• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intense Yellow Emission from Gd0.5–yTb1.5REyW3O12 (RE=Eu, Sm) Phosphors Tuned through Full Range Doping

    2019-12-16 08:32:32DAIYanNanYANGShuaiSHENYangSHANYongKuiYANGFanZHAOQingBiao
    無機材料學報 2019年11期
    關鍵詞:黃光熒光粉紫外光

    DAI Yan-Nan, YANG Shuai, SHEN Yang, SHAN Yong-Kui, YANG Fan, ZHAO Qing-Biao

    Intense Yellow Emission from Gd0.5–yTb1.5REW3O12(RE=Eu, Sm) Phosphors Tuned through Full Range Doping

    DAI Yan-Nan1, YANG Shuai1, SHEN Yang2, SHAN Yong-Kui1, YANG Fan1, ZHAO Qing-Biao2

    (1. School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; 2.Key Laboratory of Polar Materials and Devices (MOE), Department of Optoelectronics, East China Normal University, Shanghai 200241, China)

    Yellow emission phosphors play an important role in fabrication of near ultraviolet (NUV) chip pumped white light emitting diodes (W-LEDs). In this study, doping of Gd2W3O12host with Tb3+and Eu3+/Sm3+were used for obtaining yellow light emission. The excitation of Gd3+typically is in deep ultraviolet region, but Gd3+in Gd2W3O12does not emit under the excitation of 382 nm, thus Gd3+does not interfere with the emission from Tb3+and Eu3+/Sm3+for obtaining yellow emission. Due to the similar ionic radii, the doping of Gd3+by Tb3+can be achieved in the full concentration range, and at the optimal concentration of 75mol% Tb3+, green emission with reasonably high internal quantum efficiency of 37.6% was obtained. With the optimal doping concentration of Tb3+, Eu3+/Sm3+was co-doped in the Gd2W3O12host, and bright yellow emission with IQE of 39.6% and 47.8% were obtained. The yellow phosphors of Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12were used to fabricate W-LED devices with NUV-blue chips. Thus, Gd0.5–yTb1.5REW3O12(RE=Eu, Sm) phosphors are candidates as the yellow phosphors for fabricating W-LED devices. Additionally, the full-range doping strategy can be used in other systems for obtaining efficient phosphors.

    solid state synthesis; photoluminescence; tungstate; rare earth; internal quantum efficiency

    White light emitting diodes (W-LEDs) have received much attention for their high efficiency, long service life and small volume[1-3].There are primarily three approaches for obtaining W-LEDs, including tri-color (red, green, blue) diode chips[4], blue chips coated with yellow phosphors[5], and ultraviolet (UV) chips coated with RGB phosphors[6]. The LED chips used for solid state lighting can typically provide near ultraviolet (NUV) excitation in the region of 380–420 nm. Therefore, the phosphors that can be efficiently excited in this region are desired.

    The commercialized cerium (III)-doped yttrium aluminum garnet (YAG: Ce3+) emit strong yellow light under blue excitation from InGaN chips[7]. Besides, some other novel Ce3+doped phosphors with high quantum efficiency had been reported in recent years[8-9]. However, the preparation of Ce3+doped phosphors requires a reducing atmosphere, which inevitably adds to the cost. Moreover, Ce3+tends to be oxidized to the tetravalent state if exposed to air. Thus, it is desired to develop new phosphors that can be prepared in ambient atmosphere. Yellow light can be obtained by adjusting the ratio of green light to red light. Tb3+and Eu3+(or Sm3+) ions can be excited by NUV, emit green and red light, respectively[10-11]. Therefore, it is possible to realize yellow light emission under NUV excitation by adjusting the doping ratio of Tb3+/Eu3+or Tb3+/Sm3+in proper hosts.

    Rare earth ion based tungstates have drawn increasing attention for their low phonon energy and high thermal stability[12-13]. Since the electronic configuration of Gd3+(4f7) is half full, the f-f transition (8S7/2→6IJ) of Gd3+generally takes place at deep ultraviolet region, and Gd3+generally does not exhibit emission in visible range[14]. Gd2W3O12can provide suitable substitution sites for rare earth ions, thus can function as the host of rare earth ion doped phosphors. As the ionic radius of Tb3+, Eu3+and Sm3+are very close to that of Gd3+[15], those rare earth ions were introduced to substitute the positions of Gd3+ions in Gd2W3O12. The substitution of Gd3+by Tb3+can perform in the entire range, allowing the fine tuning of the optimal doping rate in order to obtain the maximum IQE for the green emission. Eu3+and Sm3+ions can be efficiently excited by NUV/blue light and emit in the red range[16-17]. With the combination of green emission from Tb3+and red emission from Eu3+/Sm3+, co-doping Eu3+(or Sm3+) with Tb3+is another strategy for obtaining yellow emission, which does not require reducing environment.

    In this study, the photoluminescence properties of Eu3+(or Sm3+) and Tb3+co-doped Gd2W3O12phosphors with yellow light emission are reported. The IQE of Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12are 39.6% and 47.8%, respectively. Furthermore, they can be synthesized under ambient atmosphere, thus avoiding the requirement of reducing atmosphere. Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12are promising candidates for yellow phosphors. The full-range doping approach can be used in search for novel phosphors with high efficiency.

    1 Experimental

    A series of Gd2W3O12: Tb3+, Eu3+(or Sm3+) phosphors were synthesized by traditional high temperature solid state synthesis. The starting materials of Tb4O7(Adamas Reagent, 99.99%), WO3(Adamas Reagent, 99.90%), Gd2O3(Adamas Reagent, 99.99%), Eu2O3(Adamas Reagent, 99.90%) and Sm2O3(Adamas Reagent, 99.90%) were weighed in stoichiometric ratio and thoroughly ground in an agate mortar. After thoroughly mixing, the reactants were transferred to an alumina crucible and heated at 600℃ for 8 h. After cooling to room temperature, the obtained intermediate products were reground and calcined at 1000℃ for 24 h.

    The XRD patterns were collected by a Bruker D8 diffractometer with CuKα (=0.154059 nm) radiation at 40 kV and 40 mA. The excitation and emission spectra of Gd2W3O12: Tb3+, Eu3+(or Sm3+) phosphors were collected with a Hitachi F4500 Fluorometer. The internal quantum efficiencies (IQE) were measured by Edinburgh (EI) FS5 fluorometer equipped with an integrating sphere. The IQE was calculated with equation (1):

    whereBis the emission integral of the sample,Ais the emission integral of the blank stander,Ais the absorption integral of the blank stander andBis the absorption integral of the sample. A polytetrafluoroethylene plate was used as the reference.

