• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of SiC@SiO2 Nanocables via a Catalyst-free Carbothermal Reduction Method

    2019-12-16 08:20:26TIANZhaoBoCHENKeXinSUNSiYuanZHANGJieCUIWeiLIUGuangHua
    無機(jī)材料學(xué)報(bào) 2019年11期
    關(guān)鍵詞:催化劑

    TIAN Zhao-Bo, CHEN Ke-Xin, SUN Si-Yuan, ZHANG Jie, CUI Wei, LIU Guang-Hua

    Synthesis of SiC@SiO2Nanocablesa Catalyst-free Carbothermal Reduction Method

    TIAN Zhao-Bo, CHEN Ke-Xin, SUN Si-Yuan, ZHANG Jie, CUI Wei, LIU Guang-Hua

    (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China)

    SiC@SiO2nanocables (NC), as a new functional nanocomposite, have captured widespread attention due to their excellent performances and widely application prospects. Therefore, it is significant to develop a kind of effective, economical and environmental method to prepare SiC@SiO2NC. Herein, a catalyst free carbothermal reduction method was developed to synthesize SiC@SiO2NC fast and efficently, through heating the mixture of silicon powder and silica sol at 1500 ℃ in Ar. The NC is composed of single-crystal-SiC core and amorphous SiO2sheath, with the length of hundreds of micrometers and the diameter of 60–80 nm. And the size of the core-shell can be adjusted by the holding time. The formation of the NC is explained based on the experimental data and the vapor-solid (VS) mechanism. The experiment results can also enrich the mechanism, and offer inspiration for their industrial-scale production.

    SiC; nanocables; carbothermal reduction; catalyst-free

    In recent years, nanocables, a newly type of one- di-mensional (1D) nanostructures, have already attracted the attention of many reasearchers, as their applications could be further enhanced by fabricating the core with sheath of different materials. The ‘‘nanocables’’ is firstly referred to the coaxial structures of several layers of nanotubes and clusters[1-2]. Among the 1D nanomaterials sheathed with an outer layer, SiC NC with different coating materials, such as SiC/SiO2[3-4], SiC/Al2O3[5], SiC/C[1, 6]and SiC/BN became particularly significant, since they showed outstanding excellent field emission characteristics[3], photoluminescence performance[5], and enhanced electrical properties[7].

    It is well known that SiC@SiO2core-shell NC exhibits excellent super hydrophilic properties and mechanical strength[8-9], holding great promise for application as self-cleaning materials and functional ceramic reinforcements, respectively. To date, various strategies have been developed to obtain SiC/SiO2NC[10]. Ryu,[11]has synthesized the core-shell SiC@SiO2nanowires by using NiO catalyst. Cai and collaborators[12]produced SiC@SiO2NC through an organic precursor method using dimethylsiloxane as raw material. By arc-discharge method, Yao,[13]fabricated large-scale SiC@SiOnanocables. Li,[14]also developed an iron-catalysis chemical vapor deposition (CVD) method to obtain SiC@SiO2coaxial nanowires using C3H6as carbon source. However, usage of the metal catalyst, such as NiO[11]which is difficult to be removed from the product, is not matching the rule of convenience; the application of the expensive raw material and the complex process is not conforming with the principle of economization; and usage of the polluting gas, CH4or C3H6, is not according with the law of environment protection. Therefore, it is significant to develop an effective, economical and environmental method to synthesize SiC@SiO2NC.

    In this study, we developed a modified method to synthesize long SiC@SiO2NC. In the process, the mixture of silicon powder (500 nm) and silica sol, coupled with carbon felt (CF) were heated at 1500 ℃ in Ar without any catalyst. The growth mechanism of SiC@SiO2NC was discussed, and the formed structure and optical properties were characterized.

    1 Experimental

    Si powders (500 nm, Jinan Yinfeng Co., China), and silica sol (prepared according to our former work[15]) were mixed in an agate pot by ball milling for 60 min. After drying at 80 ℃in oven for 2 h, the powder mixtures were transferred into the corundum crucible, covered with carbon felt (TZ-307, Taek. Co., Korea). Then the whole “sandwich” was put in the center of horizontal tube furnace. After replacing with high purity Ar, the furnace was heated to 1500 ℃, and kept for 4–6 h. Then the furnace was cooled down to room temperature. During the whole process, flowing Ar of 10 sccm was introduced from the furnace.

    The crystalline phase of the products was determined by X-ray diffraction analysis (XRD, D8 Advance, Bruker Co., Germany). The microstructure was observed using scanning electron microscope (SEM; Melin, Zeiss Co., Germany) at the accelerating voltage of 15.0 kV. The morphology and the diffraction pattern were detected by high-resolution transmission electron microscopy (TEM; JEM-2100F, JEOL Co., Japan), equipped with energy dispersive spectrum (EDS), operated at the accelerating voltage of 200 kV. Raman spectra were excited using the 633 nm excitation source from He-Ne laser and collected by a micro-Raman spectrometer at room temperature.

