabric is shown in Fig. 1. The material had a plain weave with an areal density of 240 g/m2and a single layer thickness of ~0.26 mm. Fig. 2 illustrates the usage of the fiber cloth in the furnace. The fiber cloth was stacked in multiple layers and filled into a cylindrical shape next to the innermost layer of the furnace lining. The inner diameter of the filling space was 50 mm, outer diameter, 74 mm, and overall bulk density of the fiber fabric after filling, ~0.9 g/cm3. In order to match the volume density of the actual working conditions as much as possible, the test sample was pressurized to a thickness of 20 mm for 84 layers, with an approximate volume density of 0.93 g/cm3.

    Fig. 1 SEM image showing the surface morphology of the fiber fabric

    Fig. 2 Application of fiber fabric in the space material furnace

    1.2 Test principle and test device

    Considering the anisotropy of the thermal conductivity of fiber fabrics, the one-dimensional steady-state heat flow meter test method based on Fourier’s law[13]was employed to measure the effective thermal conductivity of the fabric in the thickness direction.

    One-dimensional stable heat passes through an infinite plate sample from the top to bottom (Fig. 3). After reaching thermal equilibrium, the thermal conductivity along the thickness direction of the sample can be calculated as Eq. (1):

    The test device employed in this study (Fig. 4) was a typical heat flow test device designed in accordance with GB/T10295-2008[14]. To meet the needs of space environment measurements, some improvements to the structure were made relative to a general-purpose device. Specifically, a sample vacuum chamber was added, in which the pressure could be controlled from 10 Pa to atmospheric pressure. Additionally, the heating plate underwent partition heating instead of the conventional integral heating. A silicon carbide heat-uniform plate was also added between the heating plate and the sample. Information on the heat flux was collected by a thin film heat flow meter (thickness<1 mm). These improvements ensured that the sample was always in the one-dimen-sional stable temperature field during testing, and the measurement uncertainty of the entire device was ±5%[15].

    Fig. 3 Principle of steady-state heat flow meter test

    Fig. 4 Vacuum heat flow meter with the high-temperature thermal conductivity instrument

    1.3 Equivalent environmental test conditions

    According to the realistic pressures and temperatures experienced by the furnace on different trajectories in space, the thermal conductivity was measured at temperatures from 373 K to 873 K in 100 K increments, and under pressures that gradually decreased from atmospheric pressure to 0.02 kPa. First, the thermal conductivity of each temperature point was tested under atmospheric pressure.Subsequently, the sample chamber was vacuumized to the next target pressure, following which the testing steps for thermal conductivity were repeated at each temperature point, until the entire target pressure interval was tested.

    2 Results and discussion

    2.1 Effective thermal conductivity changes with temperature

    Fig. 5 shows that with increasing temperature, the effective thermal conductivity of the fiber cloth increased non-linearly, and the growth rate increased. The increase for the former varied from 34% to 83% with different pressures. At different temperatures, the decrease in ther-mal conductivity with pressure concentrated be-tw-een 74% and 79%. At lower pressures, the effective thermal conductivity was smaller, and the trend with increasing temperature was also slower. The effective ther-mal conductivity was maximum at atmospheric pressure and minimum at 0.02 kPa, with increase rates of 47% and 83%, respectively, with increasing temperature. Thus, the thermal conductivity of the fiber fabric was more sen-sitive to the change in the vacuum than the temperature.

    Fig. 5 Effective thermal conductivity changes with different tem-peratures

    2.2 Effective thermal conductivity changes with pressure

    Fig. 6 shows that the thermal conductivity decreased with decreasing pressure from the atmospheric pressure

    to 50 kPa.However, the decrease was not obvious: in the 10–50 kPa interval, the thermal conductivity showed a significant decrease of 12%–17% with decreasing pressure. As the pressure was further reduced from 10 kPa, the thermal conductivity began to decrease sharply, and by 0.02 kPa, the drop was 68%–77%. Thus, in practical applications, the pressure needs to be <10 kPa to realize more effective insulation effects of the fabrics. Furthermore for >473 K, with decreasing temperature, the thermal conductivity decreased at a higher rate than that for <473 K, because of the more obvious radiation effects on the effective thermal conductivity in the high-temperature section.

    2.3 Microscopic heat transfer mechanism analysis

    Multilayer fiber insulation materials have complex internal heat transfer mechanisms, which mainly involves conduction, radiation and convection. The convection heat transfer contribution is small enough to be negligible when the density of the fiber fabric is greater than 20 kg/m3[16-17]. At room temperature ((25±5) ℃) and atmospheric pressure, the heat transfer of the fiber fabric mainly involves solid-phase and gas-phase heat conduction. Solid-phase heat conduction occurs through contact of the fiber filaments, and gas-phase heat conduction occursthe free movement of gas molecules in the fiber space as well as through collisions with each other.