    2 Results and discussion

    2.1 Structural analysis

    Gd2–xW3O12:Tb3+(= 0, 0.25, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) phosphors were synthesized by high temperature solid state synthesis. The crystal structures of Tb2W3O12and Gd2W3O12have been reported[18]. The crystal structure of the as-prepared Gd2W3O12belongs to the monoclinic system. The space group is C2/c with the following lattice parameters:=0.7811 nm,=1.1629 nm,= 1.1537 nm,==90°,=109.719°. In Gd2W3O12, each Gd atom is coordinated with 8 O atoms, forming a [GdO8] polyhedron without inversion center. As shown in Fig. 1(a, b), each [GdO8] polyhedron shares one side with two nearest [GdO8] polyhedron. Thus a one-dimensional chain structure is formed, which plays an important rolefor the high concentration quenching of Tb3+in Gd2W3O12.

    Fig. 2 shows the XRD patterns of Gd2W3O12, TbGdW3O12and Tb2W3O12, which are consistent with the JPCDS card of Gd2W3O12(JPCDS #23-1076). The cell parameters of Tb2W3O12, Gd2W3O12only have a minor difference, and the crystal structure of Tb2W3O12and Gd2W3O12are similar. Therefore, the doping ratio of Tb3+ions in Gd2W3O12can range from 0 to 100mol%.

    The ionic radii of both Sm3+(CN=8,=0.1079 nm) and Eu3+(CN=8,=0.1066 nm) ions are also similar to Gd3+(CN=8,=0.105 nm) ions[15]. Therefore, co-doping of Sm3+or Eu3+in Tb3+doped Gd2W3O12is feasible. Apparently, in order to obtain yellow emission, doping on the Gd3+site has a unique advantage in that both the doping ratios of Tb3+as the green emission source and the doping ratios of Eu3+/Sm3+as the red emission source can be tuned in a broad range. This allows fine tuning of both the overall emission wavelengths and emission intensity.

    Fig. 1 (a) The polyhedron models of the crystal structure of Gd2W3O12 from perspectives of x axis, (b) the one-dimensional chain structure of [GdO8] polyhedrons

    Fig. 2 XRD patterns of Gd2W3O12, TbGdW3O12 and Tb2W3O12

    2.2 Luminescence property

    Fig. 3(a, b) show the excitation spectra of Gd2–xW3O12:Tb3+phosphors monitored with 549 nm emission and the concentration dependent excitation intensity, respectively. There is a broad excitation band shorter than 320 nm which belongs to the charge transfer (CT) between W and O. The excitation at 321 nm (7F6→5D0), 342 nm (7F6→5D1), 361 nm (7F6→5D2), 372 nm (7F6→5D3), and 382 nm (7F6→5D4) belong to the f–f transition of Tb3+ions[19]. With increasing concentration of Tb3+ions up to 75mol% (when=1.50), the excitation intensity gradually enhances. As the concentration of Tb3+ions continue to increase, the excitation intensity gradually decreases. With Gd3+ions entirely replaced by Tb3+ions, Tb2W3O12shows a weak excitation.

    Fig. 4(a, b) show the emission spectra at 382 nm excitation and the concentration dependent emission intensities of Gd2–xW3O12:Tb3+(=0.25, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) phosphors. The sharp peaks at 485, 549, 575 and 610 nm correspond to the relaxation processes (5D4→7F6,5D4→7F5,5D4→7F4and5D4→7F3)of Tb3+ions, respectively[20]. As shown in Fig. 4(a, b), with the doping amount of Tb3+ions increasing to 75mol% (=1.50), the emission intensity at 549 nm gradually increases, and the IQE of Tb1.5Gd0.5W3O12enhances to 37.6%. The emission intensity at 549 nm gradually decreases with further increasing of the doping amount of Tb3+. With the full occupancy of Tb3+, the concentration quenching is significant and the emission intensity of Tb2W3O12is very weak, and the IQE of Tb2W3O12is only 12.6%.

    Fig. 3 (a) The excitation spectra of Gd2–xW3O12: xTb3+ (x= 0.25, 0.75, 1.0, 1.25, 1.5, 1.75, 2.00) monitored with 549 nm emission; (b) The concentration dependent excitation intensity of 7F6→5D4 transition of Tb3+ at 382 nm in Gd2–xW3O12: x Tb3+ (a) Coloful spectra are available on website

    Fig. 4 (a) The emission spectra of Gd2–xW3O12: xTb3+ (x=0.25, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) phosphors under 382 nm ultraviolet excitation; (b) The concentration dependent 549 nm emission intensity of Gd2–xW3O12: xTb3+ (where x=0.25, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) phosphors

    The concentration quenching of Tb3+doped Gd2W3O12occurs at a rather high concentration of 75mol%. Typically, the optimal doping concentration of rare earth activators for luminescence is in the range of 1mol%– 20mol%. Realizing very high quenching concentration can be a strategy for realizing bright green emission.

    It is intriguing to figure out the cause for the high concentration quenching of Tb3+doped Gd2W3O12.The mechanism of self-concentration quenching (SCQ) of Tb3+and Eu3+ions in LaMgB5O10have been reported[21]. Since edge-sharing [LaO10] polyhedron in LaMgB5O10form isolate chains, one-dimensional interactions between Tb3+ion or Eu3+ions occurs, which lead to a high self-quenching concentration. The high quenching concentration of Gd2–xTbW3O12phosphors can be attributed to the crystal structure of Gd2W3O12host. As shown in Fig. 2(b), the nearest edge-sharing [GdO8] polyhedrons form one-dimensional chains. In general, the concentration quenching of Tb3+ion is due to the non-radiative energy transfer between Tb3+ions[22-23]. Owing to the little differences between5D3→5D4and7F6→7F0of Tb3+, the cross relaxation process was described as Equation (2):

    Tb3+(5D3) + Tb3+(7F6)→Tb3+(5D4) + Tb3+(7F0) (2)

    Thus, Tb3+ion in the excitation state of5D3would release to a lower excitation state of5D4and the neighboring Tb3+ion in the ground state of7F6would be excited to the excitation state of7F0. As a result, the neighboring Tb3+ion act as quenching center which lead to the quenching of Tb3+ion. In such one-dimensional structure, the energy transfer can lead to concentration quenching at a very high concentration.

