• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep Feature Fusion Model for Sentence Semantic Matching

    2019-11-26 06:46:54XuepingPengandRuoyuZhang
    Computers Materials&Continua 2019年11期
    關(guān)鍵詞:手環(huán)香煙成語

    ,Xueping Peng and Ruoyu Zhang

    Abstract:Sentence semantic matching (SSM)is a fundamental research in solving natural language processing tasks such as question answering and machine translation.The latest SSM research benefits from deep learning techniques by incorporating attention mechanism to semantically match given sentences.However,how to fully capture the semantic context without losing significant features for sentence encoding is still a challenge.To address this challenge,we propose a deep feature fusion model and integrate it into the most popular deep learning architecture for sentence matching task.The integrated architecture mainly consists of embedding layer,deep feature fusion layer,matching layer and prediction layer.In addition,we also compare the commonly used loss function,and propose a novel hybrid loss function integrating MSE and cross entropy together,considering confidence interval and threshold setting to preserve the indistinguishable instances in training process.To evaluate our model performance,we experiment on two real world public data sets:LCQMC and Quora.The experiment results demonstrate that our model outperforms the most existing advanced deep learning models for sentence matching,benefited from our enhanced loss function and deep feature fusion model for capturing semantic context.

    Keywords:Natural language processing,semantic matching,deep learning.

    1 Introduction

    Sentence semantic matching (SSM)is a fundamental research in many natural language processing tasks,such as Natural Language Inference [Mueller and Thyagarajan (2016);Liu,Sun,Lin et al.(2016);Wang,Hamza and Florian (2017);Gong,Luo and Zhang(2017)],Question Answering(QA)[Qiu and Huang (2015);Tan,Santos,Xiang et al.(2015);Zhang,Zhang,Wang et al.(2017)] and Machine Translation [Bahdanau,Cho and Bengio (2014)].For example,a frequently answered question (FAQ)based QA system often organises question-answer pairs into tuples (qi,ai)first,then try to figure out which question in question-answer pairs is the most semantically similar question to the given query sentence by SSM algorithms.Say(qi,ai)is the optimal matched questionanswer pair,the answer sentenceawill be the target answer sentence for the FAQ based QA system.

    Last decade has been witnessing an amazingly increasing development of deep learning,many academic and industry giants have put a lot of effort for innovative deep learning models and applications.No doubt many NLP research tasks like SSM benefit a lot from innovative deep learning models as well.In deep learning based NLP direction,most research focus on sentence encoding to have better sentence feature vectors and better feature interaction matching [Kim (2014);Mou,Peng,Li et al.(2015);Mueller and Thyagarajan (2016)].Let us take the most two popular deep learning model sets Convolutional neural networks (CNNs)and Recurrent neural networks (RNNs)as examples to detail a bit further.CNNs have been widely applied in QA [Qiu and Huang(2015);Zhang,Zhang,Wang et al.(2017)]] and text classification tasks [Kim (2014);Conneau,Schwenk,Barrault et al.(2016)].CNN is very advantageous on extracting sequence features and sentence encoding [Blunsom,Grefenstette and Kalchbrenner(2014);Hu,Lu,Li et al.(2014);Yin and Schütze (2015);Zhang,Zhang,Wang et al.(2017);Bai,Kolter and Koltun (2018)].RNNs are time-aware sequential deep learning model set,being able to transmit neural unit values from previous time states to the current neural units to optimise feature weights.RNN’s memory function is advantageous for handing contextual sequential data.Obviously,textual sentence can be considered as words sequence,where RNNs can be easily applied to address textual tasks.In short,RNNs are excellent for sentence encoding through sequential data modelling [Hochreiter and Schmidhuber (1997);Gers and Schmidhuber (2000);Cho,Van Merri?nboer,Gulcehre et al.(2014);Jozefowicz,Zaremba and Sutskever (2015);Tan,Santos,Xiang et al.(2015);Greff,Srivastava,Koutník et al.(2017)].However,both CNNs and RNNs models cannot fully capture all features in the feature extraction or encoding process.This feature loss problem will further cause semantic context loss in understanding language semantics for very long sentences.

    In order to solve the semantic information loss problem,and to remember the key semantic context much better in understanding textual sentences,attention mechanisms have been incorporated to NLP research area.It has already been proved that attention mechanism can greatly contribute to neural network based machine translation[Bahdanau,Cho and Bengio (2014)] and sequence encoding [Yin,Schütze,Xiang et al.(2015);Yang,Yang,Dyer et al.(2016);Lin,Shen,Liu et al.(2016);Wang,Hamza and Florian (2017);Gong,Luo and Zhang (2017);Kim,Hong,Kang et al.(2018)] through better semantic context rememberance machanism.