    Fig. 6 Effective thermal conductivity changes with different pressures

    As the temperature increased in this study, the thermal conductivity of the quartz fiber and the internal gas phase began to increase. The SEM image (Fig. 7) of the fiber filament shows that the fiber has a microscale diameter, and the contact area between the filaments is small. Moreover, the fiber consists of 97% fused quartz, which has a low thermal conductivity. Thus, the effect of solid heat conduction was much smaller than that of the gas. As the temperature increased further, the radiation began to increase in proportion to the fourth power of the temperature. It then propagated through the interstitial spaces of the fibers and through the fibers themselves, which radiated again after absorption. The radiation effect was more obvious at higher temperatures. Therefore, the total effective thermal conductivity in Fig. 5 showed a trend of rapid increase with increasing temperature.

    When the pressure decreases, the density of gas mole-cules in fiber voids is reduced and intermolecular colli-sions become slower, the free path of molecular motion also starts to lengthen, which reduces the gas-phase heat conduction. Therefore, with lower pressures, the coupling effective thermal conductivity becomes smaller; consequently, the growth rate is lower with increasing temperatures. In conclusion, the results of this study showed that the changes in the temperature and pressure not only affected the thermal conductivity of each heat transfer factor, but also changed their proportion during heat transfer.

    Fig. 6 shows a critical pressure of 10 kPa, which relates to the temperature, pressure, and Knudsen number (ratio of the free path of gas molecules to the characteristic size of fiber void)[18-19]. When the pressure was lower than the critical point, the thermal conductivity of the residual gas rapidly reduced to a negligible value, and the effective thermal conductivity of the fiber fabric also decreased dramatically until only solid heat conduction and radiation remained. Subsequently, the total effective thermal conductivity approached a constant minimum value.

    Fig. 7 SEM image showing the fiber filament morphology

    3 Simulation verification of matching tests

    3.1 Modeling calculations

    To further verify the reliability of the characterization, FLUENT simulation software was used to calculate the temperature field in the furnace under two typical working conditions of atmospheric pressure and 3 kPa, and the results were compared with the ground-matched experimental data.

    The calculation model for the furnace side profile is shown in Fig. 8, in which S1–S4 and K1–K14 represent the temperature measurement points at 18 different positions in the furnace. The internal heat transfer calculations considered the material heat conduction, radiation heat transfer, and interface thermal resistance between different materials and air flow, while the external calculations considered the influence of the external surface radiation and natural convection.

    The heat conduction equation and the boundary and initial conditions were as Eq. (2)-(5):

    External surface heat flux: (3)

    The key calculation parameters are shown in Table 1. The thermal conductivity of the fiber cloth under the two working conditions was taken from the measured data in Table 1, and the external surface temperature was taken as the actual ambient temperature. For comparison, other calculation parameters were kept the same.

    3.2 Simulation calculation results

    Fig. 9 show the calculated values and measured values of each temperature measurement point after heating for 6 h at a constant power of 97 W at 101 kPa and 3 kPa on the ground.

    As shown in Fig. 9, under atmospheric pressure, the difference between the calculated and measured temperature at K11, K12, and K13 was 10–20 K, and the others were controlled within 10 K. The maximum calculation error of the entire temperature field was 4.3% of the measured value, and that of the central position of the furnace was only 1.1%. At 3 kPa on the ground, the calculation deviation was within 50 K, and for the four temperature measurement points S1, S2, S3, and S4 in the furnace center, the deviation was controlled within 12 K. The maximum error of the entire temperature field was 9.7% of the experimental value, and that of the center position was only 1.3%. In summary, the simulation results for the temperature field distribution obtained using the above characterization results matched well with the measured data. In addition, at points closer to the central position of the furnace, the calculated values were close to the experimental values.

    Table 1 Key parameters for the simulation calculations

    Fig. 9 Comparison of the calculated data for the temperature field with the test data

    (a) 101 kPa-ground; (b) 3 kPa-ground

    The above deviations can be mainly attributed to the fact that the narrow hot channel formed by the thermocouple and the heating wire trace in practical applications cannot be fully considered. Therefore, errors caused by simplifying the calculation model are inevitable. Errors may occur during fiber cloth assembly, due to the temperature measurement point position, or variation in the heat shield radiance with temperature. Therefore, the measured and calculated values cannot be completely and accurately matched.

