吳 飛,張福棟,王 訓(xùn),李秋華*,江 帆
青藏高原中汞的分布特征及影響因素——以典型海洋性冰川小流域?yàn)槔?/p>
吳 飛1,張福棟1,王 訓(xùn)2,李秋華1*,江 帆1
(1.貴州師范大學(xué),貴州省山地環(huán)境信息系統(tǒng)和生態(tài)環(huán)境保護(hù)重點(diǎn)實(shí)驗(yàn)室,貴州 貴陽 550001;2.中國(guó)科學(xué)院地球化學(xué)研究所,環(huán)境地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,貴州 貴陽 550082)
本研究以青藏高原典型海洋性冰川的雪冰-徑流水為研究對(duì)象,分析討論了雪冰-徑流水中汞濃度變化趨勢(shì)及控制因素.結(jié)果表明,貢嘎山冰川中雪、冰樣品的THg濃度略高于全球背景值,而明永冰川以及米堆冰川的雪、冰、水樣品均處于全球背景水平.3個(gè)冰川所有雪樣、冰樣、水樣的THg濃度平均值分別為(4.78±5.99) ng/L、(1.72 ±1.15)ng/L、(1.31±0.91)ng/L.不同的環(huán)境介質(zhì)中THg濃度變化總體表現(xiàn)為:雪>冰>水,其主要受顆粒汞沉淀作用及氣態(tài)單質(zhì)Hg揮發(fā)作用的控制.貢嘎山的徑流水中THg濃度表現(xiàn)為六月最高(7.48±2.22)ng/L,十一月最低(1.39 ±0.27)ng/L.所有雪冰-徑流水體系中HgP與THg存在極顯著的正相關(guān)關(guān)系,雪中HgP/THg最高,其次為冰,最低為徑流水.貢嘎山徑流水中的HgP/THg及月均THg輸出變化趨勢(shì)受徑流量和降雨量的影響.主成分分析表明了本研究區(qū)域雪冰中THg濃度主要受大氣顆粒物沉降及季風(fēng)傳輸?shù)挠绊?此外,相比于其他2個(gè)冰川,貢嘎山冰川由于更加靠近人類活動(dòng)密集區(qū)域,更易受到人類活動(dòng)的影響.
海洋性冰川;顆粒汞;雪-冰-徑流;季風(fēng)
汞(Hg)是一種可通過食物鏈積累與放大對(duì)生態(tài)系統(tǒng)產(chǎn)生毒害效應(yīng)的全球性污染物[1-3].正是由于發(fā)現(xiàn)北歐與美洲偏遠(yuǎn)湖泊中魚汞濃度超過食用安全標(biāo)準(zhǔn)及北極地區(qū)觀察到的大氣汞的損耗事件,引起了研究人員對(duì)偏遠(yuǎn)地區(qū)Hg的遷移轉(zhuǎn)化、歸趨及環(huán)境毒害作用的廣泛關(guān)注[4-7].青藏高原是中低緯度地區(qū)最大的高山冰川匯集區(qū)[8-9],也是眾多大江大河的發(fā)源地,同時(shí)還是Hg及其他全球性污染物影響的敏感區(qū)域[10].全球氣候變暖加速高山冰川的消融,增加河流的徑流量,同時(shí)可能釋放出原本固封在冰川中的Hg.雪冰-徑流體系中汞的遷移、富集與轉(zhuǎn)化,關(guān)系到青藏高原及其下游水生生態(tài)系統(tǒng)汞污染的環(huán)境生態(tài)風(fēng)險(xiǎn).
雪、冰作為大氣和水生生態(tài)系統(tǒng)之間的過渡介質(zhì),在Hg的生物地球化學(xué)循環(huán)中有著至關(guān)重要的作用.目前對(duì)于Hg在北歐與北美的極地區(qū)域雪-冰-徑流水中的分布及遷移轉(zhuǎn)化認(rèn)識(shí)最為清楚[11-12],近年來對(duì)青藏高原腹地冰川小流域的汞分布特征與影響因素的認(rèn)識(shí)也取得較大進(jìn)展,Sun等[13]、Paudyal等[14]和Huang等[15]在青藏高原區(qū)域的研究表明冰川融水釋放的汞是下游流域和湖泊一個(gè)重要來源,但對(duì)青藏高原東部與東南部的海洋性冰川小流域的遷移和轉(zhuǎn)化關(guān)注度仍不夠.在暖濕氣流的影響下,青藏高原東部與東南部的海洋性冰川小流域的水熱條件,顯然有別于青藏高原腹地冰川小流域[16-17],且特殊地理位置使其更容易受到中國(guó)中西部與東南亞、南亞等區(qū)域人為源汞排放的多重影響.本研究選取了水熱條件逐漸遞減與地理位置向青藏高原腹地靠近的3個(gè)典型的海洋性冰川的雪冰-徑流水體系為研究對(duì)象,詳細(xì)分析了汞在貢嘎山冰川小流域的月變化并比較不同區(qū)域冰川雪冰-徑流水中汞形態(tài)分布特征差異及其影響因素,為未來進(jìn)一步認(rèn)識(shí)全球變暖下青藏高原冰凍圈汞生物地球化學(xué)循環(huán)與潛在的生態(tài)風(fēng)險(xiǎn)研究提供基礎(chǔ)數(shù)據(jù)與理論依據(jù).