    Considering the excellent semantic context capturing of attention machanism,our work follows this research stream and proposes a hybrid approach named deep feature fusion model to further memorize semantic features.Our hybrid deep feature fusion model consists of multiple separate sequence encoding approaches and an aggregation component to integrate different encoding outcomes.Another motivation is to design an innovative loss function to prevent over-fitting issue which is a must in modelling.In the most existing deep learning applications,cross entropy is so commonly used as loss function to train models.This approach sourcing from maximum likelihood estimation is very likely to categorize as 0 or 1 even with input noise,which could cause over-fitting issue.However,to our best knowledge,there is very little work on designing new loss functions.This paper also contributes a new alternative loss function incorporating confidence interval and threshold setting.

    The main contributions are summarized as follows:

    ●We proposed a novel sentence encoding method named deep feature fusion to better capture semantic context via the integration of multiple sequence encoding approaches.

    ●We integrated the deep feature fusion approach into the most popular deep learning architecture for sentence matching task.The new architecture mainly consists of embedding layer,deep feature fusion layer,matching layer and prediction layer.

    ●We proposed a new loss function considering confidence interval and threshold setting,which preserves the loss caused by fuzzy instances and focus more on indistinguishable instances.

    ●We evaluated our approach on the common Chinese semantic matching corpus LCQMC,and the public English semantic matching corpus Quora.The results demonstrated that our approach outperforms other public advanced models on LCQMC and won the second place on Quora corpus,which really proved the superiority of our proposed method.

    ●We also open sourced our models in GitHub4https://github.com/XuZhangp/Work2019_DFF_SSMto benefit the whole NLP community,see footnote for your reference.

    The rest of the paper is structured as follows.We introduce the related work about sentence semantic matching in Section 2,and propose our new deep feature fusion model and architecture in Section 3.Section 4 demonstrated the empirical experimental results,followed by the conclusion in Section 5.

    2 Related work

    Sentence pair modeling has received extensive attention in the last decade.Many complex natural language processing tasks can be simplified into sentence semantic matching tasks.For example,information retrieval is to match query terms to documents,QA system is to match the query sentence to the given questions within question-answer pairs.

    Probably a decade ago,SSM research mainly focused on latent semantic analysis and basic syntactic similarity calculation [Das and Smith (2009);Surdeanu,Ciaramita and Zaragoza (2011);B?r,Biemann,Gurevych et al.(2012);Meng,Lu,Zhang et al.(2018);Lu,Wu,Jian et al.(2018)].With the advent of more competitive deep learning techniques,a lot more attention also turned to deep learning based SSM [Zhang,Lu,Ou et al.(2019)].For example,deep structured semantic models [Huang,He,Gao et al.(2013)] and siamese networks [Mueller and Thyagarajan (2016)] simply encoded two sentences via a fully connected CNN or RNN,then calculated sentence matching similarity without considering the local phrase structure existing in the sentence.Further that,Wan et al.proposed BiLSTM to encode the query sentence and the candidate sentence,then calculated if LSTM's hidden layer output matched or not.BiLSTM contributed significantly to SSM research area,because of its capable of handling temporal relationships between sentences,capturing long-term word dependencies,and examining the meaning of each word in different contexts [Wan,Lan,Guo et al.(2016)].Pang et al.constructed three superposition matching matrices to consider the word-word relationship between sentences.Similar to image application,CNN is then applied to extract significant features from these matching matrices [Pang,Lan,Guo et al.(2016)].To further retain long-term context,Bai et al.proposed a Temporal Convolutional Network (TCN)[Bai,Kolter and Koltun (2018)].Experiments showed that TCN based sentence encoding cannot only memorize long-term context more realistically,but also outperforms LSTM [Hochreiter and Schmidhuber (1997)].

    To further improve matching performance,interactive mechanism like attention emerges to mine the connections between different words in sentences using a more elaborate structure.For example,Wang et al.applied four different methods to consider the interaction between sentences [Wang,Hamza and Florian (2017)] with the idea of sequential sentences shouldn't only be considered as one direction.Tomar et al.modified the input representation of the decomposed attention model,using n-gram character embedding instead of word embedding.They then pre-trained all model parameters on Paralex [Fader,Zettlemoyer and Etzioni (2013)],a noisy auto-collected corpus of problem definitions,and fine-tuned the parameters on the Quora dataset [Tomar,Duque,T?ckstr?m et al.(2017)].Gong et al.proposed a complex deep neural network [Gong,Luo and Zhang (2017)] to consider the interactions between different words in the same sentence and to retain the original features through DenseNet [Huang,Liu,Van Der Maaten et al.(2017)] model.Kim et al.proposed a closely connected common attention RNN,which preserves the original information from the lowest level to the highest level.In each block of the stacked RNN,the interaction between two sentences is achieved through common attention.Because stacked RNN rapidly increases the number of arguments,autocoder [Kim,Hong,Kang et al.(2018)] has also been used to compress them.Subramanian et al.tried to combine different sentence representations of learning objectives into a single multi-task framework [Subramanian,Trischler,Bengio et al.(2018)].