    2 Results and discussion

    It is obvious that large quantity of long straight and curved nanowires are synthesized, as shown in Fig.1(a). A typical FESEM image further reveals that the diameter of the nanowires is uniformly ranged from 60 to 80 nm (inset in Fig. 1(a)) with smooth surface and the tens of micrometers in length, implying a large aspect ratio (Fig. 1(b)). For the hundreds of wires, no spherical caps are observed at the tips of the wires, which reveals that the wires form by the vapour-solid (VS) mechanism.

    X-ray diffraction is conducted to investigate the phase and structure of the as-synthesized products. As shown in Fig. 2, the product is identified as the-SiC structure. The strong intensities and narrow widths of the peaks indicate that the nanowires are crystalline. The major diffraction peaks at 2=36°, 41°, 60° and 72°, are attributed to the (111), (200), (220), and (311) respectively, agreed well with-SiC (PDF 29-1129)[14]. The low intensity peak at 2=33° (marked “SF”) is typically observed in XRD pattern of-SiC, ascribed to stacking faults within the crystals[16]. Meanwhile, there is amorphous background and swell in 2=23° of the XRD pattern, which is marked as amorphous SiO2[14, 17].

    To further characterize the structure in detail, TEM image and selected area electron diffraction (SAED) are tested. Fig. 3(a) is the typical TEM image of the core-shell NC with the diameter of 80 nm, obtained by being kept in 1500 ℃for 4 h. It clearly reveals that the NC possesses a darker inner core of about 17 nm in diameter and a lighter outer shell with the thickness of nearly 30 nm .There are some slashes in the core, which may be stacking faults[18], and this is in agreement with the XRD result (Fig. 2). After being kept in 1500 ℃for 6 h, the diameter of inner core of the NC grows up to 40 nm and the thickness of outer shell reduces to nearly 20 nm, as shown in Fig. 3(b). Therefore, we can infer that through controlling the holding time in 1500 ℃, diameter of the inner core can be regulated. Fig. 3(c) shows the edge of core SiC and shell SiO2. It is obvious that the core SiC shows regular arrangement of atoms, indicating high crystallinity, while the shell SiO2presents atoms are disorder, manifesting the amorphous structure. Fig. 3(d) reveals the interspace of the lattice fringes is 0.25 nm, corresponding to the-spacing of the (111) plane in-SiC, as indicated in the insert SAED pattern. It is generally accepted that the SiC nanowires should grow preferentially along the [111] direction to maintain the lowest growing energy, as the surface energy of (111) plane is much lower than those of the other planes[11, 19].

    Fig. 1 SEM images of core-shell SiC@SiO2 NC (a) Low-magnification image, with inset showing distribution of the SiC@SiO2 NC diameters; (b) High-magnification image, with inset showing the corresponding image of a single NC

    Fig. 2 Typical XRD pattern obtained from the core-shell SiC@SiO2 NC

    Furthermore, we investigated the mapping mode of the EDS to indicate the distribution of the elements to insure the core and sheath. As shown in Fig. 4(c), the element of O mainly distributes in the sheath, while the core is “dark”, manifesting the lack of O element. It is obvious that the element of C mainly enriches in the core, shown in Fig. 4(d). In Fig. 4(b), the core is brighter than the sheath, manifesting the higher content of Si element in the core, as the molar percentage of Si in SiC 50%, while 33.3% in SiO2.

    Fig. 3 TEM images of the core-shell SiC@SiO2 NC kept in 1500 ℃for 4 (a) and 6 h (b), the corresponding SAED (c), and HRTEM image (d)

    Fig. 4 Mapping mode of the EDS of the elements, Si/C/O in the NC

    A typical Raman spectrum of-SiC@SiO2core-shell NC is shown in Fig. 5. Two peaks at around 794 and 916 cm–1are observed in the Raman spectrum. The center of 916 cm–1is corresponding to the Raman peak of amorphous SiO2[14], and the peak at 794 cm–1is assigned to the TO phonon at the G point of cubic SiC[20]. We note that the TO (G) phonon line shows a low number shift of 2 cm–1compared with the TO phonon modes of bulk SiC (796 cm–1for TO and 980 cm–1for LO)[21-22]. The reason for this exception may originate from the confinement effect, stacking faults and inner stress from the hetero structure of core-shell SiC NC[23-24]. In addition, we have not found the LO phonon of-SiC in the Raman spectrum. Maybe the LO phonon shifts to the low number, andis coincidentally eclipsed by the amorphous bulge of SiO2.

    Based on the characterization of the morphologies and crystal structures, the mechanism for the formation of the SiC@SiO2core-shell NC is governed by the VS process[17, 19]. Fig. 6 shows the schematic illustration of the growth and morphology evolution of the SiC-SiO2nanocables. Firstly, in the Si/silica sol mixtures, Si reactes with SiO2to form SiO vapour at 1300 according to reaction (1)[25]. The as-formed SiO vapour reacts with C and CO vapour in accordance with reaction (2-4)[25-26]. In reaction (2), SiC nuclei firstly generates at the active sites of the CF, as no spherical caps at the tips of the wires shown in Fig. 1. Subsequently, the formed SiC nuclei acts as seeds to grow SiC nanostructures[27-28]. At the early stage, SiC grows on the surface of the substrate, which can maintain the low energy consumption of the growth system[26]. In this part, the nanostructures present a highly defective structure as indicated in Fig. 3(b), which could also be helpful in reducing energy during the growth of SiC nanostructures.