    4 Conclusion

    This study investigated the variation in the effective thermal conductivity of fiber fabric insulation material in the material preparation furnace loaded on Tiangong-2 Space Station with changing in-orbit temperature and pre-ssure conditions, using the heat flow meter test me-thod and environmental test conditions equivalent to those in space. The obtained results were utilized for calculating the temperature field in the furnace with a model. The following conclusions were drawn:

    1) The effective thermal conductivity of the fiber fabric increased non-linearly with the temperature. The lower the pressure, the lower the rate of increase. With a pressure reduction, the thermal conductivity exhibited a single exponential decay function. When the pressure was less than 10 kPa, the effective thermal conductivity reduced sharply until a constant minimum was reached. The effective thermal conductivity of the fiber fabric was more sensitive to pressure changes than to temperature changes.

    2) The maximum error in the calculated values was 4.3% and 9.7% of the measured temperature under atmo-spheric pressure conditions and at 3 kPa, respectively. The main reasons for the difference between the two values were unavoidable factors such as the use of a simplified model. Nevertheless, the entire temperature field distribution matched well with the experimental data, and positions closer to the center of the furnace showed better matches.

    3) The equivalent environmental characterization method was thus shown to be capable of reflecting the thermal performance of fiber fabric materials more clo-sely under different working conditions, which theoretically could enable improvements in the performance of multilayer insulation systems and provide more accurate thermal simulation models. Furthermore, this method can be referenced for developing other thermal designs used in aerospace engineering.

    [1] CHEN YAN, BAO YEFENG, LI XIAOYA,Space growth of bismuth telluride based thermoelectric semiconductive crystals., 2016, 36(4): 413–419.

    [2] FENG SHAOBO, LUO XINGHONG. Dendrite growth of SRR99 nickel-base single crystal superalloy under microgravity condition formed by long drop tube., 2012, 36(3): 341–346.

    [3] ZOU XIA, LI GUORONG, TAN YUANQIANG,Discrete element method modeling of the influence of gravity during functional ceramics material compaction process., 2010, 25(10): 1071–1075.

    [4] ZHOU YANFEI, TANG LIANAN, AI FEI,. Crystal growth of bismuth silicon oxide(BSO) in space.2003, 18(1): 211–214.

    [5] PEREZ-GRANDE I, RIVAS D, DE PABLO V. A global thermal analysis of multizone resistance furnaces with specular and diffuse samples., 2002, 246(1): 37–54.

    [6] WANG G H, ZHANG F, SUN X K,Optimized design of multilayer thermal insulations for hypersonic vehicles., 2016, 697: 449–452.

    [7] JI T, ZHANG R, SUNDEN B,Investigation on thermal performance of high temperature multilayer insulations for hypersonic vehicles under aerodynamic heating condition., 2014, 70(1): 957–965.

    [8] KAMRAN DARYABEIGI. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles. NASA/TM-1999-208972, 1999: 1–30.

    [9] MACHADO, ARAUJO H. Modeling heat transfer with micro- scale natural convection in fibrous insulation., 2014, 36(4): 847–857.

    [10] KWON J S, JANG C H, JUNG H,Effective thermal conductivity of various filling materials for vacuum insulation panels., 2009, 52(23/24): 5525–5532.

    [11] HUANG C, ZHANG Y. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method., 2014, 27(4): 791–796.

    [12] GRINCHUK P S. Contact heat conductivity under conditions of high-temperature heat transfer in fibrous heat-insulating materials., 2014, 87(2): 481–488.

    [13] XI TONG-GENG. Thermophysical of Inorganic Materials. Shanghai: Shanghai Scientific & Technical Publishers. 1981: 123–156.

    [14] Thermal insulation-determination of steady-state thermal resistance and related properties-heat flow meter apparatus. GB/T 10295- 2008.

    [15] XIN CHUNSUO, HE XIAOWA. Research of improving surface temperature uniformity of low thermal conductance materials., 2013, 33(06): 31–35.

    [16] CUNNINGTON G R, MILLER S D, DARYABEIGI K. Heat transfer in high-temperature multilayer insulation., 2006, 631(631): 43.

    [17] SPINNLERM, WINTER E R F, VISKANTA R. Studies on high- temperature multilayer thermal insulations., 2004, 47(6): 1305–1312.

    [18] HUAI XIULAN, WANG WEIWEI, LI ZHIGANG. Analysis of the effective thermal conductivity of fractal porous media., 2007, 27(17/18): 2815–2821.

    [19] KAN ANKANG, ZHANG TINGTING, LOU HAIJUN. Fractal study of effective thermal conductivity of fiber glass materials., 2013, 33(7): 654–660.