    The critical distance (c) between Tb3+ion was calculated by the concentration quenching method, with the following formula (Eq. (3)) proposed by Blasse[24]:

    whereis the volume of crystallographic unit cell,cis the critical concentration andis the lattice site number in the unit cell which can be replaced by sensitizers. In Gd2W3O12,=0.493278 nm3,=8, andc=0.75. Thecof Tb3+ions is thus calculated to be 0.539 nm. In general, for energy transfer process, the exchange interaction and multipole interaction are two dominant mechanisms[25]. Exchange interactions generally take place over the distance shorter than 0.5 nm[26]. Since the critical distance of Tb3+ions in Tb2W3O12is 0.539 nm, which is close to 0.5 nm, exchange interaction is expected to play the dominant role in the energy transfer process.

    Due to the red emission under NUV excitation, Eu3+and Sm3+ions were utilized to adjust the CIE coordinates of phosphors to yellow region. Fig. 5(a, b) show the excitation spectra of Eu3+and Sm3+doped Gd0.5Tb1.5W3O12phosphors, respectively. Since the excitation bands of Eu3+and Sm3+ions overlap with that of Tb3+, the excitation band of Eu3+or Sm3+cannot be differentiated in the excitation spectra. As shown in Fig. 5(a, b), due to the competition between Tb3+and Eu3+(Sm3+) ions, the excitation intensities of Tb3+ions decrease as doping concentration of Eu3+and Sm3+ions increase. The strongest excitation peaks of both Eu3+and Sm3+doped Gd0.5–yTb1.5REW3O12phosphors locate at 382 nm.

    Fig. 5(c, d) show the emission spectra of Gd0.5–yTb1.5REW3O12phosphors doped with Eu3+and Sm3+at 382 nm excitation. In Fig. 5(c), there are two emission peaks at 598 and 619 nm, which correspond to the5D0→7F1and5D0→7F2transitions of Eu3+ion, respectively. As the doping amount of Eu3+ion increases to 0.010, the emission intensity at 619 nm increases. Yet, as the doping amount of Eu3+further increases, the concentration quenching of Eu3+ions occurs.

    Fig. 5 (a, b)The excitation spectra of Gd0.5–yTb1.5REyW3O12 (RE=Eu, Sm), (c, d) the emission spectra of Gd0.5–yTb1.5REyW3O12 (RE=Eu, Sm) with 382 nm excitation

    Colourful spectra are available on website

    The electric dipole transition of5D0→7F2emission of Eu3+ion belongs to the hypersensitive transition and is very sensitive to surrounding environment[27]. In Fig. 5 (c), the electric dipole transition of5D0→7F2(619 nm) emission intensity is significantly stronger than the peak intensity at 598 nm, which indicates that the doping position of Eu3+has no inversion center. As shown in Fig. 5(d), besides the characteristic emission of Tb3+ion in 549 nm (5D4→7F5), the emission peaks of Sm3+are also present in the emission spectrum of Gd0.5–yTb1.5SmW3O12phosphors. Those emission peaks at 610 (4G5/2→6H7/2) and 650 nm (4G5/2→6H9/2) correspond to the f-f transition of Sm3+. With the increasing concentration of Sm3+ion, the emission intensity of Tb3+ion decrease, and Sm3+ion achieved the strongest emission at the concentration of 0.3mol%. Since the emission intensity ratio of Tb3+/Eu3+and Tb3+/Sm3+changes with the concentration of Eu3+and Sm3+, the CIE coordinates of both Gd0.5–yTb1.5EuW3O12and Gd0.5–yTb1.5SmW3O12phosphors vary from green to yellow region. Thus, yellow light emission under NUV light excitation is realized by adjusting the concentration of Eu3+or Sm3+ion in Gd0.5–yTb1.5REW3O12(RE=Eu, Sm) phosphors.

    As shown in Table 1, the IQE of both Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12are reasonably high, although it still needs improvement. Moreover, the synthesis of Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12can be performed in ambient atmosphere, as opposed to the reducing environment that Ce (III) containing compounds require. Thus, Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12can be used as yellow light emission phosphors to fabricate W-LED device.

    2.3 CIE coordinates

    The 1931 CIE chromaticity diagram of Gd2–xTbW3O12(=0, 0.25, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) and Eu3+/Sm3+doped Gd0.5–yTb1.5REW3O12(RE=Eu, Sm;=0, 0.002, 0.004, 0.006, 0.008, 0.010, 0.020) phosphors are shown in Fig. 6(a-c), respectively. As shown in Fig. 6(a), the 1931 CIE coordinatesare constantly close to (0.14, 0.56) with increasing concentration of Tb3+. As shown in Fig. 6(b, c), due to the emission of Eu3+and Sm3+ions, the introduction of both Eu3+and Sm3+has significant influence on the color coordinates of Gd0.5–yTb1.5REW3O12(RE=Eu, Sm;=0, 0.002, 0.004, 0.006, 0.008, 0.010, 0.020). Table 2 lists the CIE coordinates of Gd0.5–yTb1.5EuW3O12and Gd0.5–yTb1.5SmW3-O12with different Eu3+or Sm3+concentration. The 1931 CIE coordinates of Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12are (0.491, 0.472), (0.510, 0.456), respectively, both belonging to the yellow region.