    Fig. 5 Raman scattering spectrum of SiC@SiO2 core-shell NC

    Fig. 6 Schematic illustration of the growth and morphology evolution of the SiC-SiO2 NC

    Once the nanostructures protruded from the CF, stable growth conditions can be easily achieved. In this case, the SiC nanostructures begin to grow along the specific direction [111], certified by the HRTEM and SAED images in Fig. 3(d). And the growth of the SiC@SiO2NC is no longer controlled by reaction (2), as the growth frontier is far away from the solid carbon source[29]. Meanwhile, reactions (3-4) are responsible for further growth of the SiC nanostructures, as all reactants are gases. Thus, the diameter grows with the holding time in 1500 ℃increasing, as shown in Fig. 3(c). During the cooling process, SiO2formed by reaction (4) deposits on the surface of SiC nanostructures firstly and then gradually condense into solid, forming SiC-SiO2core-shell structures[11].

    SiO2(s) + Si(s) = 2SiO(g) (1)

    SiO(g) + 2C(s) = SiC(s) + CO(g) (2)

    SiO(g) + 3CO(g) = SiC(s) + 2CO2(g) (3)

    3SiO(g) + CO(g) = SiC(s) + 2SiO2(s) (4)

    3 Conclutions

    In this study, we developed a modified catalyst-free carbothermal reduction method to synthesize long SiC@SiO2NC, which is effective, economical and environmental. This may offers inspiration for their industrial- scale production. As the diameter of inner core can be regulated by controlling the holding time in 1500 ℃,it also enriches the VSmechanism which is employed to interpret the NC formation. What’s more, the enriched mechanism could provide great prospect in possible applications to synthesize other long NC.

    [1] YAN LI-WEN, HONG CHANG-QING, SUN BO-QIAN,growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance., 2017, 9(7): 6320–6331.

    [2] WU REN-BING, ZHOU KUN, YUE CHEE-YOON,. Recent progress in synthesis, properties and potential applications of SiC nanomaterials., 2015, 72: 1–60.

    [3] ZHONG BO, SONG LIANG, HUANG XIAO-XIAO,. Novel coaxial SiC-SiO2-BN nanocable: large-scale synthesis, formation mechanism and photoluminescence property., 2011, 21(38): 14432–14440.

    [4] WU REN-BING, ZHA BAI-LIN, WANG LIU-YING,. Core-shell SiC/SiO2heterostructures in nanowires., 2012, 209(3): 553–558.

    [5] CUI H, GONG L, SUN Y,. Direct synthesis of novel SiC@Al2O3core-shell epitaxial nanowires and field emission characteristics., 2011, 13(5): 1416–1421.

    [6] WANG XIANG-YU, ZHAI HUA-ZHANG, CAO CHUAN-BAO,. One-step synthesis of orientation accumulation SiC-C coaxial nanocables at low temperature., 2009, 19(19): 2958–2962.

    [7] LI YU-BAO, DOROZHKIN PAVEL-S, BANDO YOSHIO,. Controllable modification of SiC nanowires encapsulated in BN nanotubes., 2005, 17(5): 545–549.

    [8] WU REN-BING, ZHOU KUN, YANG ZHI-HONG,. Molten- salt-mediated synthesis of SiC nanowires for microwave absorption applications., 2013, 15(3): 570–576.

    [9] QIAO MING-TAO, LEI XING-FENG, MA YONG,. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material., 2018, 11(3): 1500–1519.

    [10] WU REN-BING, YANG ZHI-HONG, FU MAO-SEN,.growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties., 2016, 687: 833–838.

    [11] RYU YONGHWAN, TAK YOUNGYO, YONG KIJUNG,. Direct growth of core-shell SiC-SiO2nanowires and field emission characteristics., 2005, 16(7): S370–S374.

    [12] CAI K F, LEI Q, ZHANG L C,. Ultra long SiC/SiO2core-shell nanocables from organic precursor., 2005, 5(11): 1925–1928.

    [13] LIU XUE-MIN, YAO KE-FU. Large-scale synthesis and photoluminescence properties of SiC/SiOnanocables., 2005, 16(12): 2932–2935.

    [14] MENG ALAN, LI ZHEN-JIANG, ZHANG JIN-LI,. Synthesis and Raman scattering of-SiC/SiO2core-shell nanowires., 2007, 308(2): 263–268.

    [15] SUN SI-YUAN, GE YI-YAO, TIAN ZHAO-BO,. A simple method to ameliorate hierarchical porous structures of SiO2xerogels through adjusting water contents., 2017, 28(10): 2496–2502.

    [16] YE HAI-HUI. SiC nanowires synthesized from electrospun nanofiber templates., 2005, 17 (12): 1531–1535.

    [17] LI ZHEN-JIANG, ZHAO JIAN, ZHANG MENG,. SiC nanowires with thickness-controlled SiO2shells: fabrication, mechanism, reaction kinetics and photoluminescence properties., 2015, 7(4): 462–472.