圖1 采樣點(diǎn)的位置分布
本研究選取貢嘎山冰川、明永冰川和米堆冰川為研究對(duì)象,其相應(yīng)的地理位置與各自冰川區(qū)域采樣點(diǎn)的分布如圖1所示.青藏高原的海洋性冰川主要分布在西藏東南部與橫斷山脈等海洋性氣候區(qū).上述區(qū)域的貢嘎山冰川、明永冰川與米堆冰川的冰川面積、冰川發(fā)育程度與冰的儲(chǔ)量在中國(guó)的海洋性冰川中都具有典型的代表性[18].與前人在青藏高原腹地的冰川小流域進(jìn)行的研究相比[13-15],本研究選取的冰川更容易受到海洋性季風(fēng)與人為源排放的多重影響.
貢嘎山冰川位于青藏高原與四川盆地的交界地區(qū),其主峰海拔高7556m.本研究的采樣點(diǎn)位于貢嘎山東坡的海螺溝內(nèi)(29°20′N,101°30′E),海螺溝年均氣溫隨海拔增加而遞減,在1600m 處為13℃,而3000m處為4℃;降雨多集中在5~10月,海拔1600m處年降水為1000mm,海拔3000m處為1900mm,屬于典型的亞熱帶季風(fēng)氣候區(qū).
明永冰川位于云南迪慶的香格里拉(28°27′N, 98°45′E)梅里雪山區(qū)域.其中梅里雪山超過海拔6000m的山峰3座,雪線海拔4800~5200m處的年平均氣溫-3~5℃,年降雨量約為1500mm.明永冰川是云南省最大,最長(zhǎng),末端海拔最低的山谷冰川[19].
米堆冰川位于波密縣玉普鄉(xiāng)境內(nèi)(29°28′N, 96°30′E),其主峰海拔6800m,雪線海拔4600m,年均降雨量835mm,其中4~9月降水量約占全年降雨量的74.9%.全年平均氣溫為8.7℃,其中1月最低月平均氣溫為0.2℃,7月最高月平均氣溫為16.6℃[20].
本研究于2018年5月對(duì)貢嘎山冰川,于12月對(duì)明永以及米堆冰川進(jìn)行系統(tǒng)的采樣.樣品的采集主要包括表層雪、表層冰及徑流水.其中貢嘎山冰川在海拔3600m處設(shè)置了S1、S2、S3、S4等4個(gè)徑流水樣點(diǎn),并在2018年6~11月進(jìn)行每月一次的固定徑流水樣的采集.
樣品采集過程中全程佩戴一次性手套,每采集一個(gè)樣品更換一次手套.采集表層雪樣時(shí)先用特氟龍勺子鏟去表層有明顯污染的雪樣,再收集0~5cm雪樣于500mL的特氟龍瓶子中.進(jìn)行表層冰樣的采集時(shí),將采樣錘使用一次性保鮮膜包裹3層之后,除去表層有明顯污染的冰樣,再收集0~5cm的冰樣保存于500mL的特氟龍瓶子中.對(duì)徑流水樣采集時(shí),首先用徑流水對(duì)特氟龍采樣瓶進(jìn)行潤(rùn)洗2~3次后,再收集水樣.將徑流水樣品分為2份,一份經(jīng)0.45μm的濾膜過濾,另一份無過濾操作,然后向2份樣品中各加入0.4 %工藝超純鹽酸,并保存于4℃的收納箱中;雪冰樣品待其融化,將雪冰水同樣分為2份,一份經(jīng)0.45μm的濾膜過濾,另一份無過濾操作,向2份樣品中各加入0.4%工藝超純鹽酸,并保存于4℃的收納箱中.所有的雪冰樣品均采集3個(gè)平行樣品.