    Although the above deep learning models have already achieved good performance on sentence encoding,there are still two challenges to be addressed.First,the common RNN or CNN methods still have the problem of capturing long-term context.Second,attention mechanism and multi-granularity matching strategy might lose features in the sentence encoding process.As for the above challenges,our proposed deep feature fusion model and extended deep learning architecture clearly demonstrated absolute advantages in sentence encoding.

    3 Deep feature fusion model

    This Section is mainly to detail our proposed deep feature fusion model,starting from introducing the model architecture,followed by sub-modules of the model architecture including embedding layer,deep feature fusion layer,matching layer,prediction layer and the improved loss function.

    Figure1:Model architecture of sentence matching

    3.1 Model architecture

    We first introduce the model architecture in Fig.1.As seen,this model architecture includes multiple connected layers such as embedding layer,deep feature fusion layer,matching layer and prediction layer.Given input sentences,we first embed words and phrases through embedding layer,then transit the output of embedding layer to deep feature fusion layer to extract and hybrid semantic features.This feature fusion layer is our key contribution module to improve the semantic encoding performance.After semantic feature extraction,the encoding output of the deep feature fusion module will input to matching layer,followed by a decoding process in the prediction layer via sigmoid function.

    3.2 Embedding layer

    This embedding layer converts tokens such as words or phrases into embedding vectors first,then constructs a sentence matrix representation out of the word and phrase embedding vectors.Basically,multiple embedding approaches,for example pre-trained word embeddings corpus,can be applied to map tokens (words and phrase)to embedded vectors.For the experiments on LCQMC,we use word and character embedding approach to embed tokens by randomly initializing the word (character)vector.For Quora,we apply pre-trained 300 dimensions word embedding vectors from Glove[Pennington,Socher and Manning (2014)] to map sentence tokens to high-dimensional embedding vectors.

    3.3 Deep feature fusion layer

    This architecture includes a key encoding process named deep feature fusion as shown in Fig.2.This deep feature fusion process starts from injecting the embedding matrix out of the embedding layer.Actually,the output of embedding layer for SSM task consists of two token embedding vectors,i.e.,P= [ p1,…,pM]andQ= [q1,…,qM],representing the given two sentences to match.We then apply LSTM and Dense wrapped in Time Distribtued to encode the embedding matrix.To reach the best performance,we separately apply LSTM and Dense twice on a sentence embedding matrix.The encoding will then result in four different outputs in two categories LSTMs and Denses.

    Figure2:Deep feature fusion

    For a given sentence P,two LSTMs outputs can be calculated using Eq.(1)and Eq.(2),similarly to calculate Denses outputs through Eq.(3)and Eq.(4).

    The final step of the deep feature fusion model is to aggregate the encoding outputs together including two simple approaches:ADD and Concatenate.The ADDing approach will aggregate the results with same data structure together,Eq.(5)for LSTMs and Eq.(6)for Denses.After ADDing operation for same structure data,we then perform a concatenate operation,show in Eq.(7)to hybrid LSTM and Dense outcomes together.

    In this way,the embedding vector is further enhanced using ADDing operation within the same dimension data,and the memory semantic context is increasingly captured by concatenate operation for different dimension data.Similar to sentenceP,the same encoding methods can be applied for the matching sentenceQ.The deep feature fusion outputs w ill then be forwarded to upper matching layer.

    3.4 Matching layer

    Taking the output of the deep feature fusion layer as input,matching layer applied three different matching strategies to calculate the sim ilarity/dissim ilarity between two sentence vectorsPandQas tensors.The first one is to calculate the absolute distance between the two sentence vectors as shown in Fig.(8)5https://github.com/keras-team/keras/blob/master/keras/backend/tensorflowbackend.py.Second one is to multiply6https://github.com/keras-team/keras/blob/master/keras/layers/merge.pyvectors together using Eq.(9),the last strategy is to calculate the cosine7https://github.com/keras-team/keras/blob/master/keras/backend/tensorflowbackend.pyvalue for the two vector differences using Eq.(10).Finally,the three calculated tensorscan be forwarded to the next prediction layer.