    空間環(huán)境下纖維織物絕熱材料隔熱性能評價與仿真驗證

    雒彩云, 楊莉萍, 陶冶, 鐘秋, 李會東

    (中國科學院 上海硅酸鹽研究所,無機材料分析測試中心, 上海 201899)

    本文以天宮二號空間材料爐多層隔熱系統(tǒng)中纖維織物絕熱材料為研究對象, 采用空間環(huán)境等效試驗條件表征研究了織物有效導熱系數(shù)隨在軌溫度和壓強的變化, 結合微觀傳熱機理對結果進行了分析, 根據(jù)表征結果對不同工況下爐內溫度場進行了模擬。結果表明: 纖維織物有效導熱系數(shù)隨溫度升高非線性增大, 壓強越低, 增長越平緩; 隨壓強降低以指數(shù)函數(shù)趨勢衰減且存在臨界壓強; 輻射與氣相導熱是影響空間環(huán)境下纖維織物傳熱性能的主要因素; 爐內溫場計算值與匹配實驗實測溫度整體趨勢吻合良好, 爐中心溫度最大計算誤差為實測溫度的 1.3%。該方法更合理地評價了多層纖維材料在使用工況下的絕熱性能, 從而有助于建立準確度更高的熱仿真模型。

    空間微重力環(huán)境; 纖維織物絕熱材料; 有效導熱系數(shù); 穩(wěn)態(tài)熱流計法; 溫場仿真

    O482

    A

    date:2019-03-14;

    Modified date: 2019-05-15

    China’s Manned Space Station Project (TGJZ800-2-RW024); National Natural Science Foundation of China (51606209); Shanghai Technical Platform for Testing and Characterization on Inorganic Materials (14DZ2292900)