    [18] TATEYUMA KYUSHU, NOMA HIROAKI, ADACHI YOSHIO,. Prediction of stacking faults in-silicon carbide: X-ray and NMR Studies., 1997, 9(3): 766–772.

    [19] LI Z J, YU H Y, SONG G Y,. Ten-gram scale SiC@SiO2nanowires: high-yield synthesis towards industrialization,growth mechanism and their peculiar photoluminescence and electromagnetic wave absorption properties., 2017, 19(5): 3948–3954.

    [20] LI ZHEN-JIANG, GAO WEI-DONG, MENG ALIAN,. Large-scale synthesis and raman and photoluminescence properties of single crystalline-SiC nanowires periodically wrapped by amorphous SiO2nanospheres., 2008, 113(1): 91–96.

    [21] ZHANG XIAO-DONG, HUANG XIAO-XIAO, WEN GUANG-WU,. Novel SiOC nanocomposites for high-yield preparation of ultra-large-scale SiC nanowires., 2010, 21(38): 385601–1–8.

    [22] GLINKA Y D, JARONIEC M. Spontaneous and stimulated Raman scattering from surface phonon modes in aggregated SiO2nanoparticles., 1997, 101(44): 8832–8835.

    [23] MENG G W, ZHANG L D, QIN Y,. Synthesis of-SiC nanowires with SiO2wrappers., 1999, 12(5): 1003–1006.

    [24] SHI WEN-SHENG, ZHENG YU-FENG, PENG HONG-YING,. Laser ablation synthesis and optical characterization of silicon carbide nanowires., 2000, 83(12): 3228–3230.

    [25] XU GUO-SHENG, YAMAKAMI TOMOHIKO, YAMAGUCHI TOMOHIRO,. Surface modification of carbon nanofibers with SiC by heating different SiO vapor sources in argon atmosphere., 2014, 122(1429): 822–828.

    [26] ZHANG MENG, ZHAO JIAN, LI ZHEN-JIANG,. Ultralong SiC/SiO2nanowires: simple gram-scale production and their effective blue-violet photoluminescence and microwave absorption properties., 2018, 6(3): 3596–3603.

    [27] DAI JI-XIANG, SHA JIA-JUN, ZHANG ZHAO-FU,. Synthesis of novel hierarchical SiC-SiO2heterostructuresa catalyst free method., 2017, 19(43): 6540–6546.

    [28] BECHELANY MIKHAEL, BRIOUDE ARNAUD, STADELMANN PIERRE,. Very long SiC-based coaxial nanocables with tunable chemical composition., 2007, 17(16): 3251–3257.

    [29] WANG C S, ZHANG J L, MENG A L,. Large-scale synthesis of-SiC/SiOcoaxial nanocables by chemical vapor reaction approach., 2007, 39(1): 128–132.

    無催化劑碳熱還原法制備SiC@SiO2納米電纜

    田兆波, 陳克新, 孫思源, 張杰, 崔巍, 劉光華

    (清華大學(xué)新型陶瓷與精細(xì)工藝國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100084)

    SiC@SiO2納米電纜作為一種新型的功能性納米復(fù)合材料, 以其優(yōu)異的性能和廣泛的應(yīng)用前景受到了廣泛關(guān)注。因此,開發(fā)一種有效、經(jīng)濟(jì)、方便, SiC@SiO2納米電纜的制備方法具有重要意義。本研究采用無催化劑的碳熱還原法在1500 ℃的Ar氣氛下, 通過加熱硅粉和硅溶膠混合物從而快速高效地制備了SiC@SiO2納米電纜。該核殼的納米電纜是由單晶-SiC核心和無定形SiO2殼組成, 其長(zhǎng)度達(dá)幾百微米, 直徑為60~80 nm, 而且通過調(diào)節(jié)保溫時(shí)間可以調(diào)控核殼的尺寸。結(jié)合實(shí)驗(yàn)數(shù)據(jù)并依據(jù)氣–固(VS)機(jī)理解釋了SiC@SiO2納米電纜的形成過程, 同時(shí)也進(jìn)一步豐富了該生長(zhǎng)機(jī)制, 為其工業(yè)化生產(chǎn)提供了參考。

    碳化硅; 納米電纜; 碳熱還原; 無催化劑

    TQ174

    A

    date:2019-01-14;

    Modified date: 2019-05-08

    TIAN Zhao-Bo(1988–), male, candidate of PhD. E-mail: tzb15@mails.tsinghua.edu.cn

    Corresponding author:LIU Guang-Hua, professor. E-mail: liuguanghua@mail.tsinghua.edu.cn