樣品的總汞(THg),溶解態(tài)汞(HgD)的測(cè)定采用BrCl 氧化-SnCL2還原-金管富集-兩次金汞齊冷原子熒光光譜法進(jìn)行測(cè)定[21-22],樣品在中國(guó)科學(xué)院地球化學(xué)研究所環(huán)境地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室使用CVAFS、Tekran 2500完成測(cè)試,該方法的最低檢測(cè)限為0.02ng/L.為了保證數(shù)據(jù)的準(zhǔn)確性,測(cè)試過程中每5個(gè)樣品加入一個(gè)總汞質(zhì)量濃度為1ng/L的標(biāo)準(zhǔn)溶液,結(jié)果測(cè)得其回收率在95%~105%.同時(shí)測(cè)試了儀器的空白樣<0.2ng/L,野外空白樣<0.1ng/L,以及容器空白樣<0.1ng/L,其中顆粒態(tài)汞(HgP=THg-HgD)為總汞與溶解態(tài)汞的差值.微量金屬元素的測(cè)定也在中國(guó)科學(xué)院環(huán)境地球化學(xué)研究所環(huán)境地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成.采用美國(guó)PE公司的NexION 300X型號(hào)ICP-MS,以Ce2+作為激發(fā)離子源,儀器精誤差小于3%.每次微量元素測(cè)定的過程中,須采用1%的HNO3清洗,以保證測(cè)樣時(shí)空白信號(hào)殘余低于0.1%.另外,汞及其微量元素的測(cè)定過程中,每10次測(cè)樣,均加標(biāo)1次,加標(biāo)的回收率控制在95%~105%.數(shù)據(jù)的分析作圖通過EceL2016、SPSS24.0、ArcMap10.2與Origin9.0完成.
由圖2a可知,貢嘎山冰川的所有雪、冰、水樣品THg濃度在2.33~11.69ng/L之間,最大值和最小值分別出現(xiàn)在雪樣和水樣中,其濃度分別為(11.69±1.00)和(2.33±0.29)ng/L,THg濃度總體表現(xiàn)為雪>冰>水,且雪與冰、雪與水、冰和水之間存在顯著性差異(<0.05).明永冰川的雪、冰、水樣品THg濃度在0.58~1.73ng/L之間,最大值和最小值分別出現(xiàn)在表層雪樣和水樣中,其濃度分別為(1.73±0.07)和(0.58±0.21) ng/L,THg濃度表現(xiàn)出雪>冰>水,且雪與冰、雪與水、冰和水之間存在顯著性差異(<0.05).米堆冰川的雪、冰、水樣品THg濃度在0.88~ 1.08ng/L之間,最大值和最小值分別出現(xiàn)在冰樣和水樣中,其濃度分別是(1.08±0.15)和(0.88±0.16) ng/L, THg濃度在冰、水、雪中無顯著差異.
3個(gè)冰川所有的表層雪樣THg濃度在0.88~ 11.69ng/L(=9)之間,平均值為(4.78±5.99) ng/L.所有的冰樣THg濃度在1.03~3.05ng/L(=9)之間,平均值為(1.72±1.15)ng/L.所有的水樣濃度在0.58~2.33ng/ L(=25),平均值為(1.31±0.91) ng/L.在雪、冰、水等不同的環(huán)境介質(zhì)中樣品的THg濃度表現(xiàn)為表層雪>冰>水.與孫學(xué)軍等[23]在扎當(dāng)冰川-曲嘎切流域所研究結(jié)果相似,即:雪坑樣品THg>流域內(nèi)水體THg.這可能與雪冰融化形成徑流水的過程中,HgP發(fā)生沉淀作用以及雪、冰、水中氣態(tài)單質(zhì)Hg再釋放作用(即沉降越久的汞,再釋放的氣態(tài)單質(zhì)Hg也就越多)[13,24]相關(guān).
Fig 2 The Hg concentration variations in snow-ice-streamflow
每個(gè)地區(qū)雪冰水THg濃度之間的統(tǒng)計(jì)差異由字母a,b,c表示
2018年6~11月期間貢嘎山冰川的徑流水分析結(jié)果如圖2b所示,徑流水樣品的THg濃度在0.71~ 10.72ng/L之間,平均值為(3.03±2.77)ng/L.在已采集到的樣品中,徑流水月均THg濃度表現(xiàn)為6月最高(平均濃度為(7.48±2.22)ng/L),而11月最低(平均濃度為(1.39±0.27)ng/L).其中6月徑流水中THg濃度平均值是其他月份平均值(1.86±0.45)ng/L的4倍,這可能是由于12月~次年5月份,該流域由于結(jié)冰發(fā)生斷流導(dǎo)致的Hg濃度的富集,而6月徑流解封,其THg濃度也相應(yīng)增加.