    3.5 Prediction layer

    The prediction layer itself is a deep neural network (DNN)classifier,including multiple sub-layers to fully extract sentence matching features out of the lower matching layer.In the DNN based prediction layer,encoding and matching modules map the input to the hidden feature space.The fully connected network maps the learned distributed feature representation to the sample tag space.This prediction layer actually consists of three dense sub-layers,w ith 600 dimensions for the first two denses and 1 dimension for the last dense.Each dense layer is followed by a dropout,relu and normalization modules.Then last sub-layer dense to be classified using sigmoid activation function.

    3.6 Improved loss function

    As a popular evaluation metric,mean square error (MSE)as in Eq.(11)measures the average of the squares of the errors,that is,the average squared difference between the estimated valuesytrueand what is estimatedypred.MSE values closer to zero are better.

    As we know that the gradient of MSE loss w ill be larger when the loss value is higher.It drops as the loss approaches to zero,making it more accurate at the end of training.But one disadvantage of using MSE is that its partial derivative value is very small when the output probability value is close to zero or close to 1,which may cause the partial derivative value to almost disappear when the model first starts training.This results in a very slow rate at the beginning of the model.This issue can be partly solved by fitting theones_like8https://github.com/keras-team/keras/blob/master/keras/backend/tensorflowbackend.pydistribution as shown in Eq.(12).

    where:r> 0;[0,1]?k.

    However,cross-entropy in Eq.(13)as an alternative loss function won’t have this problem.Cross-entropy is actually a very popular loss function applied in machine learning research to measure the similarity between prediction values and the original values.In machine learning research,coupled with sigmoid function,cross-entropy is capable to solve the above MSE problem regarding the very slow learning rate when the gradient decreases,because the learning rate can be controlled by the output error.

    To avoid the over-fitting problem for training,we update the cross entropy loss function in Eq.(14)by introducing a unit step functionθ(x).

    where:

    and

    We can see thatLnewcrossentropyupdated the correction termλ(ytrue,ypred)to the common used cross entropy.For a positive sample,that meansytrue=1,obviously we will have:λ(1,ypred)=1 -θ(ytrue-m).In this situation,ifypred>m,thenλ(1,ypred)= 0,then the cross entropy is automatically 0 (to reach the minimum value).Otherwise ifypred<m,there will beλ(1,ypred)=1.So,for our proposed new cross entropy,if the positive sample is bigger than m,it won’t be updated because of reaching the minimum value.Otherwise if the sample value is smaller than m,it will be updated.Similarly,for a negative sample,if the output of the negative sample is smaller than1-m,then won’t be updated,otherwise if bigger than 1-m,will continue to update.To improve classification performance and speed up the training speed,we hybrid the MSE,modified MSE and our proposed cross entropy together as our final loss function shown in Eq.(17).

    where:n=p+q;1 -n> 0;[0,1] ?p,q,n.

    The following experiments on public data sets also demonstrated that our proposed loss function outperforms others.

    4 Experiments and results

    This Section starts with public data sets introduction,and our experiments settings to evaluate our proposed model,followed by results comparisons.

    4.1 Data sets

    We respectively evaluated our model on two public data sets,LCQMC and Quora.LCQMC is a large-scale Chinese question matching corpus released to the public by Liu et al.[Liu,Chen,Deng et al.(2018)],and Quora is one of the largest English question pair corpus released to the public by Chen et al.[Chen,Zhang,Zhang et al.(2018)].

    For LCQMC data set,we pre-process the sentences using Chinese word segmentation,because Chinese doesn’t automatically have spaces like English.For the experiments on LCQMC data set,we apply Word2vec technique [Mikolov,Chen,Corrado et al.(2013)]to train word vectors.For the experiments on data set Quora,we maintain a consistent approach similar to Wang et al.[Wang,Hamza and Florian (2017)],using pre-trained word vectors (300D Glove 840B)[Pennington,Socher and Manning (2014)].

    4.1.1 LCQMC

    LCQMC is a generic corpus mainly for intent matching,which contains a training set of 238,766 question pairs,a development set of 8,802 question pairs,and a test set of 12,500 question pairs.This data set mainly consists of two parts,a sentence pair including two sentences,and a binary matching label indicating if the two sentences matched or not.To better illustrate this data set,we randomly select a few examples as shown in Tab.1.From these example sentence pairs,we can clearly see that the two matched sentences should be similar semantically.