    1000-324X(2019)11-1217-05

    10.15541/jim20190028

    猜你喜歡
    催化劑
    走近諾貝爾獎(jiǎng) 第三種催化劑
    大自然探索(2023年7期)2023-11-14 13:08:06
    直接轉(zhuǎn)化CO2和H2為甲醇的新催化劑
    鋁鎳加氫催化劑在BDO裝置運(yùn)行周期的探討
    如何在開停產(chǎn)期間保護(hù)克勞斯催化劑
    新型釩基催化劑催化降解氣相二噁英
    掌握情欲催化劑
    Coco薇(2016年2期)2016-03-22 02:45:06
    碳包覆鐵納米催化劑的制備及其表征
    V2O5-WO3/TiO2脫硝催化劑回收研究進(jìn)展
    負(fù)載型催化劑(CuO/TUD-1,CuO/MCM-41)的制備及其在一步法氧化苯合成苯酚中的應(yīng)用
    復(fù)合固體超強(qiáng)酸/Fe2O3/AI2O3/ZnO/ZrO2催化劑的制備及其催化性能
    一本色道久久久久久精品综合| 亚洲精品成人av观看孕妇| 极品少妇高潮喷水抽搐| 不卡视频在线观看欧美| av播播在线观看一区| 一级片'在线观看视频| 亚洲欧美清纯卡通| 午夜影院在线不卡| 在线看a的网站| www.色视频.com| 在线观看美女被高潮喷水网站| 精品人妻熟女av久视频| 少妇被粗大的猛进出69影院 | 九草在线视频观看| 最黄视频免费看| 国产片内射在线| 亚洲欧美中文字幕日韩二区| 久热这里只有精品99| 国产免费福利视频在线观看| xxx大片免费视频| 毛片一级片免费看久久久久| 高清在线视频一区二区三区| 中文字幕人妻丝袜制服| 国产成人精品婷婷| 水蜜桃什么品种好| kizo精华| 如日韩欧美国产精品一区二区三区 | 欧美日韩视频高清一区二区三区二| 最近的中文字幕免费完整| 成人综合一区亚洲| 久久免费观看电影| 99九九线精品视频在线观看视频| 91精品国产九色| 久久av网站| 国产成人精品无人区| 爱豆传媒免费全集在线观看| 99久久精品国产国产毛片| 国产乱人偷精品视频| 久久久国产精品麻豆| 精品国产乱码久久久久久小说| 亚洲精品久久午夜乱码| 飞空精品影院首页| 久久女婷五月综合色啪小说| 18禁裸乳无遮挡动漫免费视频| 一区二区三区乱码不卡18| 久久精品国产a三级三级三级| 岛国毛片在线播放| 日日撸夜夜添| 亚洲国产精品成人久久小说| 久久精品熟女亚洲av麻豆精品| 寂寞人妻少妇视频99o| 日韩大片免费观看网站| 久久久久网色| 日韩在线高清观看一区二区三区| av免费观看日本| 亚洲精品久久午夜乱码| 国产爽快片一区二区三区| 欧美激情极品国产一区二区三区 | 国产av国产精品国产| 蜜桃国产av成人99| 免费av不卡在线播放| 美女国产视频在线观看| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 国产成人精品在线电影| 五月玫瑰六月丁香| 在线免费观看不下载黄p国产| 精品人妻在线不人妻| 亚洲精品视频女| 一级毛片电影观看| 亚洲成人一二三区av| 欧美日本中文国产一区发布| 亚洲综合色惰| 欧美日韩av久久| h视频一区二区三区| 伊人亚洲综合成人网| 国产精品三级大全| 婷婷色av中文字幕| 国产熟女欧美一区二区| 十分钟在线观看高清视频www| 亚洲,一卡二卡三卡| 如何舔出高潮| 在线天堂最新版资源| 亚州av有码| 在现免费观看毛片| 国产淫语在线视频| 日本av免费视频播放| 亚洲欧美日韩卡通动漫| 极品少妇高潮喷水抽搐| 久久久久久久久久久久大奶| 免费大片18禁| av在线app专区| 一级毛片黄色毛片免费观看视频| 欧美精品国产亚洲| 久久久精品区二区三区| 成人亚洲精品一区在线观看| 精品午夜福利在线看| 亚洲精品日本国产第一区| 日韩一区二区视频免费看| 久久免费观看电影| 卡戴珊不雅视频在线播放| 蜜桃久久精品国产亚洲av| 国产高清不卡午夜福利| 成人国产av品久久久| 国产有黄有色有爽视频| 亚洲精品色激情综合| 久久久久网色| 免费看光身美女| 成人国产麻豆网| 亚洲欧美清纯卡通| 在线观看免费视频网站a站| 久久久午夜欧美精品| 青青草视频在线视频观看| 中文字幕制服av| 免费av不卡在线播放| 日韩三级伦理在线观看| 国产精品久久久久久精品电影小说| 久久这里有精品视频免费| 亚洲av国产av综合av卡| 久久综合国产亚洲精品| 美女视频免费永久观看网站| 永久网站在线| 一级二级三级毛片免费看| 飞空精品影院首页| 欧美日韩综合久久久久久| 各种免费的搞黄视频| 国产精品一区www在线观看| 亚洲精华国产精华液的使用体验| 草草在线视频免费看| 2021少妇久久久久久久久久久| 美女中出高潮动态图| 汤姆久久久久久久影院中文字幕| 