    LUO Cai-Yun(1983–), female, engineer. E-mail:lcyun1010@163.com

    Corresponding author:YANG Li-Ping, professor. E-mail: lpyang@mail.sic.ac.cn

    1000-324X(2019)11-1238-07

    10.15541/jim20190110

    猜你喜歡
    絕熱材料織物纖維
    保溫及絕熱材料
    建筑與預算(2024年3期)2024-04-29 07:00:14
    ◆ 保溫及絕熱材料
    建筑與預算(2023年2期)2023-03-10 13:13:26
    無Sn-Pd活化法制備PANI/Cu導電織物
    熱電池常用絕熱材料的發(fā)展與展望
    云南化工(2021年10期)2021-12-21 07:33:22
    《紡織品織物折痕回復角的測定》正式發(fā)布
    解鎖先進功能纖維
    纖維的無限可能
    竹纖維織物抗菌研究進展
    腹部纖維型纖維肉瘤CT表現(xiàn)2例
    織物柔軟劑的香氣發(fā)展趨勢
    亚洲国产欧美人成| 王馨瑶露胸无遮挡在线观看| 夫妻午夜视频| av又黄又爽大尺度在线免费看| av在线观看视频网站免费| 久久热精品热| 亚洲精品视频女| 22中文网久久字幕| 免费高清在线观看视频在线观看| 国产精品一区二区在线观看99| 中文字幕久久专区| 久久精品国产亚洲av天美| av不卡在线播放| 少妇猛男粗大的猛烈进出视频| 日本猛色少妇xxxxx猛交久久| 精品久久久久久电影网| 欧美日韩视频精品一区| 亚洲精品,欧美精品| 2022亚洲国产成人精品| 欧美精品人与动牲交sv欧美| 亚洲av欧美aⅴ国产| av天堂中文字幕网| 欧美日韩一区二区视频在线观看视频在线| 最近中文字幕2019免费版| 伊人久久国产一区二区| 内地一区二区视频在线| 精品亚洲成国产av| 丝瓜视频免费看黄片| tube8黄色片| 亚洲三级黄色毛片| av视频免费观看在线观看| 中文资源天堂在线| 久久久久国产网址| 性高湖久久久久久久久免费观看| 成人一区二区视频在线观看| 香蕉精品网在线| 中文字幕免费在线视频6| 国产在线一区二区三区精| 欧美成人精品欧美一级黄| 在线免费观看不下载黄p国产| 一二三四中文在线观看免费高清| 99久久中文字幕三级久久日本| 熟女电影av网| 边亲边吃奶的免费视频| 五月伊人婷婷丁香| 亚洲av.av天堂| 18禁在线播放成人免费| 婷婷色综合www| 成人二区视频| 精品亚洲成a人片在线观看 | 国产av一区二区精品久久 | 日韩国内少妇激情av| 岛国毛片在线播放| 99国产精品免费福利视频| 少妇精品久久久久久久| 一级毛片电影观看| 欧美日韩综合久久久久久| 久久av网站| 成人一区二区视频在线观看| 国产午夜精品一二区理论片| 内射极品少妇av片p| 性高湖久久久久久久久免费观看| 波野结衣二区三区在线| 久久久久久久久久久免费av| 在线天堂最新版资源| 亚洲精品亚洲一区二区| 日韩精品有码人妻一区| 黑人高潮一二区| 五月玫瑰六月丁香| av在线观看视频网站免费| 国产高清不卡午夜福利| 女性生殖器流出的白浆| 国产免费又黄又爽又色| 亚洲精品456在线播放app| 免费看av在线观看网站| 狠狠精品人妻久久久久久综合| 亚洲精品中文字幕在线视频 | 午夜日本视频在线| 日韩av在线免费看完整版不卡| 永久网站在线| 免费人妻精品一区二区三区视频| 亚洲av日韩在线播放| 不卡视频在线观看欧美| 中文字幕免费在线视频6| 麻豆精品久久久久久蜜桃| 99久久精品国产国产毛片| 国精品久久久久久国模美| 欧美国产精品一级二级三级 | 久久人妻熟女aⅴ| 日本欧美视频一区| 国产 精品1| 好男人视频免费观看在线| 久久人人爽人人爽人人片va| 国产真实伦视频高清在线观看| 哪个播放器可以免费观看大片| 日韩不卡一区二区三区视频在线| 成人黄色视频免费在线看| 欧美xxⅹ黑人| 不卡视频在线观看欧美| 一个人免费看片子| 三级国产精品片| 嫩草影院入口| 女人十人毛片免费观看3o分钟| 夜夜骑夜夜射夜夜干| 高清欧美精品videossex| 校园人妻丝袜中文字幕| 午夜激情久久久久久久| av免费观看日本| 国内少妇人妻偷人精品xxx网站| 五月开心婷婷网| 久久毛片免费看一区二区三区| 久久久久久久大尺度免费视频| 我要看黄色一级片免费的| 多毛熟女@视频| 少妇被粗大猛烈的视频| 高清黄色对白视频在线免费看 | 欧美老熟妇乱子伦牲交| av在线app专区| 狠狠精品人妻久久久久久综合| 最近的中文字幕免费完整| 成年人午夜在线观看视频| 在线免费十八禁| 男人狂女人下面高潮的视频| 国产亚洲精品久久久com| 