    Table1:LCQMC corpus examples

    S4:一只蜜蜂停在日歷上(猜一成語)EN:A bee sits on a calendar (Guess an idiom)S5:一盒香煙不拆開 能存放多久?EN:How long can be stored that a box of cigarettes without being opened?S6:一條沒拆封的香煙能存放多久。EN:How long can be stored that a cigarette unopened.S7:什么是智能手環(huán)EN:What is a smart bracelet?S8:智能手環(huán)有什么用EN:What is the use of smart bracelet?YES NO

    4.1.2 Quora

    The Quora corpus contains over 400,000 question pairs,and each question pair is annotated with a binary label indicating whether the two questions are paraphrase of each other.To better understand the data set,we also randomly choose some examples shown in Tab.2

    Table2:Quora corpus examples

    4.2 Experiments setting

    To reproduce the experimental outcomes,here is how we set up the experiments.In the embedding layer,the embedding dimension is set to 300.In the deep feature fusion module we set dimension to 300.In the prediction layer,the widths of the three dense layers are 600,600 and 1.Dropout in deep feature fusion layer is 0.1 and in prediction layer is 0.5.Both of the deep feature fusion and prediction layer use relu as the activation function,except the last dense applies sigmoid function for classification.We also tested different parameter combinations for loss function,here is the optimal parameter values for the two data sets.For Quora,p,q are both set to 0.15 and m to 0.6.But for LCQMC,we set p,q both to 0.35 and m to 0.7.

    4.3 Proposed model variations

    ●DFFmis the baseline model.This model uses deep feature fusion to extract sentence eigenvalues,as in Section 3.3,and the interactive matching model,as Section 3.4.This model applies the MSE loss function which is shown in Eq.(11).

    ●DFFimis similar with DFFm,but with the improved MSE loss function as Eq.(12).

    ●DFFcis similar with DFFmas well,but using cross-entropy loss function as Eq.(13).

    ●DFFicis similar with DFFm,but using the improved cross-entropy loss function as Eq.(14).

    ●DFFois also similar too ,but with the hybrid version of loss function including MSE and cross-entropy as Eq.(17).

    Since LCQMC data set is a Chinese corpus,we can encode sentences from the perspective of characters and words.Therefore,each of the above five models can be further customized to two sub-models.For example,DFFmbecomes DFFmchar and DFFmword.But Quora data set is encoded only from word level.

    4.4 Experiments on LCQMC

    A comparison of our work with some of the existing work such as WMD,CBOW,CNN,BiLSTM,BiMPM Liu et al.[Liu,Chen,Deng et al.(2018)] is shown in Tab.3.Our model DFFoobviously outperforms the existing models WMD,CBOW,CNN,BiLSTM,BiMPM both on character and word levels.

    Table3:Experimental results on LCQMC

    DFFcchar DFFcword DFFicchar DFFicword DFFochar DFFoword 76.27 75.89 77.23 77.02 78.58 77.69 95.29 95.32 94.72 94.63 93.88 94.08 84.67 84.46 85.05 84.88 85.51 85.06 82.81 82.51 83.41 83.19 84.15 83.53

    4.4.1 Comparison with exiting models

    From the character level,compared with WMD,CBOW,CNN,BiLSTM and BiMPM,our best model DFFoimproves the precision metric by 11.58%,12.08%,11.48%,11.18%,0.98%,recall by 12.68%,11.08%,8.28%,2.88%,-0.02%,F1-score by 12.11%,11.71%,10.31%,8.01%,0.51%,and accuracy by 13.55%,13.55%,12.35%,10.65%,0.75%.

    We also respectively compare with models WMD,Cwo,Cngram,Dedt,Scos,CBOW,CNN,BiLSTM and BiMPM from word level.The comparison result shows that the precision is improved by 13.29%,16.59%,25.39%,31.19%,17.59%,9.79%,9.29%,7.09%,-0.01%,recall is improved by 17.28%,10.48%,4.78%,7.68%,5.38%,4.18%,9.48%,4.78%,0.58%,F1-score is improved by 14.26%,14.46%,19.06%,24.56%,13.46%,7.66%,9.36%,6.14%,0.16%,and accuracy is improved by 23.53%,12.83%,22.33%,31.23%,13.23%,9.83%,10.73%,7.43%,0.23%.

    From Tab.3,we can clearly see that our model works best at both word and character level on precision,recall,F1-score and accuracy metrics.

    4.4.2 Comparison with model variations

    In this subsection,we compare our proposed model variations with different loss functions.The models also have word and character levels.First from the character level,compared toandthe modelimproves precision by 1.64%,1.26%,2.31%,1.35%,F1-score by 0.67%,0.5%,0.84%,0.46%,accuracy by 1.09%,0.75%,1.34%,0.74%.From the word level,compared toandand the modelimproves precision by 1.86%,1.18%,1.85%,0.67%,F1-score by 0.93%,0.41%,0.6%,0.18%,accuracy by 1.32%,0.67%,1.02%,0.34%.The comparison results clearly show that the improved hybrid loss function has achieved the best performance.In addition,the outcome also shows character encoding is better than word encoding.