亚洲高清免费不卡视频| 久久精品熟女亚洲av麻豆精品| 欧美日韩成人在线一区二区| 亚洲欧美清纯卡通| 成人午夜精彩视频在线观看| 日韩中字成人| 丝袜脚勾引网站| 18+在线观看网站| av免费观看日本| 日韩欧美精品免费久久| 天天影视国产精品| 亚洲精品日韩在线中文字幕| 热re99久久国产66热| 久久久a久久爽久久v久久| 亚洲av欧美aⅴ国产| 一级二级三级毛片免费看| 熟妇人妻不卡中文字幕| 夜夜看夜夜爽夜夜摸| 欧美另类一区| 18禁观看日本| 亚洲欧美精品自产自拍| av一本久久久久| 国产精品蜜桃在线观看| 免费av不卡在线播放| 一边亲一边摸免费视频| 天堂俺去俺来也www色官网| 国产白丝娇喘喷水9色精品| 一本—道久久a久久精品蜜桃钙片| 午夜激情av网站| 一个人看视频在线观看www免费| 国产伦精品一区二区三区视频9| 久久久久网色| 女性生殖器流出的白浆| 亚州av有码| 麻豆精品久久久久久蜜桃| 性高湖久久久久久久久免费观看| 免费av中文字幕在线| 热re99久久精品国产66热6| 久久久国产精品麻豆| 成人国语在线视频| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 尾随美女入室| 国产熟女午夜一区二区三区 | 亚洲一区二区三区欧美精品| av国产久精品久网站免费入址| 亚洲三级黄色毛片| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 五月伊人婷婷丁香| 午夜福利影视在线免费观看| 国产毛片在线视频| 26uuu在线亚洲综合色| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 精品国产乱码久久久久久小说| 国产精品熟女久久久久浪| 91精品一卡2卡3卡4卡| 18在线观看网站| 卡戴珊不雅视频在线播放| 男女无遮挡免费网站观看| 日本色播在线视频| 欧美 亚洲 国产 日韩一| 在线播放无遮挡| 亚洲欧美成人综合另类久久久| 日韩亚洲欧美综合| 欧美人与善性xxx| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 热re99久久国产66热| 三级国产精品片| 免费高清在线观看日韩| 欧美国产精品一级二级三级| 亚洲国产毛片av蜜桃av| 只有这里有精品99| 亚洲精品国产av成人精品| 热99久久久久精品小说推荐| 在线观看三级黄色| 蜜桃国产av成人99| 国产免费福利视频在线观看| 91久久精品国产一区二区成人| 亚洲第一av免费看| 免费观看a级毛片全部| 久久国内精品自在自线图片| 久久久久国产网址| 欧美精品国产亚洲| 久久久久久久大尺度免费视频| 制服丝袜香蕉在线| 亚洲国产精品一区三区| 高清在线视频一区二区三区| 国产精品无大码| 亚洲精品国产av成人精品| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av天美| 母亲3免费完整高清在线观看 | 日本vs欧美在线观看视频| 一边摸一边做爽爽视频免费| 欧美日韩综合久久久久久| 国产精品女同一区二区软件| 欧美精品高潮呻吟av久久| 国产 一区精品| a级毛片黄视频| 日韩,欧美,国产一区二区三区| 精品久久蜜臀av无| 超碰97精品在线观看| 免费观看在线日韩| 18禁在线播放成人免费| 一个人免费看片子| av免费观看日本| 国产精品99久久99久久久不卡 | 人妻人人澡人人爽人人| 国产伦理片在线播放av一区| 夫妻午夜视频| 久久久久久久亚洲中文字幕| 草草在线视频免费看| 久久久久国产精品人妻一区二区| 在线天堂最新版资源| 久久99热这里只频精品6学生| 日韩一区二区视频免费看| 亚洲国产精品专区欧美| 免费黄色在线免费观看| 大陆偷拍与自拍| 午夜免费鲁丝| 97超碰精品成人国产| 免费不卡的大黄色大毛片视频在线观看| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 能在线免费看毛片的网站| 亚洲无线观看免费| 少妇的逼好多水| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产精品一区三区| 国产免费又黄又爽又色| 国产极品粉嫩免费观看在线 | 男的添女的下面高潮视频| 久久午夜福利片| 欧美+日韩+精品| 国产亚洲欧美精品永久| 99久久人妻综合| 欧美亚洲 丝袜 人妻 在线| 免费观看的影片在线观看| 成年人免费黄色播放视频| 狂野欧美激情性xxxx在线观看| 免费黄频网站在线观看国产| www.