在线观看美女被高潮喷水网站| 亚州av有码| 日韩伦理黄色片| 欧美精品人与动牲交sv欧美| 亚洲经典国产精华液单| 大又大粗又爽又黄少妇毛片口| 极品教师在线视频| 国产人妻一区二区三区在| 午夜福利视频精品| 精品一区在线观看国产| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区性色av| 少妇高潮的动态图| 国产精品国产av在线观看| 极品少妇高潮喷水抽搐| 美女高潮的动态| 久久久久精品性色| 亚洲高清免费不卡视频| 国产视频内射| 51国产日韩欧美| 日韩欧美精品免费久久| 精品一区在线观看国产| 九九在线视频观看精品| 一个人看视频在线观看www免费| 黄色欧美视频在线观看| 国产久久久一区二区三区| 麻豆乱淫一区二区| 亚洲av免费高清在线观看| 欧美zozozo另类| 在线观看国产h片| 国产亚洲欧美精品永久| 亚洲美女视频黄频| 中文欧美无线码| 午夜福利高清视频| 夜夜看夜夜爽夜夜摸| 精品酒店卫生间| 熟女av电影| 精品一品国产午夜福利视频| h视频一区二区三区| 久久精品国产a三级三级三级| 婷婷色av中文字幕| 国产成人aa在线观看| 免费观看的影片在线观看| 久久 成人 亚洲| 视频中文字幕在线观看| 激情五月婷婷亚洲| 久久久久视频综合| 搡女人真爽免费视频火全软件| 久久99蜜桃精品久久| av网站免费在线观看视频| 亚洲国产高清在线一区二区三| 大香蕉久久网| 国产伦理片在线播放av一区| 美女中出高潮动态图| 亚洲精品乱码久久久v下载方式| 啦啦啦啦在线视频资源| 久久久久国产精品人妻一区二区| 2021少妇久久久久久久久久久| 一区二区三区免费毛片| 91在线精品国自产拍蜜月| 国产视频首页在线观看| 国产亚洲午夜精品一区二区久久| 各种免费的搞黄视频| 国产伦精品一区二区三区视频9| 五月伊人婷婷丁香| 国产 一区精品| 在线观看免费日韩欧美大片 | 日本欧美国产在线视频| 一区二区三区乱码不卡18| av卡一久久| 欧美zozozo另类| 啦啦啦中文免费视频观看日本| 中国国产av一级| av一本久久久久| 欧美少妇被猛烈插入视频| 国产成人精品婷婷| 中文精品一卡2卡3卡4更新| 亚洲av男天堂| 美女国产视频在线观看| 一区二区av电影网| 免费播放大片免费观看视频在线观看| 亚洲熟女精品中文字幕| 黄片无遮挡物在线观看| 亚洲欧美精品专区久久| 亚洲精品,欧美精品| 久久99精品国语久久久| 亚洲精品久久久久久婷婷小说| 亚洲av中文av极速乱| 久久精品人妻少妇| 亚洲一区二区三区欧美精品| 亚洲精品乱码久久久久久按摩| 22中文网久久字幕| 久久久亚洲精品成人影院| 日韩人妻高清精品专区| 国产永久视频网站| 男女边摸边吃奶| 亚洲精品乱码久久久久久按摩| 纵有疾风起免费观看全集完整版| 在线看a的网站| 欧美精品一区二区大全| 国产高潮美女av| 纵有疾风起免费观看全集完整版| 永久免费av网站大全| 欧美精品人与动牲交sv欧美| 在线观看av片永久免费下载| 午夜福利高清视频| 亚洲精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 亚洲一区二区三区欧美精品| freevideosex欧美| 免费人妻精品一区二区三区视频| 自拍偷自拍亚洲精品老妇| 深夜a级毛片| 99热国产这里只有精品6| 日本wwww免费看| 国产成人免费观看mmmm| 日韩欧美 国产精品| 国产黄片美女视频| 免费观看在线日韩| 亚洲第一区二区三区不卡| 午夜福利网站1000一区二区三区| 国产永久视频网站| 欧美亚洲 丝袜 人妻 在线| av播播在线观看一区| 哪个播放器可以免费观看大片| 少妇丰满av| 亚洲怡红院男人天堂| 爱豆传媒免费全集在线观看| 一级片'在线观看视频| 欧美少妇被猛烈插入视频| 欧美一区二区亚洲| 女人十人毛片免费观看3o分钟| videossex国产| 国产精品嫩草影院av在线观看| 日韩 亚洲 欧美在线| 免费在线观看成人毛片| 婷婷色av中文字幕| 直男gayav资源| 久久国产精品男人的天堂亚洲 | 日韩视频在线欧美| 久热这里只有精品99| 亚洲国产精品999| 日韩,欧美,国产一区二区三区| 久久女婷五月综合色啪小说| 亚洲第一区二区三区不卡| 国内少妇人妻偷人精品xxx网站| 在线观看免费日韩欧美大片 | 国产精品久久久久久久久免| 亚洲av在线观看美女高潮| 国产一区有黄有色的免费视频| a级一级毛片免费在线观看| 国产成人一区二区在线| 成人亚洲精品一区在线观看 | 国产精品秋霞免费鲁丝片| 国产欧美另类精品又又久久亚洲欧美| 97在线视频观看| 嫩草影院新地址| 一区二区三区乱码不卡18| 丝袜脚勾引网站| 美女高潮的动态| 久久久久久久久久久丰满| 日韩电影二区| 亚洲在久久综合| 美女脱内裤让男人舔精品视频| 国内少妇人妻偷人精品xxx网站| 欧美日韩在线观看h| www.