    Table 1 Comparison of the IQE and CIE coordinates of Gd0.5–yTb1.5REyW3O12 (RE=Eu, Sm) with other yellow phosphors

    Fig. 6 The 1931 CIE coordinates diagram of (a) Gd2–xTbxW3O12 (x=0, 0.25, 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00), (b) Gd0.5–yTb1.5EuyW3O12 (y=0, 0.002, 0.004, 0.006, 0.008, 0.010, and 0.020) and (c) Gd0.5–yTb1.5SmyW3O12 (y=0, 0.002, 0.004, 0.006, 0.008, 0.010, and 0.020). The inserts in (b) and (c) are W-LED (1W), which was fabricated by Gd0.494Tb1.5Eu0.006W3O12 or Gd0.494Tb1.5Sm0.006W3O12 phosphors and NUV-blue chip, respectively

    Table 2 The CIE coordinates of Gd0.5–yTb1.5REyW3O12 (RE=Eu, Sm)

    3 Conclusion

    Gd2–xTbW3O12(=0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.50, 1.75, 2.00) and Gd0.5–yTb1.5REW3O12(RE=Eu, Sm;=0.002, 0.004, 0.006, 0.008, 0.010, 0.020) phosphors were prepared by high temperature solid state synthesis. For the green emitting Gd2–xTbW3O12phosphors, with very close ionic radii of Tb3+with Gd3+, the doping can be tuned in the entire concentration range, allowing the access to the optimum IQE of 37.6%. Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12emit bright yellow light under the excitation at 382 nm. The IQE of 47.8% for Gd0.494Tb1.5Sm0.006W3O12is reasonably high. Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12were used for the fabrication of W-LEDs pumped by NUV LED chips. Thus, Gd0.494Tb1.5Eu0.006W3O12and Gd0.494Tb1.5Sm0.006W3O12are candidates for yellow emitting phosphors. Additionally, the full-range doping strategy can be used in other systems for obtaining high quantum efficiency.

    [1] CRAWFORD M H. LEDs for solid-state lighting: Performance challenges and recent advances., 2009, 15(4): 1028–1040.

    [2] SHANG M, LI C, LIN J. How to produce white light in a single- phase host?, 2014, 43(5): 1372–1386.

    [3] ZHOU J, XIA Z. Luminescence color tuning of Ce3+, Tb3+and Eu3+codoped and tri-doped BaY2Si3O10phosphorsenergy transfer., 2015, 3(29): 7552–7560.

    [4] YANG P K, CHEN J C, CHUANG Y H. Improvement on reflective color measurement using a tri-color LED by multi-point calibration., 2007, 272(2): 320–324.

    [5] PARK J K, KIM C H, PARK S H,Application of strontium silicate yellow phosphor for white light-emitting diodes., 2004, 84(10): 1647–1649.

    [6] SONG G, MIAO J, JIANG B,White LED based on near UV LED chip precoated with tri-color phosphors., 2011, 36(8): 586–590.

    [7] YE S, XIAO F, PAN Y X,Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties., 2010, 71(1): 1–34.

    [8] LIU Y, SILVER J, XIE R J,An excellent cyan-emitting orthosilicate phosphor for NUV-pumped white LED application., 2017, 5(2): 12365–12377.

    [9] LIU Y, ZHANG J, ZHANG C,Ba9Lu2Si6O24:Ce3+: an efficient green phosphor with high thermal and radiation stability for solid-state lighting., 2015, 3(8): 1096–1101.

    [10] LIN C C, TANG Y S, HU S F,KBaPO4: Ln (Ln=Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes., 2009, 129(12): 1682–1684.

    [11] LI P, WANG Z, YANG Z,Luminescent characteristics of LiCaBO3: M (M=Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphor for white LED., 2010, 130(2): 222–225.

    [12] TIAN Y, CHEN B, HUA R,Co-precipitation synthesis and characterization of Bi3+, Eu3+co-doped nanocrystal Gd2WO6phosphors., 2010, 10(3): 1943–1946.

    [13] ZOU Z, WU T, LU H,Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2nanocrystals., 2018, 8(14): 7679–7686.

    [14] LI J, LI J G, LIU S,Greatly enhanced Dy3+emissionefficient energy transfer in gadolinium aluminate garnet (Gd3Al5O12) stabilized with Lu3+., 2013, 1(45): 7614–7622.

    [15] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides., 1976, 32(5): 751–767.

    [16] LEI, BINGFU, SHI-QING,Luminescence properties of Sm3+-doped Sr3Sn2O7phosphor., 2010, 124(2): 912–915.

    [17] YU R, NOH H M, MOON B K,Photoluminescence characteristics of Sm3+-doped Ba2CaWO6as new orange-red emitting phosphors., 2014, 152(5): 133–137.

    [18] JAIN A, SHYUE PING O, HAUTIER G,Commentary: The Materials Project: a materials genome approach to accelerating materials innovation., 2013, 1(1): 011002.

    [19] HOU Z, CHENG Z, LI G,Electrospinning-derived Tb2(WO4)3: Eu3+nanowires: energy transfer and tunable luminescence properties., 2011, 3(4): 1568–1574.

    [20] RAI V K, RAI S B, RAI D K. Optical properties of Tb3+doped tellurite glass., 2004, 39(15): 4971–4975.

    [21] FOUASSIER C, SAUBAT B, HAGENMULLER P. Self-quenching of Eu3+and Tb3+luminescence in LaMgB5O10: a host structure allowing essentially one-dimensional interactions., 1981, 23(3): 405–412.

    [22] DU Z, LIU Q, HOU T,The effects of Tb3+doping concentration on luminescence properties and crystal structure of BaF2phosphor., 2015, 38(3): 1–5.

    [23] LIU Y, ZHANG J, ZHANG C,High efficiency green phosphor Ba9Lu2Si6O24:Tb3+: visible quantum cuttingcross-relaxation energy transfers., 2016, 120(4): 2362–2370.

    [24] BLASSE G. Energy transfer in oxidic phosphors., 1968, 28(6): 444–445.

    [25] VAN UITERT L G, JOHNSON L F. Energy transfer between rare-earth ions., 1966, 44(9): 3514–3522.

    [26] DEXTER D L, SCHULMAN J H. Theory of concentration quenching in inorganic phosphors., 1954, 22(6): 1063–1070.

    [27] QIANG S. Influence of environment on the luminescence of rare earths., 1988, 40–41: 113–114.

    [28] ZHENG X, LUO H, LIU J,Sr3AlO4F: Ce3+-based yellow phosphors: structural tuning of optical properties, and use in solid-state white lighting., 2013, 1(45): 7598–7607.

    [29] LIU Y F, LIU P, WANG L,A two-step solid-state reaction to synthesize the yellow persistent Gd3Al2Ga3O12: Ce3+phosphor with an enhanced optical performance for AC-LEDs., 2017, 53(53): 10636–10639.

    [30] DU F, ZHUANG W, LIU R,Synthesis, structure and luminescent properties of yellow phosphor La3Si6N11: Ce3+for high power white-LEDs., 2017, 35(11): 1059–1064.

    [31] FENGWEN K, MINGYING P, QINYUAN Z,Abnormal anti-quenching and controllable multi-transitions of Bi3+luminescence by temperature in a yellow-emitting LuVO4:Bi3+phosphor for UV-converted white LEDs., 2015, 20(36): 11522–11530.