色视频.com| 亚洲国产欧美日韩在线播放| 大香蕉久久成人网| 男人爽女人下面视频在线观看| 波野结衣二区三区在线| 天堂8中文在线网| 在线观看免费视频网站a站| 我的女老师完整版在线观看| 亚洲美女搞黄在线观看| 成人手机av| 久久久久精品性色| 成人亚洲欧美一区二区av| 久久青草综合色| 97超碰精品成人国产| 少妇的逼好多水| 久久久国产欧美日韩av| 亚洲欧洲国产日韩| 国产亚洲一区二区精品| 欧美精品一区二区大全| 插阴视频在线观看视频| 国产白丝娇喘喷水9色精品| 午夜免费鲁丝| 伊人久久精品亚洲午夜| 成人影院久久| 少妇的逼水好多| 精品久久蜜臀av无| 丁香六月天网| 亚洲av男天堂| 亚洲国产精品国产精品| 少妇被粗大猛烈的视频| 青春草国产在线视频| 中文天堂在线官网| 免费日韩欧美在线观看| 亚洲人成77777在线视频| 精品少妇久久久久久888优播| 欧美变态另类bdsm刘玥| 少妇的逼好多水| 久久久久久久亚洲中文字幕| 五月玫瑰六月丁香| 国产亚洲av片在线观看秒播厂| 亚洲av成人精品一二三区| 成人二区视频| 欧美日韩在线观看h| 亚洲精品第二区| 三级国产精品欧美在线观看| 一本久久精品| 精品熟女少妇av免费看| 18禁在线无遮挡免费观看视频| 日韩,欧美,国产一区二区三区| 欧美性感艳星| 国产成人一区二区在线| 成人18禁高潮啪啪吃奶动态图 | 精品午夜福利在线看| 精品亚洲成a人片在线观看| 99热国产这里只有精品6| 丝袜在线中文字幕| 亚洲精品久久久久久婷婷小说| 大香蕉97超碰在线| 大陆偷拍与自拍| 精品少妇内射三级| 日日摸夜夜添夜夜添av毛片| 久久午夜综合久久蜜桃| 久久毛片免费看一区二区三区| 精品久久国产蜜桃| 青春草视频在线免费观看| 久久久久视频综合| 一个人免费看片子| 亚洲精品乱久久久久久| 老女人水多毛片| 精品久久久久久电影网| 亚洲美女搞黄在线观看| 少妇人妻 视频| 国产爽快片一区二区三区| 精品久久久久久久久亚洲| 欧美丝袜亚洲另类| 国产黄频视频在线观看| 少妇熟女欧美另类| 国产黄色免费在线视频| 国产成人aa在线观看| 伊人亚洲综合成人网| 久久久久精品性色| 22中文网久久字幕| 下体分泌物呈黄色| 欧美精品人与动牲交sv欧美| 久久精品夜色国产| 亚洲精品日韩在线中文字幕| 啦啦啦啦在线视频资源| 久久99精品国语久久久| 国产日韩欧美视频二区| 亚洲精品日韩在线中文字幕| 啦啦啦啦在线视频资源| 国产精品一国产av| 超碰97精品在线观看| 如日韩欧美国产精品一区二区三区 | 日韩成人伦理影院| 国产亚洲最大av| 少妇被粗大的猛进出69影院 | 毛片一级片免费看久久久久| 亚洲成色77777| 精品少妇内射三级| 国产高清不卡午夜福利| 一区二区三区乱码不卡18| 国产精品久久久久久久电影| 日韩亚洲欧美综合| 欧美精品人与动牲交sv欧美| 日韩一区二区三区影片| 国产极品天堂在线| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 国产视频内射| 五月伊人婷婷丁香| 成年av动漫网址| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品一区蜜桃| 色吧在线观看| 精品久久久噜噜| 亚洲国产欧美在线一区| 精品一品国产午夜福利视频| a级毛片免费高清观看在线播放| 蜜桃在线观看..| 国产精品女同一区二区软件| 精品酒店卫生间| 久久 成人 亚洲| 国产精品一区二区在线观看99| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花| 性色avwww在线观看| 天堂中文最新版在线下载| 女性被躁到高潮视频| av网站免费在线观看视频| 最近2019中文字幕mv第一页| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 亚洲天堂av无毛| 18禁观看日本| 爱豆传媒免费全集在线观看| 国产av一区二区精品久久| 久久ye,这里只有精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 婷婷色麻豆天堂久久| 久久久精品区二区三区| 日韩中字成人| 国产亚洲av片在线观看秒播厂| 中文精品一卡2卡3卡4更新| 日韩欧美一区视频在线观看| 丰满迷人的少妇在线观看| 91精品三级在线观看| 在线观看免费高清a一片| 99国产综合亚洲精品| 日韩亚洲欧美综合| 国产黄色免费在线视频| 婷婷成人精品国产| 国产伦精品一区二区三区视频9| 精品亚洲成a人片在线观看| 中文精品一卡2卡3卡4更新| 精品人妻在线不人妻| 一级二级三级毛片免费看| 九草在线视频观看| 一区二区三区乱码不卡18| 永久免费av网站大全| 狂野欧美白嫩少妇大欣赏| 只有这里有精品99| 18禁观看日本| av又黄又爽大尺度在线免费看| 久热这里只有精品99| 免费大片18禁| 色网站视频免费| 女性被躁到高潮视频| 午夜日本视频在线| 亚洲av综合色区一区| 国产伦精品一区二区三区视频9| 