表1 本研究雪冰-徑流水的THg濃度與其他地區(qū)研究結(jié)果的對(duì)比
表1重點(diǎn)比較了本研究中雪冰-徑流水的Hg濃度與其他地區(qū)的研究結(jié)果.從對(duì)比數(shù)據(jù)可知,貢嘎山冰川研究區(qū)的表層雪樣THg濃度略高于遠(yuǎn)離人為源的背景區(qū)域的冰川流域,如高于Rukumesh Paudyal等[14]在青藏高原中部、Huang等[15]在青藏高原北部的老虎溝冰川和Sun等[35]在青藏高原南部的強(qiáng)永冰川的研究結(jié)果,亦高于南極Dome A表層雪濃度[33]和加拿大北極表層雪的觀測(cè)值[34],而明永冰川、米堆冰川則與這些地區(qū)的觀測(cè)值相當(dāng).貢嘎山冰川的0~5cm冰樣的THg濃度高于前人[25-26,29-32]在北極和亞北極地區(qū)采集的表層冰芯樣品的濃度,而明永冰川、米堆冰川則與前人的研究結(jié)果相一致,本研究選取的三個(gè)冰川的0~5cm冰樣均低于Kang等[27]在青藏高原的郭曲冰川以及Schuster等[28]在上弗里蒙特冰川的表層觀測(cè)值.貢嘎山冰川徑流水的THg濃度與Fu等[38]在貢嘎山的海螺溝地區(qū)的研究結(jié)果(3.5ng/L),以及Zheng等[37]在雅魯藏布江的研究結(jié)果(2.79ng/L)表現(xiàn)出較好的一致性,而明永冰川及米堆冰川的徑流水汞監(jiān)測(cè)值低于上述區(qū)域.而本研究選取的三個(gè)冰川徑流水均明顯低于受到人為源污染的區(qū)域,如Jiang等[36]在烏江流域的檢測(cè)值.因此可以得出本研究選取的貢嘎山區(qū)域THg略高于全球背景值,而明永冰川和米堆冰川則處于全球背景值狀態(tài).
2.3.1 HgP/THg在雪-冰-徑流水體系中的變化趨勢(shì) 貢嘎山、明永、米堆冰川所有的雪冰-徑流水的HgP濃度的變化范圍為0.09~9.44ng/L(圖2a),最大值與最小值分別出現(xiàn)在貢嘎山的雪樣(9.44± 1.09)ng/L和明永冰川的水樣(0.09±0.21)ng/L中.雪冰-徑流水樣品HgP與THg具有極顯著的正相關(guān)關(guān)系(2=0.980,<0.01,=24,圖3a).這與梅露等[24]在貢嘎山地區(qū)觀測(cè)得到的雪樣、冰樣和水樣中THg和HgP的研究結(jié)果(2=0.998,<0.01),及孫學(xué)軍等[23]在扎當(dāng)冰川雪坑中的研究結(jié)果(2=0.99,<0.05,=43)均表現(xiàn)出高度的一致性.
所有的雪、冰、水樣品中HgP/THg的最大值出現(xiàn)在貢嘎山和米堆冰川的雪樣中,最大可達(dá)81%;最小值出現(xiàn)在明永冰川的水樣中,最小值為14%.其中米堆冰川雪、冰與水的HgP/THg的平均值可達(dá)64%、貢嘎山次之(63%)、明永最低(41%),并且3個(gè)冰川所有樣品的HgP/THg的平均比值為(56%±23%).3個(gè)冰川HgP/THg的變化趨勢(shì)均表現(xiàn)為雪>冰>水(如圖3b所示),這可能與雪-冰-水的相變過程中,HgP逐漸發(fā)生了沉淀作用,導(dǎo)致雪冰水體系中HgP逐漸減少相關(guān)[24],這表明汞在冰川流域的遷移、富集受到雪冰顆粒物的遷移沉淀控制.
2.3.2 HgP/THg在貢嘎山徑流水中的變化趨勢(shì) 圖4a展示了貢嘎山徑流水逐月的采樣分析中HgP/THg的變化趨勢(shì).基于已有的樣品,HgP/THg的變化總體表現(xiàn)為7月S3點(diǎn)的HgP/THg達(dá)到最大,最大比值為71%;11月的S1點(diǎn)最低,最低比值為16%;HgP/THg的月平均值表現(xiàn)為7月最高(60%±14%),11月最低(18%±2%).由圖4b可以看出,徑流量和降雨量(徑流量數(shù)據(jù)來源于國(guó)家地球系統(tǒng)科學(xué)數(shù)據(jù)共享服務(wù)平臺(tái);月均降雨量數(shù)據(jù)來源于貢嘎山森林生態(tài)系統(tǒng)國(guó)家野外科學(xué)觀測(cè)研究站)在6月逐漸增加,8~9月達(dá)到峰值,其后逐漸降低.值得注意的是8月HgP/THg卻顯著低于鄰近其他月份比值,這可能與降雨中顆粒Hg含量低于冰雪中顆粒Hg含量而導(dǎo)致的稀釋作用相關(guān).