    [32] NAZAROV M, NOH D Y, SOHN J,Quantum efficiency of double activated Tb3Al5O12: Ce3+, Eu3+., 2007, 180(9): 2493–2499.

    [33] TAO Z, ZHANG W, QIN L,A yellow-emitting nanophosphor of Ce3+-activated aluminate Sr3LuAl2O7.5., 2014, 588(5): 540–545.

    [34] LI G, GENG D, SHANG M,Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2through energy transfer and modulation of excitation: potential single-phase white/yellow- emitting phosphors., 2011, 21(35): 13334–13344.

    [35] XIA Z, ZHANG Y, MOLOKEEV M S,Structural and luminescence properties of yellow-emitting NaScSi2O6: Eu2+phosphors: Eu2+site preference analysis and generation of red emission by codoping Mn2+for white-light-emitting diode applications., 2013, 117(40): 20847–20854.

    [36] LI K, ZHANG Y, LI X,Host-sensitized luminescence in LaNbO4: Ln3+(Ln3+= Eu3+/Tb3+/Dy3+) with different emission colors., 2015, 17(6): 4283–4292.

    [37] LIU X, CHEN C, LI S,Host-sensitized and tunable luminescence of GdNbO4: Ln3+(Ln3+= Eu3+/Tb3+/Tm3+) nanocrystalline phosphors with abundant color., 2016, 55(20):10383–10396.

    全范圍摻雜調(diào)制強黃色發(fā)光Gd0.5–yTb1.5REW3O12(RE=Eu, Sm)熒光粉的研究

    代艷南1, 楊帥1, 沈陽2, 單永奎1, 楊帆1, 趙慶彪2

    (華東師范大學1. 化學與分子工程學院; 2. 光信息科學與工程系, 極化材料與器件教育部重點實驗室, 上海 200241)

    黃光熒光材料在近紫外(NUV)芯片激發(fā)的白光發(fā)光二極管(W-LED)的制造中起重要作用。在本研究中, 通過在Gd2W3O12基質(zhì)中共摻Tb3+/Eu3+或Tb3+/Sm3+, 從而獲得較強的黃光發(fā)射。由于Gd3+的有效激發(fā)通常在深紫外區(qū), 在Gd2W3O12中并不會被382 nm的紫外光激發(fā), 因此Gd3+對Tb3+/Eu3+、Tb3+/Sm3+共摻雜的黃光發(fā)射并無影響。而Tb3+與Gd3+具有相似的離子半徑, Tb3+在全濃度范圍內(nèi)可以對Gd3+進行取代。當Tb3+離子摻雜濃度為75mol%時, 該體系綠光的發(fā)射強度達到最強, 對應的內(nèi)量子產(chǎn)率(IQE)為37.6%。在最佳Tb3+摻雜濃度下, 通過引入可以被近紫外光有效激發(fā)的Eu3+或Sm3+, 在Gd2W3O12基質(zhì)中實現(xiàn)Tb3+/Eu3+或Tb3+/ Sm3+共同摻雜, 得到了高亮度的黃色發(fā)光, IQE分別達到39.6%和47.8%。利用制備的Gd0.494Tb1.5Eu0.006W3O12和Gd0.494Tb1.5Sm0.006W3O12黃光熒光粉與NUV-藍色芯片成功組裝了W-LED器件。由此可見, Gd0.5–yTb1.5REW3O12(RE=Eu, Sm)熒光粉有望用于組裝W-LED器件。此外, 全范圍摻雜法可用于其他體系以獲得高效的熒光粉。

    固相合成; 熒光; 鎢酸鹽; 稀土; 內(nèi)量子效率

    TQ174

    A

    date:2018-11-08;

    Modified date: 2019-01-29

    The Startup Funding of East China Normal University (11200-120215-10363)

    DAI Yan-Nan(1993–), female, candidate of Master degree. E-mail: 51164300103@stu.ecnu.edu.cn

    Corresponding author:YANG Fan, professor. E-mail: fyang1@chem.ecnu.edu.cn; ZHAO Qing-Biao, professor. E-mail: qbzhao@ee.ecnu.edu.cn