欧美精品高潮呻吟av久久| 欧美另类一区| 欧美激情极品国产一区二区三区 | 亚洲欧美色中文字幕在线| 97在线视频观看| 99国产精品免费福利视频| 在线观看免费高清a一片| 免费观看av网站的网址| 黄色视频在线播放观看不卡| 亚洲天堂av无毛| 伊人久久国产一区二区| 亚洲综合色网址| 国产精品国产av在线观看| 天堂8中文在线网| 色94色欧美一区二区| 99久久精品国产国产毛片| a级毛片在线看网站| 婷婷色av中文字幕| 日本vs欧美在线观看视频| 亚洲三级黄色毛片| 国产综合精华液| 久久久久久久久久人人人人人人| 精品一区二区三区视频在线| 亚洲色图 男人天堂 中文字幕 | 成人午夜精彩视频在线观看| 一区二区三区四区激情视频| 肉色欧美久久久久久久蜜桃| 国产 一区精品| 成人18禁高潮啪啪吃奶动态图 | 狠狠婷婷综合久久久久久88av| av女优亚洲男人天堂| 日产精品乱码卡一卡2卡三| 中文字幕制服av| 日韩三级伦理在线观看| 熟女av电影| av卡一久久| 日本黄大片高清| 丰满饥渴人妻一区二区三| 免费播放大片免费观看视频在线观看| 欧美97在线视频| 国产亚洲av片在线观看秒播厂| 成人免费观看视频高清| a级毛片黄视频| 欧美精品一区二区免费开放| 久久精品国产鲁丝片午夜精品| 中文精品一卡2卡3卡4更新| 久久av网站| 99九九在线精品视频| 91久久精品电影网| 国产精品久久久久久精品古装| 亚洲国产av新网站| 99久久精品一区二区三区| 一级二级三级毛片免费看| 日韩熟女老妇一区二区性免费视频| 亚洲四区av| 91国产中文字幕| 精品亚洲成a人片在线观看| 免费av中文字幕在线| 大香蕉久久网| 国产精品嫩草影院av在线观看| 天天躁夜夜躁狠狠久久av| 美女视频免费永久观看网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲人成网站在线观看播放| 一二三四中文在线观看免费高清| 在线看a的网站| 999精品在线视频| 各种免费的搞黄视频| 亚洲无线观看免费| 春色校园在线视频观看| 超色免费av| 国产乱人偷精品视频| 激情五月婷婷亚洲| 成人亚洲精品一区在线观看| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡人人看| 国产淫语在线视频| 国产免费视频播放在线视频| 精品人妻偷拍中文字幕| 久久久久久久国产电影| 久久久国产一区二区| 99国产精品免费福利视频| 大香蕉97超碰在线| 哪个播放器可以免费观看大片| 亚洲国产毛片av蜜桃av| 日本av手机在线免费观看| 日本免费在线观看一区| 久久99热6这里只有精品| 成人国产av品久久久| 国产片内射在线| 国产男女超爽视频在线观看| 免费黄色在线免费观看| 色婷婷av一区二区三区视频| 日韩成人伦理影院| 国产亚洲精品久久久com| 亚洲熟女精品中文字幕| 男人添女人高潮全过程视频| 免费观看性生交大片5| 午夜福利网站1000一区二区三区| 国产精品久久久久久久久免| 免费久久久久久久精品成人欧美视频 | 美女中出高潮动态图| 国产精品一国产av| 国产精品麻豆人妻色哟哟久久| 欧美性感艳星| 天堂中文最新版在线下载| 欧美亚洲日本最大视频资源| 久久久国产一区二区| 精品酒店卫生间| 狂野欧美激情性bbbbbb| 亚洲美女视频黄频| 国产精品不卡视频一区二区| 最后的刺客免费高清国语| 在线观看免费日韩欧美大片 | 丰满迷人的少妇在线观看| av.在线天堂| 国产精品蜜桃在线观看| 多毛熟女@视频| 大陆偷拍与自拍| 欧美3d第一页| 大码成人一级视频| 人妻制服诱惑在线中文字幕| 国产 精品1| 国产一区二区在线观看av| 日韩成人伦理影院| 在现免费观看毛片| 日韩不卡一区二区三区视频在线| 日韩在线高清观看一区二区三区| 高清欧美精品videossex| 69精品国产乱码久久久| 亚洲三级黄色毛片| 男男h啪啪无遮挡| av在线观看视频网站免费| 日日啪夜夜爽| 99九九线精品视频在线观看视频| 日本黄大片高清| 国产欧美日韩一区二区三区在线 | 亚洲,欧美,日韩| 男人爽女人下面视频在线观看| 亚洲美女视频黄频| 91精品一卡2卡3卡4卡| 亚洲四区av| 亚洲欧洲国产日韩| 国产伦理片在线播放av一区| 久久久久网色| 精品一区二区免费观看| 亚洲无线观看免费| 曰老女人黄片| 九九久久精品国产亚洲av麻豆| 人人妻人人爽人人添夜夜欢视频| 亚洲国产色片| 亚洲欧洲国产日韩| 少妇被粗大的猛进出69影院 | 亚洲精品成人av观看孕妇| 黑人高潮一二区| 国产免费现黄频在线看| 欧美丝袜亚洲另类| 免费久久久久久久精品成人欧美视频 | 高清视频免费观看一区二区| 亚洲国产色片| 七月丁香在线播放| 九草在线视频观看| 三级国产精品片| 啦啦啦在线观看免费高清www| 国产白丝娇喘喷水9色精品|