    4.5 Experiments on Quora

    We also evaluate our models on the Quora data set with result shown in Tab.4.We compare it with the most advanced models available today,as Tab.2.CNN,LSTM,L.D.C,BiMPM from wang et al.[Wang,Hamza and Florian (2017)],and FFNN,DECATT from Tomar et al.[Tomar,Duque,T?ckstr?m et al.(2017)],and DIIN is the work of Gong et al.[Gong,Luo and Zhang (2017)].Experimental results show that our proposed models are still competitive on the Quora data set.

    Table4:Experimental results on Quora

    5 Conclusion

    We proposed a new deep neural network based sentence matching model with great performance achievement on two public data sets LCQMC and Quora.In this model,we proposed an innovative sentence encoding structure named deep feature fusion to better capture sentence’s eigenvalues.At the mean time,we also proposed a hybrid loss function to better determine confidence interval and threshold setting for classification performance improvement.The experiments demonstrated that our proposed model outperforms the most advanced available models so far,which is contributed from the proposed deep feature fusion module.Additionally,we compared our model variations with different loss functions.The comparison outcome showed that the proposed hybrid loss function integrating MSE and cross entropy performs well on the two public data sets.

    Acknowledgement:The research work is supported by National Nature Science Foundation of China under Grant No.61502259,National Key R&D Program of China under Grant No.2018YFC0831704 and Natural Science Foundation of Shandong Province under Grant No.ZR2017MF056.