    1000-324X(2019)11-1210-07

    10.15541/jim20180522

    猜你喜歡
    黃光熒光粉紫外光
    寬帶激發(fā)BaBi2(MoO4)4:Eu3+熒光粉的制備與發(fā)光性能
    陶瓷學報(2021年5期)2021-11-22 06:34:58
    A strategy to significantly improve the classification accuracy of LIBS data:application for the determination of heavy metals in Tegillarca granosa
    Identification of heavy metal-contaminated Tegillarca granosa using laser-induced breakdown spectroscopy and linear regression for classification
    紫外光分解銀硫代硫酸鹽絡合物的研究
    四川冶金(2019年5期)2019-12-23 09:04:48
    小月亮
    紫外光交聯(lián)膨脹型無鹵阻燃聚烯烴材料的研究
    電線電纜(2016年5期)2016-02-27 09:02:08
    硼酸、Li+摻雜對YAG:Ce3+熒光粉的影響
    XPS在YAG∶Ce3+熒光粉中Ce3+半定量分析方面的應用
    退火溫度對NaGd(WO4)2:Eu3+熒光粉發(fā)光特性的影響
    紫外光固化模塑成型性研究
    中國塑料(2014年1期)2014-10-17 02:46:36
    www.色视频.com| 成人无遮挡网站| 欧美激情在线99| 国内精品宾馆在线| 干丝袜人妻中文字幕| 精品久久久久久成人av| 午夜精品一区二区三区免费看| 精品一区二区三区av网在线观看| 精品久久久噜噜| 天堂av国产一区二区熟女人妻| 国产成人a区在线观看| 免费在线观看日本一区| 国产精品一区二区免费欧美| 国产在线精品亚洲第一网站| 国产精品人妻久久久久久| 看免费成人av毛片| 熟女电影av网| 亚洲美女黄片视频| 成人毛片a级毛片在线播放| 亚洲成人精品中文字幕电影| 亚洲国产欧洲综合997久久,| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 久久久久性生活片| 最近最新中文字幕大全电影3| 精品久久久久久成人av| 国产在线男女| 欧美区成人在线视频| 国语自产精品视频在线第100页| 成人国产综合亚洲| 嫩草影视91久久| 久久精品国产亚洲网站| 麻豆av噜噜一区二区三区| 直男gayav资源| 亚洲在线自拍视频| 国产精品人妻久久久久久| 欧美最黄视频在线播放免费| 亚洲欧美日韩东京热| 少妇熟女aⅴ在线视频| 国产女主播在线喷水免费视频网站 | 好男人在线观看高清免费视频| 亚洲国产色片| 色尼玛亚洲综合影院| 精品日产1卡2卡| 天堂网av新在线| 不卡视频在线观看欧美| 欧美+亚洲+日韩+国产| av在线观看视频网站免费| 午夜免费成人在线视频| 男人舔女人下体高潮全视频| 综合色av麻豆| 日本免费a在线| 久久午夜亚洲精品久久| 1024手机看黄色片| 欧美高清性xxxxhd video| 人妻丰满熟妇av一区二区三区| 亚洲在线自拍视频| 国产在线精品亚洲第一网站| 一个人看视频在线观看www免费| 成人国产综合亚洲| 日本色播在线视频| 免费看美女性在线毛片视频| 国产精品嫩草影院av在线观看 | 国产精品电影一区二区三区| 天堂网av新在线| 成人美女网站在线观看视频| 一本精品99久久精品77| 欧美绝顶高潮抽搐喷水| 不卡一级毛片| 久久精品久久久久久噜噜老黄 | 亚洲av不卡在线观看| 国产在视频线在精品| 国产欧美日韩精品一区二区| 免费av不卡在线播放| av.在线天堂| 在线天堂最新版资源| 99久久精品一区二区三区| 麻豆精品久久久久久蜜桃| 性色avwww在线观看| 久久亚洲真实| 最近在线观看免费完整版| 一进一出抽搐动态| 亚洲人与动物交配视频| 欧美3d第一页| 成年免费大片在线观看| 国产精品久久久久久久久免| 麻豆国产av国片精品| 99精品久久久久人妻精品| 亚洲七黄色美女视频| 国产av麻豆久久久久久久| 午夜福利成人在线免费观看| 久久精品国产99精品国产亚洲性色| 女人被狂操c到高潮| 啦啦啦啦在线视频资源| 能在线免费观看的黄片| 99热这里只有是精品在线观看| 人妻久久中文字幕网| 直男gayav资源| 小蜜桃在线观看免费完整版高清| 一个人看视频在线观看www免费| 熟女电影av网| 无遮挡黄片免费观看| 亚州av有码| 美女xxoo啪啪120秒动态图| 99久久无色码亚洲精品果冻| xxxwww97欧美| 成人综合一区亚洲| 欧美最新免费一区二区三区| 国产精品福利在线免费观看| 午夜免费成人在线视频| 欧美性感艳星| 国产69精品久久久久777片| 久久久久久久久中文| 身体一侧抽搐| 男女边吃奶边做爰视频| 热99re8久久精品国产| 午夜视频国产福利| 久久久午夜欧美精品| av在线天堂中文字幕| 久久久国产成人精品二区| 老司机深夜福利视频在线观看| 91av网一区二区| 欧美zozozo另类| 久久久久久久久久久丰满 | 日韩欧美国产一区二区入口| 成年女人永久免费观看视频| 非洲黑人性xxxx精品又粗又长| 麻豆一二三区av精品| 久久人人精品亚洲av| 亚洲狠狠婷婷综合久久图片| 国产v大片淫在线免费观看| 精品福利观看| 十八禁网站免费在线| 日韩 亚洲 欧美在线| 韩国av一区二区三区四区| 又粗又爽又猛毛片免费看| 久久久久久久久大av| a在线观看视频网站| 色尼玛亚洲综合影院| 99视频精品全部免费 在线| 久久中文看片网| videossex国产| 观看免费一级毛片| 久久精品人妻少妇| 免费大片18禁| 尤物成人国产欧美一区二区三区| 亚洲中文字幕日韩| 日日撸夜夜添| 午夜福利视频1000在线观看| 国产探花在线观看一区二区| 12—13女人毛片做爰片一| 亚洲最大成人av| 日本撒尿小便嘘嘘汇集6| av在线亚洲专区| 日韩精品有码人妻一区| 嫩草影院新地址| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 欧美精品国产亚洲| 国产视频内射| 少妇高潮的动态图| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美清纯卡通| av专区在线播放| 