6~11月間貢嘎山徑流水中月均THg輸出的變化趨勢(shì)與徑流量具有顯著正相關(guān)關(guān)系(2=0.920;=0.05),與Sun等[13]在曲嘎切流域的上游監(jiān)測(cè)點(diǎn)研究THg濃度與徑流量的正相關(guān)關(guān)系(2=0.455;= 0.01)一致.值得注意的是,由于10月份徑流汞數(shù)據(jù)的缺失使得統(tǒng)計(jì)分析中的P值為0.05,但高達(dá)0.920的2表明了月均THg輸出與徑流量的正相關(guān)關(guān)系具有較高的可信度.6月降水尚少,徑流水主要來源于冰雪融水的補(bǔ)給,且在2017年12月~2018年5月該流域由于冰封斷流導(dǎo)致Hg濃度在表層冰雪中的富集,6月氣溫上升,積累在冰川表層的冰雪融化釋放出其中的Hg,造成徑流水中月均THg輸出量偏大[17.8μg/(m2×月)].根據(jù)貢嘎山觀景臺(tái)溝的流域面積(1.05km2),可估算出該流域的年均THg輸出為97.5μg/(m2×a),低于Sun等[13]在曲嘎切流域上游監(jiān)測(cè)點(diǎn)的估算值[0.99mg/(m2×a)]
青藏高原受西風(fēng)與東亞季風(fēng)、西南季風(fēng)影響顯著,且毗鄰中國(guó)東部、東南亞與南亞等人為源汞顯著排放區(qū)域.據(jù)報(bào)道,來自南亞的Hg排放可以通過西南季風(fēng)與西風(fēng)的作用輸送到青藏高原,并沉積在冰川上,這導(dǎo)致了積雪中Hg濃度的升高[3-40],東南亞生物質(zhì)燃燒產(chǎn)生的Hg排放也是一個(gè)重要的來源[41],生物質(zhì)燃燒排放的汞可通過西南季風(fēng)與西風(fēng)的南支繞流輸送至青藏高原地區(qū).中國(guó)是當(dāng)前世界上最大的Hg排放國(guó),近年來中國(guó)一直在制定相關(guān)環(huán)境政策,減少人為源Hg的排放[42-43].我國(guó)人為源Hg排放清單[44]表明青藏高原人為源Hg的排放為0.1~ 0.5kg/(km2a),而東部發(fā)達(dá)地區(qū)人為源Hg的排放可達(dá)20~65kg/(km2a),來自于四川、重慶等中國(guó)中西部區(qū)域的人為源汞排放可經(jīng)東亞夏季風(fēng)的作用傳輸至青藏高原東部邊緣區(qū)域,如貢嘎山區(qū)域[45-46]. Zhang等[43]與Yin等[47]的研究指出青藏高原的氣態(tài)總汞濃度分別為2.55和0.23~3.14ng/m3,略高于北半球大氣背景值1.5~1.7ng/m3.因此,青藏高原受局地區(qū)域人為活動(dòng)影響較小,主要受周邊Hg污染源排放傳輸沉降的影響,因而推測(cè)越靠近上述污染源的地區(qū)表現(xiàn)出越高的THg濃度,即貢嘎山>明永>米堆.這與貢嘎山冰川、明永冰川與米堆冰川監(jiān)測(cè)的雪、冰與水中的汞濃度變化趨勢(shì)一致.
本研究對(duì)雪、冰與水相關(guān)數(shù)據(jù)進(jìn)行了相關(guān)性矩陣分析與主成分分析,并根據(jù)微量重金屬元素的不同來源依據(jù)判別Hg的來源途徑.相關(guān)分析結(jié)果表明(表2),Hg與Cr、V、Mn、Ni、Cu、Rb、Ba、Li具有顯著的正相關(guān)關(guān)系(0.5<<0.8,<0.05),而Hg與Sr、Mo呈微弱的負(fù)相關(guān)(=-0.007、=-0.018).主成分分析前的預(yù)檢驗(yàn)表明KMO和巴特利特檢驗(yàn)值為0.767,這說明本研究所獲得的雪、冰、水的相關(guān)數(shù)據(jù)十分適合主成分分析.主成分分析結(jié)果表明(表3),本研究共提取兩個(gè)主因子,其解釋了整個(gè)數(shù)據(jù)89%的變化.主因子1解釋了整個(gè)數(shù)據(jù)75%的變化,其中 Hg、Pb、Cr、V、Mn、Ni、Cu、Rb、Ba、Li等元素具有較高的載荷值,且這幾種元素與Hg的相關(guān)性分析都表現(xiàn)出較高的相關(guān)系數(shù),表明具有同源性.值得注意的是,V、Mn、Ni、Cu、Rb、Ba、Li是典型的“親石”元素.結(jié)合采樣點(diǎn)的周邊環(huán)境分析可知,主因子1代表了成土母質(zhì)等的顆粒物在大氣中長(zhǎng)距離遷移沉降,故主因子1主要代表大氣顆粒物遷移沉降對(duì)該區(qū)域汞沉降的影響.主因子2解釋了整個(gè)數(shù)據(jù)14%的變化,其中 Pb、Mn、Zn、As等元素具有較高的載荷值.Pb、Zn、As主要來源于工業(yè)活動(dòng)過程中產(chǎn)生的廢氣和粉塵等,這表明主因子2主要代表人為活動(dòng)的影響.上述統(tǒng)計(jì)分析結(jié)果表明,貢嘎山、明永與米堆冰川的雪、冰與水中Hg濃度在整體上主要受到大氣顆粒物沉降的控制.但貢嘎山冰川由于更靠近人類活動(dòng)密集區(qū)域,其受到人類活動(dòng)的影響相比于其他2個(gè)冰川更為顯著.例如,Fu等[48]對(duì)貢嘎山區(qū)域的研究結(jié)果也表明較高的氣態(tài)汞與我國(guó)中東部煤炭業(yè)、冶煉工業(yè)、水泥生產(chǎn)、生物質(zhì)燃燒等行業(yè)活動(dòng)汞排放相關(guān).因而,相比于其他2個(gè)冰川,貢嘎山冰川流域汞及其形態(tài)均顯著高于其他2個(gè)冰川(<0.05, T-test).