    猜你喜歡
    手環(huán)香煙成語
    愛心手環(huán)
    酷愛高檔香煙的“土地爺”
    公民與法治(2022年3期)2022-07-29 00:57:24
    抽“香煙”
    不止想念你的香煙紅唇和劉海
    南風(fēng)(2017年31期)2017-11-10 00:47:04
    拼成語
    意林(2016年21期)2016-11-30 17:32:21
    紅手環(huán)志愿者服務(wù)團歡迎您的加入
    學(xué)習(xí)監(jiān)測手環(huán)
    猜成語
    麥開:放棄智能手環(huán)
    湯姆的香煙
    熟女电影av网| 亚洲欧美精品专区久久| 欧美成人精品欧美一级黄| 国产免费一区二区三区四区乱码| 国产一区二区亚洲精品在线观看| 精品久久久久久久久av| 黑人高潮一二区| 深夜a级毛片| 久久久成人免费电影| 午夜激情久久久久久久| 在线观看三级黄色| 高清av免费在线| 一级毛片久久久久久久久女| 午夜福利视频精品| 中文乱码字字幕精品一区二区三区| 国产中年淑女户外野战色| 别揉我奶头 嗯啊视频| 大又大粗又爽又黄少妇毛片口| 国产亚洲av片在线观看秒播厂| 日韩成人伦理影院| 一级毛片黄色毛片免费观看视频| 欧美xxxx黑人xx丫x性爽| 日韩 亚洲 欧美在线| 午夜精品国产一区二区电影 | 一级片'在线观看视频| 22中文网久久字幕| 在线观看一区二区三区| 亚州av有码| 欧美日韩视频高清一区二区三区二| 最近手机中文字幕大全| 亚洲欧美一区二区三区国产| 在线 av 中文字幕| 国产精品久久久久久精品古装| 亚洲天堂国产精品一区在线| 国产精品人妻久久久久久| 看十八女毛片水多多多| 中文字幕av成人在线电影| 亚洲欧洲国产日韩| 亚洲真实伦在线观看| 91aial.com中文字幕在线观看| 亚洲av欧美aⅴ国产| 国产一区二区三区av在线| 久久99精品国语久久久| 亚洲欧美成人综合另类久久久| 一级a做视频免费观看| 成人毛片a级毛片在线播放| 亚洲欧美一区二区三区黑人 | 超碰97精品在线观看| 尤物成人国产欧美一区二区三区| 欧美变态另类bdsm刘玥| 尾随美女入室| 老司机影院毛片| 国产黄色免费在线视频| 在线观看av片永久免费下载| 黄片wwwwww| 2018国产大陆天天弄谢| 18禁在线播放成人免费| 精品久久久精品久久久| 亚洲aⅴ乱码一区二区在线播放| 丝袜美腿在线中文| 在线观看国产h片| 久久久久久久精品精品| av国产久精品久网站免费入址| 又爽又黄无遮挡网站| 国产亚洲av片在线观看秒播厂| 99久久人妻综合| 国产毛片a区久久久久| 久久亚洲国产成人精品v| 亚洲不卡免费看| 狂野欧美白嫩少妇大欣赏| 69av精品久久久久久| 免费av毛片视频| 国产爱豆传媒在线观看| 午夜福利网站1000一区二区三区| 国产黄片美女视频| 一级毛片黄色毛片免费观看视频| 国产精品一区二区在线观看99| 在线a可以看的网站| 精品酒店卫生间| 国产伦精品一区二区三区四那| 久久精品国产亚洲av天美| 久久久久国产精品人妻一区二区| 天天躁日日操中文字幕| 激情五月婷婷亚洲| 国产成人91sexporn| 搡老乐熟女国产| 精品久久久久久电影网| 交换朋友夫妻互换小说| 国产白丝娇喘喷水9色精品| 成年女人在线观看亚洲视频 | 国产女主播在线喷水免费视频网站| 99re6热这里在线精品视频| 国产精品国产av在线观看| 涩涩av久久男人的天堂| 性色av一级| 国产精品蜜桃在线观看| 国产精品国产av在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久久久a久久爽久久v久久| 亚洲在久久综合| 国产免费福利视频在线观看| 2022亚洲国产成人精品| 国产男女内射视频| 国内精品宾馆在线| 联通29元200g的流量卡| 久久久久久久久久久免费av| 国产精品福利在线免费观看| 国产国拍精品亚洲av在线观看| 一区二区三区乱码不卡18| 午夜精品国产一区二区电影 | 国产真实伦视频高清在线观看| 国产黄a三级三级三级人| 精品久久久久久久末码| 超碰97精品在线观看| 看黄色毛片网站| 国产成人精品久久久久久| 精品国产三级普通话版| 18禁在线播放成人免费| 国产黄色视频一区二区在线观看| 老女人水多毛片| 成年版毛片免费区| 精品少妇黑人巨大在线播放| 免费av不卡在线播放| 日韩欧美精品v在线| 日本猛色少妇xxxxx猛交久久| 成人无遮挡网站| 成人亚洲精品av一区二区| 免费看光身美女| 91午夜精品亚洲一区二区三区| 高清日韩中文字幕在线| 亚洲精品色激情综合| 在线观看一区二区三区| 久久久成人免费电影| a级毛片免费高清观看在线播放| 国模一区二区三区四区视频| 国产精品久久久久久精品古装| 网址你懂的国产日韩在线| 国产伦精品一区二区三区视频9| 18禁裸乳无遮挡免费网站照片| 国产色婷婷99| 蜜臀久久99精品久久宅男| 日本爱情动作片www.