色视频.com| 欧美国产精品一级二级三级 | 久久影院123| 美女福利国产在线 | 国产日韩欧美亚洲二区| 国产伦精品一区二区三区四那| 欧美人与善性xxx| 国产av码专区亚洲av| 男人舔奶头视频| 精品国产三级普通话版| 啦啦啦在线观看免费高清www| 天堂8中文在线网| 能在线免费看毛片的网站| 狂野欧美白嫩少妇大欣赏| 在线亚洲精品国产二区图片欧美 | 亚洲av男天堂| 国产视频首页在线观看| 91精品伊人久久大香线蕉| 在现免费观看毛片| 一级av片app| 日本欧美视频一区| 久久精品国产亚洲av涩爱| 免费观看在线日韩| 国产午夜精品久久久久久一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品欧美亚洲77777| 女人十人毛片免费观看3o分钟| 老司机影院成人| 蜜桃亚洲精品一区二区三区| 又黄又爽又刺激的免费视频.| 中文资源天堂在线| 在线天堂最新版资源| 国产精品偷伦视频观看了| 亚州av有码| 亚洲精品久久午夜乱码| av不卡在线播放| 久热久热在线精品观看| 成人美女网站在线观看视频| 一个人看视频在线观看www免费| 永久网站在线| 五月伊人婷婷丁香| 一级a做视频免费观看| 在线观看免费高清a一片| 国产黄色视频一区二区在线观看| 亚洲精品乱码久久久v下载方式| av视频免费观看在线观看| 国产高清不卡午夜福利| 一区二区三区精品91| 黑人高潮一二区| 久久6这里有精品| 亚洲欧美一区二区三区国产| 欧美成人午夜免费资源| 国产成人午夜福利电影在线观看| 80岁老熟妇乱子伦牲交| 欧美+日韩+精品| 国产女主播在线喷水免费视频网站| 日本午夜av视频| 我要看日韩黄色一级片| 午夜老司机福利剧场| 青春草国产在线视频| 国产免费又黄又爽又色| 亚洲中文av在线| 国产亚洲5aaaaa淫片| 亚洲精品乱久久久久久| av在线播放精品| 狂野欧美激情性bbbbbb| 老女人水多毛片| 亚洲国产日韩一区二区| 亚洲精品自拍成人| 免费不卡的大黄色大毛片视频在线观看| 嫩草影院新地址| 狂野欧美白嫩少妇大欣赏| 免费黄频网站在线观看国产| 成人高潮视频无遮挡免费网站| 亚洲精品亚洲一区二区| 亚洲精品色激情综合| 久久国产亚洲av麻豆专区| 国产视频内射| 秋霞伦理黄片| 免费观看av网站的网址| 99热国产这里只有精品6| 国产精品精品国产色婷婷| 男人爽女人下面视频在线观看| 国产深夜福利视频在线观看| 亚洲,欧美,日韩| 日韩av在线免费看完整版不卡| 久久久久视频综合| 欧美成人a在线观看| 国产精品伦人一区二区| 人人妻人人看人人澡| 高清黄色对白视频在线免费看 | 亚洲天堂av无毛| 激情 狠狠 欧美| 麻豆成人午夜福利视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲最大成人中文| 一区二区三区精品91| 男女国产视频网站| 女性被躁到高潮视频| 乱码一卡2卡4卡精品| 成人免费观看视频高清| 国产 一区精品| 18禁在线播放成人免费| 最近的中文字幕免费完整| 中文字幕久久专区| 免费观看av网站的网址| 国产成人91sexporn| 国产免费视频播放在线视频| 麻豆乱淫一区二区| h视频一区二区三区| 国产精品一区二区性色av| 亚洲综合色惰| 亚洲成人手机| 午夜精品国产一区二区电影| 99国产精品免费福利视频| 只有这里有精品99| 久久ye,这里只有精品| 国产精品99久久99久久久不卡 | 人妻 亚洲 视频| 边亲边吃奶的免费视频| 国产男人的电影天堂91| 夜夜骑夜夜射夜夜干| 精品亚洲成a人片在线观看 | 亚洲精品久久午夜乱码| 美女高潮的动态| 人妻一区二区av| 街头女战士在线观看网站| 亚洲av电影在线观看一区二区三区| 欧美xxxx性猛交bbbb| 午夜免费男女啪啪视频观看| 纵有疾风起免费观看全集完整版| 国产欧美另类精品又又久久亚洲欧美| 午夜老司机福利剧场| 久久久久久久久久久丰满| 人人妻人人澡人人爽人人夜夜| 成人国产麻豆网| 美女福利国产在线 | 欧美+日韩+精品| 欧美精品一区二区免费开放| 欧美性感艳星| 超碰97精品在线观看| 99re6热这里在线精品视频| 亚洲美女黄色视频免费看| 在线观看美女被高潮喷水网站| 日本黄色片子视频| 在线精品无人区一区二区三 | 国产美女午夜福利| 小蜜桃在线观看免费完整版高清| 精品人妻偷拍中文字幕| 久久久精品94久久精品| 狂野欧美白嫩少妇大欣赏| 另类亚洲欧美激情| 久久久午夜欧美精品| 久久ye,这里只有精品| 国产亚洲一区二区精品| 亚洲久久久国产精品| 观看av在线不卡| 少妇猛男粗大的猛烈进出视频| 亚洲图色成人| 国产av精品麻豆| 国产精品人妻久久久影院| 亚洲精品日本国产第一区| 久热这里只有精品99| 