表2 貢嘎山、明永、米堆冰川的雪、冰、水中THg與微量重金屬元素的相關(guān)性矩陣
注:*:在0.05級(jí)別(雙尾),相關(guān)性顯著; **:在0.01級(jí)別(雙尾),相關(guān)性顯著.
表3 THg與雪、冰、水中微量重金屬元素的SPSS主成分分析結(jié)果
3.1 貢嘎山、明永、米堆冰川不同介質(zhì)中THg濃度趨勢(shì)變化表現(xiàn)為雪>冰>水,且3個(gè)冰川中THg的變化趨勢(shì)為貢嘎山>明永>米堆.
3.2 貢嘎山、明永、米堆冰川區(qū)域主要受到大氣顆粒物沉降(HgP/THg的平均比值為(56%±23%))的影響,貢嘎山冰川受到人類活動(dòng)影響顯著高于明永與米堆.
3.3 貢嘎山徑流水中THg的輸出主要受到冰川河的徑流量及降雨作用的影響,月均THg輸出通量與月均徑流量表現(xiàn)出強(qiáng)烈的正相關(guān)性(2=0.920;=0.05).
[1] Krabbenhoft D P, Sunderland E M. Global Change and Mercury [J]. Science, 2013,341(6153):1457458.
[2] Canário J, Branco V, Vale C. Seasonal variation of monomethylmercury concentrations in surface sediments of the Tagus Estuary (Portugal) [J]. Environmental Pollution, 2007,148(1):0-383.
[3] Gorski P R, Armstrong D E, Hurley J P, et al. Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga [J]. Environmental Pollution, 2008,154(1):0-123.
[4] Berg T, Sekkes?Ter S, Steinnes E, et al. Springtime depletion of mercury in the European Arctic as observed at Svalbard [J]. Science of the Total Environment, 2003,304(1-3):43-51.
[5] Brooks S B, Saiz-Lopez A, Skov H, et al. The mass balance of mercury in the springtime arctic environment [J]. Geophysical Research Letters, 2006,33(13):L13812.
[6] Schroeder W H, Anlauf K G, Barrie L A, et al. Arctic springtime depletion of mercury [J]. Nature, 1998,394(6691):331-332.
[7] Steffen A, Lehnherr I, Cole A, et al. Atmospheric mercury in the Canadian Arctic. Part I: A review of recent field measurements [J]. Science of The Total Environment, 2015,509-510:35.
[8] Grinsted, A. An estimate of global glacier volume [J]. The Cryosphere, 2013,7(1):141-151.
[9] Yao T, Thompson L G, Mosbrugger V, et al. Third pole environment (TPE) [J]. Environmental Development, 2012,3(1):52-64.
[10] Beniston M. Climatic change in mountain regions: A review of possible impacts [J]. Climatic Change, 2003,59(1/2):5-31.
[11] Sondergaard J, Tamstorf M, Elberling B, et al. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial Lake outburst floods [J]. Science of The Total Environment, 2015,514:83-91.
[12] Fisher J A, Jacob D J, Soerensen A L, et al. Riverine source of Arctic Ocean mercury inferred from atmospheric observations [J]. Nature Geoscience. 5:499-504.
[13] Sun X, Wang K, Kang S, et al. The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau [J]. Environmental Pollution, 2017,220:936-945.
[14] Paudyal R, Kang S, Huang J. Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau. [J]. Science of the Total Environment, 2017,599-600: 2046.
[15] Huang J, Kang S, Guo J, et al. Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau [J]. Atmospheric Environment, 2014,96:27-36.
[16] 秦大河,效存德,丁永建,等.國(guó)際冰凍圈研究動(dòng)態(tài)和我國(guó)冰凍圈研究的現(xiàn)狀與展望.應(yīng)用氣象學(xué)報(bào), 2006,17(6):649-656. Qin Dahe, Xiao Cunde, Ding Yongjian, et al. Progress on cryospheric studies by international and Chinese communities and perspectives [J]. Journal of Applied Meteorology, 2006,17(6):649-656.
[17] 姚檀棟,朱立平.青藏高原環(huán)境變化對(duì)全球變化的響應(yīng)及其適應(yīng)對(duì)策[J]. 地球科學(xué)進(jìn)展, 2006,21(5):459-464. Yao Tandong, Zhu Liping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy [J]. Advances in Earth Science, 2006,21(5):459-464.