日本与韩国留学比较| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 国产高清视频在线播放一区| 欧美性猛交╳xxx乱大交人| 亚洲久久久久久中文字幕| 一区二区三区激情视频| 国产主播在线观看一区二区| 精华霜和精华液先用哪个| 日日摸夜夜添夜夜添av毛片 | 亚洲人成网站在线播放欧美日韩| 日韩欧美国产一区二区入口| 亚洲欧美日韩无卡精品| 精品久久久久久,| 亚洲内射少妇av| 精品欧美国产一区二区三| 直男gayav资源| 国产亚洲精品综合一区在线观看| 黄色配什么色好看| av福利片在线观看| 大型黄色视频在线免费观看| 久久精品国产清高在天天线| 日韩欧美精品免费久久| 欧美xxxx性猛交bbbb| 精品一区二区三区av网在线观看| 国产白丝娇喘喷水9色精品| 国产 一区精品| 中文字幕熟女人妻在线| 在线免费十八禁| 最新在线观看一区二区三区| 真实男女啪啪啪动态图| 亚洲,欧美,日韩| 999久久久精品免费观看国产| 成人国产麻豆网| 亚洲精华国产精华精| 欧美中文日本在线观看视频| 日韩欧美在线乱码| 老熟妇仑乱视频hdxx| 在线免费观看的www视频| 舔av片在线| 国产欧美日韩一区二区精品| 精品久久久久久成人av| av在线亚洲专区| 日韩一本色道免费dvd| 久久久久久伊人网av| 国产精品爽爽va在线观看网站| 成人午夜高清在线视频| 午夜激情福利司机影院| 99热这里只有是精品50| 欧美绝顶高潮抽搐喷水| 日本-黄色视频高清免费观看| 欧美bdsm另类| 日韩强制内射视频| 人妻少妇偷人精品九色| 在线播放国产精品三级| 国产激情偷乱视频一区二区| 日韩欧美在线乱码| 大型黄色视频在线免费观看| 高清日韩中文字幕在线| 久久久久久久精品吃奶| 国产成人aa在线观看| 色尼玛亚洲综合影院| 欧美绝顶高潮抽搐喷水| 99久久久亚洲精品蜜臀av| 美女大奶头视频| 天堂√8在线中文| 嫩草影院新地址| 51国产日韩欧美| 欧美潮喷喷水| 两个人的视频大全免费| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 国产熟女欧美一区二区| 他把我摸到了高潮在线观看| 亚洲欧美清纯卡通| 最近最新中文字幕大全电影3| 在线观看66精品国产| 免费av毛片视频| 亚洲欧美清纯卡通| 啦啦啦啦在线视频资源| 小说图片视频综合网站| 舔av片在线| 日本一本二区三区精品| 精华霜和精华液先用哪个| 国产真实乱freesex| 亚洲色图av天堂| 亚洲乱码一区二区免费版| 99在线人妻在线中文字幕| 免费观看人在逋| 亚洲国产色片| 黄色丝袜av网址大全| 又黄又爽又免费观看的视频| 又爽又黄a免费视频| 日韩欧美在线乱码| 大型黄色视频在线免费观看| 99热网站在线观看| 亚洲七黄色美女视频| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 搡老岳熟女国产| 亚洲av熟女| 又爽又黄a免费视频| 亚洲第一区二区三区不卡| 少妇的逼好多水| 一级黄片播放器| 久久精品国产亚洲av涩爱 | 亚洲成人久久爱视频| 精品久久久噜噜| 22中文网久久字幕| 国产一区二区激情短视频| 中出人妻视频一区二区| 国产乱人视频| 日本一二三区视频观看| 国产精品99久久久久久久久| 床上黄色一级片| 日韩欧美国产在线观看| av国产免费在线观看| 国产成人aa在线观看| 欧美日韩综合久久久久久 | 久久久精品大字幕| 亚洲美女视频黄频| 麻豆av噜噜一区二区三区| 国产精品综合久久久久久久免费| 中国美女看黄片| 日本熟妇午夜| or卡值多少钱| 免费在线观看日本一区| 久久久久久伊人网av| 婷婷丁香在线五月| 日韩欧美 国产精品| 一区二区三区免费毛片| 欧美激情国产日韩精品一区| 成年女人永久免费观看视频| 中文字幕人妻熟人妻熟丝袜美| 婷婷色综合大香蕉| 很黄的视频免费| 成人av一区二区三区在线看| 国模一区二区三区四区视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品国产成人久久av| 久99久视频精品免费| 国产成人aa在线观看| 久久久久久久久久黄片| 岛国在线免费视频观看| 国产亚洲欧美98| 在线a可以看的网站| 美女黄网站色视频| 91久久精品国产一区二区成人| 午夜爱爱视频在线播放| 欧美一级a爱片免费观看看| 欧美区成人在线视频| 亚州av有码| 午夜激情欧美在线| 欧美精品啪啪一区二区三区| 国产主播在线观看一区二区| 毛片女人毛片| 精品久久久久久久人妻蜜臀av| 亚洲自拍偷在线| 午夜福利在线观看吧| 免费观看精品视频网站| 99国产极品粉嫩在线观看| 啪啪无遮挡十八禁网站| 欧美潮喷喷水| 午夜a级毛片| 午夜爱爱视频在线播放| 少妇熟女aⅴ在线视频| 少妇丰满av| 性欧美人与动物交配| 久久热精品热| 亚洲av免费高清在线观看| 中文亚洲av片在线观看爽| 一区二区三区免费毛片| 网址你懂的国产日韩在线| 亚洲七黄色美女视频| 成人永久免费在线观看视频| 亚洲性夜色夜夜综合| 国产欧美日韩精品一区二区| 长腿黑丝高跟| 亚洲在线自拍视频| 他把我摸到了高潮在线观看| 国产久久久一区二区三区| 少妇丰满av| 人妻久久中文字幕网| 美女免费视频网站| 久久草成人影院| 深夜a级毛片| 亚洲成a人片在线一区二区| 亚洲 国产 在线| 精品一区二区三区视频在线| 免费观看在线日韩| 免费观看的影片在线观看| 国产视频一区二区在线看| 色精品久久人妻99蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久精品吃奶| 国产毛片a区久久久久| 一个人免费在线观看电影| 国产成人一区二区在线| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品综合一区在线观看| 91久久精品国产一区二区三区| 中文字幕久久专区| 日本精品一区二区三区蜜桃| 久久久久久久亚洲中文字幕| 亚洲av美国av| 成人美女网站在线观看视频| 亚洲熟妇中文字幕五十中出| 啦啦啦观看免费观看视频高清| 亚州av有码| 成人美女网站在线观看视频| 免费高清视频大片| 亚洲人成网站高清观看| 亚洲自偷自拍三级| 精品久久久噜噜| 久久人人爽人人爽人人片va| 免费在线观看日本一区| 精品久久久久久久久av| 看片在线看免费视频| 精品久久久久久久久av| 午夜视频国产福利| 亚洲狠狠婷婷综合久久图片| 日日摸夜夜添夜夜添av毛片 | a级一级毛片免费在线观看| 国产成人福利小说| 国产激情偷乱视频一区二区| 