国产亚洲5aaaaa淫片| 人人妻人人添人人爽欧美一区卜 | 久久毛片免费看一区二区三区| 国产精品99久久久久久久久| 亚洲性久久影院| 日本色播在线视频| 一二三四中文在线观看免费高清| 欧美成人午夜免费资源| 九九在线视频观看精品| 精品午夜福利在线看| 水蜜桃什么品种好| 久久久欧美国产精品| 黄片无遮挡物在线观看| 久久6这里有精品| 97在线人人人人妻| av在线蜜桃| 久久久久人妻精品一区果冻| 男人狂女人下面高潮的视频| 亚洲中文av在线| 一级毛片 在线播放| 成年人午夜在线观看视频| 少妇的逼水好多| 欧美日韩视频精品一区| 天天躁日日操中文字幕| 少妇精品久久久久久久| 精品人妻偷拍中文字幕| 青青草视频在线视频观看| 亚洲美女搞黄在线观看| 天堂中文最新版在线下载| 精品一区在线观看国产| 亚洲国产成人一精品久久久| 永久网站在线| 亚洲精品国产色婷婷电影| 久热久热在线精品观看| 黑丝袜美女国产一区| 国产国拍精品亚洲av在线观看| 秋霞在线观看毛片| 亚洲在久久综合| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美国产在线视频| 久久久欧美国产精品| 国产一区二区在线观看日韩| 国产在视频线精品| 成人午夜精彩视频在线观看| av播播在线观看一区| 大片免费播放器 马上看| 日本欧美视频一区| 只有这里有精品99| 大片免费播放器 马上看| 日韩电影二区| 亚洲欧美日韩无卡精品| 国模一区二区三区四区视频| 成年女人在线观看亚洲视频| 国产 一区精品| 亚洲精品国产av成人精品| 久久毛片免费看一区二区三区| 26uuu在线亚洲综合色| 热99国产精品久久久久久7| a级一级毛片免费在线观看| 日本色播在线视频| 午夜福利影视在线免费观看| av视频免费观看在线观看| 26uuu在线亚洲综合色| 男人和女人高潮做爰伦理| 熟女av电影| 久久久久久久久大av| 日韩 亚洲 欧美在线| 精品酒店卫生间| 国产亚洲欧美精品永久| 91精品国产九色| 日本黄大片高清| 校园人妻丝袜中文字幕| 中文字幕人妻熟人妻熟丝袜美| 久久精品人妻少妇| 国产精品久久久久久av不卡| 秋霞伦理黄片| 成人国产麻豆网| 日韩 亚洲 欧美在线| 女人久久www免费人成看片| 一级a做视频免费观看| 蜜桃亚洲精品一区二区三区| 日本黄大片高清| 91在线精品国自产拍蜜月| 欧美一级a爱片免费观看看| 深夜a级毛片| 五月天丁香电影| 久久精品国产亚洲av涩爱| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影小说 | 丰满少妇做爰视频| 国产在线男女| 国产精品秋霞免费鲁丝片| 国产精品国产三级国产专区5o| 欧美最新免费一区二区三区| 日韩强制内射视频| 国产 一区 欧美 日韩| 蜜臀久久99精品久久宅男| 日韩欧美精品免费久久| 中文资源天堂在线| 亚州av有码| 亚洲av不卡在线观看| 亚洲激情五月婷婷啪啪| 午夜老司机福利剧场| 欧美人与善性xxx| 国产国拍精品亚洲av在线观看| 香蕉精品网在线| 国产乱人视频| 日韩欧美精品免费久久| 欧美激情国产日韩精品一区| 欧美精品国产亚洲| 亚洲美女搞黄在线观看| 国产极品天堂在线| 中文字幕精品免费在线观看视频 | 嘟嘟电影网在线观看| 国产爱豆传媒在线观看| 国产成人a∨麻豆精品| 国产精品不卡视频一区二区| 亚洲一级一片aⅴ在线观看| 婷婷色av中文字幕| 永久免费av网站大全| av国产久精品久网站免费入址| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久久久久免费av| 激情五月婷婷亚洲| 久久久久久久亚洲中文字幕| 视频区图区小说| 国产中年淑女户外野战色| 人人妻人人澡人人爽人人夜夜| 国产亚洲最大av| 99热这里只有是精品50| 亚洲欧美成人综合另类久久久| 秋霞在线观看毛片| 高清黄色对白视频在线免费看 | 亚洲国产精品一区三区| 成年女人在线观看亚洲视频| 日日撸夜夜添| 99热这里只有精品一区| 国产精品福利在线免费观看| 99热这里只有精品一区| 欧美亚洲 丝袜 人妻 在线| 国产淫片久久久久久久久| 精品国产一区二区三区久久久樱花 | 欧美精品国产亚洲| av黄色大香蕉| 国内揄拍国产精品人妻在线| 麻豆乱淫一区二区| 午夜福利高清视频| 99久国产av精品国产电影| 成人免费观看视频高清| 色视频在线一区二区三区| 午夜视频国产福利| 国产精品人妻久久久影院| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 韩国av在线不卡| 在线观看av片永久免费下载| 99久国产av精品国产电影| 欧美区成人在线视频| 天天躁日日操中文字幕| 黄色配什么色好看| 综合色丁香网| 高清视频免费观看一区二区|