[18] 劉宗香,蘇 珍,姚檀棟,等.青藏高原冰川資源及其分布特征[J]. 資源科學(xué), 2000,22(5):49-52. Liu Zongxiang, Su Zhen, Yao Tandong, et al. Resources and distribution of glaciers on the Tibetan plateau [J]. Resources Science, 2000,22(5):49-52.
[19] 鄭本興,趙希濤,李鐵松,等.梅里雪山明永冰川的特征與變化[J]. 冰川凍土, 1999,21(2):14550. Zheng Benxing, Zhao Xitao, Li Tiesong, et al. Characteristics and changes of Mingyong Glacier in Meili Snow Mountain [J]. Journal of glaciology and geocryology, 1999,21(2):14550.
[20] Xu P, Zhu H F, Shao X M, et al. Tree ring-dated fluctuation history of Midui glacier since the little ice age in the southeastern Tibetan plateau [J]. Science China: Earth Sciences, 2012,55(4):521-529.
[21] US EPA. Method 1631: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry [M]. Revision E. Office of Water, Washington, DC (EPA-821-R-02-19), 2002.
[22] 閻海魚,馮新斌,商立海,等.天然水體中痕量汞的形態(tài)分析方法研究 [J]. 分析測(cè)試學(xué)報(bào), 2003,22(5):103. Yan Haiyu, Feng Xinbin, Shang Lihai, et al. Study on Speciation Analysis Method of Trace Mercury in Natural Water [J]. Journal of Instrumental Analysis, 2003,22(5):103.
[23] 孫學(xué)軍,王 康,郭軍明,等.青藏高原內(nèi)陸典型冰川區(qū)"冰川-徑流"汞傳輸過程[J]. 環(huán)境科學(xué), 2016,37(2):482-489. Sun Xue-jun, WANG Kang, GUO Jun-ming, et al. Mercury Transport from Glacier to Runoff in Typical Inland Glacial Area in the Tibetan Plateau [J]. Environmental Science, 2016,37(2):482-489.
[24] 梅 露,王 訓(xùn),馮新斌,等.青藏高原貢嘎山冰川區(qū)水體中Hg的空間分布及其源匯特征[J]. 環(huán)境化學(xué), 2016,35(8). Mei Lu, Wang Xun, Feng Xinbin, et al. Spatial distribution and source/sink characteristic of mercury in the water samples from the Mt.Gongga area in the Tibetan Plateau [J]. Environmental Chemistry, 2016,35(8).
[25] Beal S A, Osterberg E C, Zdanowicz C M, et aL. Ice core perspective on mercury pollution during the Past 600 Years [J]. Environmental Science & Technology, 2015,49(13):7641-7647.
[26] Eyrikh S, Eichler A, Tobler L, et al. A 320-year ice-core record of atmospheric Hg pollution in the Altai, Central Asia [J]. Environmental Science & Technology, 2017,51:115971606.
[27] Kang S, Huang J, Wang F, et al. Atmospheric mercury depositional chronology reconstructed from Lake sediment and ice cores in the Himalayas and Tibetan Plateau [J]. Environmental Science & Technology, 2016,50:2859-2869.
[28] Schuster P F, Krabbenhoft D P, Naftz D L, et al. Atmospheric mercury Deposition during the Last 270Years: A Glacial Ice Core Record of Natural and Anthropogenic Sources [J]. Environmental Science and Technology, 2002,36(11):2303-2310.
[29] Bourtron C F, Vandal G M, Fitzgerald W F, et al. A forty year record of mercury in central Greenland snow [J]. Geophysical Research Letters, 1998,25(17):3315-3318.
[30] Zheng, Jiancheng. Archives of total mercury reconstructed with ice and snow from Greenland and the Canadian High Arctic [J]. Science of The Total Environment, 2015,509-510:13344.
[31] Zdanowicz C M, Krümmel E M, Poulain A J, et al. Historical variations of mercury stable isotope ratios in arctic glacier firn and ice cores. [J]. Global Biogeochemical Cycles, 2016,30:1324347.
[32] Jitaru P, Infante H G, Ferrari C P, et al. Present century record of mercury species pollution in high altitude alpine snow and ice [J]. Journal de Physique IV (Proceedings), 2003,107:683-686.
[33] Li C, Kang S, Shi G, et al. Spatial and temporal variations of total mercury in Antarctic snow along the transect from Zhongshan Station to Dome A [J]. Tellus B, 2014:66.
[34] Lahoutifard N, Sparling M, Lean D. Total and methyl mercury patterns in Arctic snow during springtime at Resolute, Nunavut, Canada [J]. Atmospheric Environment, 2005,39(39):7597-7606.
[35] Sun S, Kang S, Huang J, et al. Distribution and transportation of mercury from glacier to Lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China [J]. Journal of Environmental Sciences, 2016:S1001074216000127.