亚洲无线在线观看| 欧美高清成人免费视频www| 亚洲狠狠婷婷综合久久图片| 色5月婷婷丁香| 欧美日韩乱码在线| 国内精品一区二区在线观看| 成人午夜高清在线视频| 网址你懂的国产日韩在线| 一区二区三区免费毛片| 夜夜看夜夜爽夜夜摸| 久久午夜亚洲精品久久| 国产高潮美女av| 日韩 亚洲 欧美在线| 欧美又色又爽又黄视频| 麻豆av噜噜一区二区三区| 成人三级黄色视频| 精品午夜福利视频在线观看一区| 一区福利在线观看| 黄色丝袜av网址大全| 亚洲一级一片aⅴ在线观看| 天堂网av新在线| 床上黄色一级片| 午夜免费男女啪啪视频观看 | 最新在线观看一区二区三区| 亚洲精品日韩av片在线观看| 极品教师在线视频| 精品国产三级普通话版| 天堂影院成人在线观看| 88av欧美| 啦啦啦观看免费观看视频高清| 国产一区二区亚洲精品在线观看| 国产亚洲精品av在线| 欧美日韩中文字幕国产精品一区二区三区| 亚洲avbb在线观看| 无遮挡黄片免费观看| 亚洲成人精品中文字幕电影| 国产精品女同一区二区软件 | 亚洲人成网站在线播放欧美日韩| 超碰av人人做人人爽久久| 国产在线男女| 97超视频在线观看视频| 人妻久久中文字幕网| av在线观看视频网站免费| 在线免费十八禁| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 在线国产一区二区在线| 日日撸夜夜添| 亚洲av电影不卡..在线观看| 日本五十路高清| 人妻少妇偷人精品九色| 精品一区二区三区视频在线观看免费| 观看美女的网站| 亚洲午夜理论影院| 99在线人妻在线中文字幕| 中文在线观看免费www的网站| 搡老岳熟女国产| 两人在一起打扑克的视频| 日韩欧美 国产精品| 国产精华一区二区三区| 国产精品1区2区在线观看.| 中国美女看黄片| 麻豆久久精品国产亚洲av| 亚洲人成伊人成综合网2020| 搡老岳熟女国产| av黄色大香蕉| 国产一区二区在线av高清观看| 欧美高清成人免费视频www| 狠狠狠狠99中文字幕| 麻豆成人av在线观看| 日本欧美国产在线视频| 欧美又色又爽又黄视频| 成人亚洲精品av一区二区| 日日撸夜夜添| 真人做人爱边吃奶动态| 亚洲七黄色美女视频| 国产视频一区二区在线看| 简卡轻食公司| 国产精品福利在线免费观看| 观看免费一级毛片| 我的女老师完整版在线观看| 亚洲av中文字字幕乱码综合| 综合色av麻豆| 日韩国内少妇激情av| 亚洲aⅴ乱码一区二区在线播放| 国语自产精品视频在线第100页| 亚洲精品久久国产高清桃花| 成年女人看的毛片在线观看| 欧美xxxx性猛交bbbb| 国产男靠女视频免费网站| 蜜桃亚洲精品一区二区三区| 国产精品av视频在线免费观看| 99热这里只有是精品50| 琪琪午夜伦伦电影理论片6080| 看黄色毛片网站| 欧美日韩乱码在线| 亚洲av二区三区四区| 男人的好看免费观看在线视频| 精品一区二区三区人妻视频| 国产精品美女特级片免费视频播放器| 村上凉子中文字幕在线| 色av中文字幕| 97超视频在线观看视频| 亚洲精品456在线播放app | 国产精品国产高清国产av| 久久久久久久久久黄片| 久久精品国产鲁丝片午夜精品 | 欧美丝袜亚洲另类 | 我要看日韩黄色一级片| 99热这里只有是精品50| 久久精品夜夜夜夜夜久久蜜豆| 精品无人区乱码1区二区| 精品一区二区三区人妻视频| 色播亚洲综合网| 99热这里只有是精品50| 最好的美女福利视频网| 男插女下体视频免费在线播放| 国产精品乱码一区二三区的特点| 综合色av麻豆| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩高清专用| 亚洲人成网站在线播放欧美日韩| 色播亚洲综合网| 色5月婷婷丁香| 亚洲av日韩精品久久久久久密| 日韩大尺度精品在线看网址| 日韩欧美一区二区三区在线观看| 人妻久久中文字幕网| 亚洲成人精品中文字幕电影| 美女 人体艺术 gogo| 国产极品精品免费视频能看的| 日韩亚洲欧美综合| 国产精品福利在线免费观看| 日韩欧美在线二视频| 日本精品一区二区三区蜜桃| 亚洲成av人片在线播放无| 岛国在线免费视频观看| 亚洲电影在线观看av| 狂野欧美白嫩少妇大欣赏| 91av网一区二区| 国产在视频线在精品| 国产成人福利小说| 日韩国内少妇激情av| 久久久久国内视频| 男女啪啪激烈高潮av片| 成熟少妇高潮喷水视频| 日本精品一区二区三区蜜桃| 中国美白少妇内射xxxbb| 天天躁日日操中文字幕| 三级国产精品欧美在线观看| 日本撒尿小便嘘嘘汇集6| 国产蜜桃级精品一区二区三区| 人妻丰满熟妇av一区二区三区| 乱人视频在线观看| 免费av不卡在线播放| 51国产日韩欧美| 午夜福利欧美成人| 欧美一级a爱片免费观看看| 欧美性猛交╳xxx乱大交人| 在线观看66精品国产| 亚洲成人久久爱视频| 婷婷色综合大香蕉| 天堂网av新在线| 偷拍熟女少妇极品色| 又紧又爽又黄一区二区| 国产成人av教育| 国产免费av片在线观看野外av| 18+在线观看网站| 亚洲国产精品成人综合色| 欧美一区二区精品小视频在线| 欧美高清性xxxxhd video| 淫秽高清视频在线观看| 全区人妻精品视频| 中出人妻视频一区二区| 女生性感内裤真人,穿戴方法视频| h日本视频在线播放| 很黄的视频免费| 亚洲一级一片aⅴ在线观看| 一个人看视频在线观看www免费| 亚洲国产色片| 99久久精品热视频| 欧美日韩国产亚洲二区| 亚洲最大成人手机在线| 97人妻精品一区二区三区麻豆| 精品久久久噜噜| 91久久精品国产一区二区成人| 国产三级中文精品| 十八禁国产超污无遮挡网站| 观看美女的网站| 国产高清视频在线播放一区| 蜜桃久久精品国产亚洲av| 嫩草影院精品99| 欧美三级亚洲精品| 精品日产1卡2卡| 麻豆国产97在线/欧美| 一个人看的www免费观看视频| aaaaa片日本免费| 丰满人妻一区二区三区视频av| 亚洲欧美日韩东京热| 简卡轻食公司| 日日撸夜夜添| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻熟女av久视频| 一进一出好大好爽视频| 不卡视频在线观看欧美| 国产成人av教育| 99热只有精品国产| 婷婷亚洲欧美| 国产视频内射| 天堂动漫精品| 国语自产精品视频在线第100页| 久久99热6这里只有精品| 国产欧美日韩精品亚洲av| 亚洲专区国产一区二区| 欧美3d第一页| 成年女人永久免费观看视频| 中文亚洲av片在线观看爽| 成熟少妇高潮喷水视频| 久久久精品欧美日韩精品| av在线蜜桃| 尤物成人国产欧美一区二区三区| 搡老妇女老女人老熟妇|