[36] Jiang H, Feng X, Dai Q, et al. The distribution and speciation of mercury in Wujiang river [J]. Journal de Physique IV (Proceedings), 2003,107:679-682.
[37] Zheng W, Kang S C, Feng, et al. Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet [J]. Chinese Science Bulletin, 2010,55(24):2697-2703.
[38] Fu X, Feng X, Zhu W, et al. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China [J]. Environmental Pollution, 2010,158(6):2324-2333.
[39] Loewen M, Kang S, Armstrong D, et al. Atmospheric transport of mercury to the Tibetan Plateau [J]. Environmental Science & Technology, 2007,41(22):7632-7638.
[40] Zhang Q, Huang J, Wang F, et al. Mercury distribution and deposition in glacier snow over Western China [J]. Environmental Science & Technology, 2012,46(10):5404-5413.
[41] Pirrone N, Cinnirella S, Feng X, et al. Global mercury emissions to the atmosphere from natural and anthropogenic sources [M]. Mercury Fate and Transport in the Global Atmosphere. Springer US, 2009.
[42] Streets D G, Hao J, Wu Y, et al. Anthropogenic mercury emissions in China [J]. Atmospheric Environment, 2005,39(40):7789-7806.
[43] Pacyna E G, Pacyna J M, Steenhuisen F, et al. Global anthropogenic mercury emission inventory for 2000 [J]. Atmospheric Environment, 2006,40(22):4048-4063.
[44] Wang S, Zhang L, Li G, et al. Mercury emission and speciation of coal-fired power plants in China [J]. Atmospheric Chemistry & Physics Discussions, 2009,10(3):1183192.
[45] Fu X, Feng X, Zhu W, et al. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China [J]. Applied Geochemistry, 2008,23(3):0-418.
[46] Fu X, Feng X, Wang S, et al. Temporal and spatial distributions of total gaseous mercury concentrations in ambient air in a mountainous area in southwestern China: Implications for industrial and domestic mercury emissions in remote areas in China [J]. Science of the Total Environment, 2009,407(7):2306-2314.
[47] Yin X, Kang S, Foy B D, et al. Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site (Nam Co, 4730m a.s.l.) in the inland Tibetan Plateau region [J]. Atmospheric Chemistry & Physics, 2018,18(14):1-44.
[48] Fu X, Feng X, Zhu W, et al. Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan plateau, China [J]. Atmospheric Environment, 2008, 42(5):970-979.
致謝:感謝國(guó)家地球系統(tǒng)科學(xué)數(shù)據(jù)共享服務(wù)平臺(tái)及四川貢嘎山森林生態(tài)系統(tǒng)國(guó)家野外科學(xué)觀測(cè)研究站提供的數(shù)據(jù)支持.
Distribution characteristics and influencing factors of mercury in Tibetan Plateau-Examples from typical marine glacial small watersheds.
WU Fei1, ZHANG Fu-dong1, WANG Xun2, LI Qiu-hua1*, JIANG Fan1
(1.Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China;2.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, China)., 2019,39(11):4776~4784
In this study, Hg and its speciation in snow, ice and streamflow in three typical tibetan marine glaciers were investigated to understand the controlling factors during Hg transport processes. Results show that THg (total Hg) concentrations of snow and ice samples in Gongga Glacier were slightly higher than the values of global background, while values in Mingyong Glacier and Midui Glacier were at the global background levels. The average THg concentrations of all snow, ice and water samples of three glaciers were (4.78±5.99) ng/L, (1.72±1.15) ng/L, (1.31±0.91) ng/L, respectively. The variation of THg concentration was in snow > in ice > in water. Such trend was mainly controlled by the processes of sedimentation of particulate Hg and the volatilization of gaseous elemental Hg. The THg concentration in the streamflow of Gongga was the highest in June (7.48±2.22) ng/L and the lowest in November (1.39 ±0.27) ng/L. The HgP was significantly correlated to the THg, and HgP/THg was the highest in snow, followed by ice, and the lowest in streamflow. The variation of HgP/THg and monthly average THg output in the streamflow of Gongga Mountain were controlled by streamflow and rainfall intensities. Principal component analysis further indicates that the THg concentration in snow and ice was mainly affected by atmospheric particulate deposition and monsoon transport. Compared with the other two glaciers, Gongga Glacier was more susceptible to influence by human activities because of much closer to the intensive populated areas.
marine glaciers;particulate mercury;snow-ice-streamflow;monsoon
X820
A
1000-6923(2019)11-4776-09
吳 飛(1994-),男,貴州遵義人,貴州師范大學(xué)碩士研究生,主要從事汞的地球化學(xué)循環(huán)研究.
2019-04-30
國(guó)家自然科學(xué)基金項(xiàng)目(41563012),黔科合平臺(tái)人才([2018]5805),黔教合KY字([2017]032)
* 責(zé)任作者, 教授, qiuhua2002@126.com