在线观看| 欧美高清性xxxxhd video| 九九在线视频观看精品| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线播| 国产av码专区亚洲av| 日韩av免费高清视频| 欧美日韩视频高清一区二区三区二| 国产精品伦人一区二区| 亚洲经典国产精华液单| 久久久久久国产a免费观看| 久久99热6这里只有精品| 久久久久久久久久久免费av| 亚洲av福利一区| 亚洲欧美日韩另类电影网站 | 国产黄片美女视频| 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| 午夜福利网站1000一区二区三区| 亚洲国产精品成人综合色| 老女人水多毛片| 亚洲一区二区三区欧美精品 | 色网站视频免费| 亚洲国产欧美人成| 别揉我奶头 嗯啊视频| 成人毛片60女人毛片免费| 亚洲最大成人av| 中文字幕制服av| 夜夜看夜夜爽夜夜摸| 激情五月婷婷亚洲| 亚洲天堂国产精品一区在线| 亚洲欧美日韩无卡精品| 人妻少妇偷人精品九色| 大陆偷拍与自拍| 久久久久久国产a免费观看| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 久久久久久久精品精品| 久久久精品免费免费高清| 黄片wwwwww| 好男人在线观看高清免费视频| 高清视频免费观看一区二区| 精品久久久久久电影网| 最近2019中文字幕mv第一页| 亚洲欧美日韩东京热| av又黄又爽大尺度在线免费看| 国产美女午夜福利| 精品国产一区二区三区久久久樱花 | 日日啪夜夜撸| 97热精品久久久久久| a级一级毛片免费在线观看| 精品久久久久久久久亚洲| 免费观看的影片在线观看| 国产成人午夜福利电影在线观看| 在线观看一区二区三区| 国产成人aa在线观看| 亚洲国产日韩一区二区| 国国产精品蜜臀av免费| 亚洲av不卡在线观看| 在线看a的网站| 在线观看美女被高潮喷水网站| 极品少妇高潮喷水抽搐| 亚洲精品视频女| 亚洲婷婷狠狠爱综合网| 国产伦在线观看视频一区| 久久久久久伊人网av| 国产精品99久久99久久久不卡 | 成年人午夜在线观看视频| 国产探花极品一区二区| 亚洲av福利一区| 欧美成人精品欧美一级黄| 永久免费av网站大全| 久久久久久久精品精品| 少妇的逼水好多| 亚洲国产av新网站| 超碰97精品在线观看| 国产成人精品久久久久久| 嫩草影院新地址| 久久久久久久国产电影| 亚洲,欧美,日韩| 美女被艹到高潮喷水动态| 成人免费观看视频高清| 久久99热这里只有精品18| 国产成人免费无遮挡视频| 日韩一区二区三区影片| 久热这里只有精品99| 日韩人妻高清精品专区| 亚州av有码| 免费观看的影片在线观看| 成人综合一区亚洲| 身体一侧抽搐| 在线观看三级黄色| 亚洲欧美中文字幕日韩二区| 成人综合一区亚洲| 七月丁香在线播放| 美女高潮的动态| 国产午夜福利久久久久久| 午夜亚洲福利在线播放| 免费少妇av软件| 免费观看a级毛片全部| 麻豆成人午夜福利视频| 亚洲成人av在线免费| 99九九线精品视频在线观看视频| 久久久精品免费免费高清| 少妇人妻久久综合中文| 中文字幕制服av| 亚洲精品视频女| 国产在视频线精品| 不卡视频在线观看欧美| 爱豆传媒免费全集在线观看| 亚洲精品日本国产第一区| 国产淫语在线视频| 日韩av不卡免费在线播放| 国产精品精品国产色婷婷| 国产69精品久久久久777片| a级毛色黄片| 免费观看性生交大片5| 性色av一级| 亚洲av二区三区四区| 精品国产乱码久久久久久小说| 王馨瑶露胸无遮挡在线观看| 如何舔出高潮| 午夜福利在线观看免费完整高清在| 嫩草影院精品99| 欧美成人午夜免费资源| 欧美精品一区二区大全| 欧美日韩视频高清一区二区三区二| 嘟嘟电影网在线观看| 免费av观看视频| 26uuu在线亚洲综合色| 国产老妇伦熟女老妇高清| 久久精品熟女亚洲av麻豆精品| 汤姆久久久久久久影院中文字幕| 一级二级三级毛片免费看| 国产老妇伦熟女老妇高清| 国产精品麻豆人妻色哟哟久久| 亚洲电影在线观看av| 精品午夜福利在线看| 精品一区二区三区视频在线| 精品视频人人做人人爽| 国内少妇人妻偷人精品xxx网站| 在线观看国产h片| 国产 一区 欧美 日韩| 国产一区二区在线观看日韩| 久久精品国产亚洲网站| 午夜日本视频在线| 狂野欧美激情性bbbbbb| 纵有疾风起免费观看全集完整版| 国产精品熟女久久久久浪| 女人久久www免费人成看片| 18禁在线播放成人免费| 另类亚洲欧美激情| 麻豆成人av视频| 国产成人免费观看mmmm| 亚洲av不卡在线观看| 2021天堂中文幕一二区在线观| 久久久色成人| 三级经典国产精品| 国产av国产精品国产| 免费看不卡的av| 777米奇影视久久| 精品亚洲乱码少妇综合久久| 欧美日韩精品成人综合77777| 少妇人妻精品综合一区二区| 国产永久视频网站| 国产精品一区www在线观看| 亚洲电影在线观看av| 天天躁日日操中文字幕| 人人妻人人澡人人爽人人夜夜| 视频中文字幕在线观看| 亚洲性久久影院| 国国产精品蜜臀av免费| 人妻 亚洲 视频| 五月玫瑰六月丁香| 国产高清三级在线| 五月玫瑰六月丁香| 最近最新中文字幕大全电影3| 国内揄拍国产精品人妻在线| 欧美成人精品欧美一级黄| 国产精品偷伦视频观看了| 最近2019中文字幕mv第一页| 日韩av在线免费看完整版不卡| 成年人午夜在线观看视频| 肉色欧美久久久久久久蜜桃 | 国产伦理片在线播放av一区| 国产精品爽爽va在线观看网站| 一级毛片aaaaaa免费看小| 国产精品国产三级国产av玫瑰| 成人亚洲精品av一区二区| 欧美日韩在线观看h| 国产精品一二三区在线看| 日韩人妻高清精品专区| 亚洲精品第二区| 在线观看av片永久免费下载| 51国产日韩欧美| 1000部很黄的大片| 中文乱码字字幕精品一区二区三区| 精品熟女少妇av免费看| 午夜福利视频1000在线观看| 日本免费在线观看一区| 国内精品宾馆在线| 纵有疾风起免费观看全集完整版| 乱系列少妇在线播放| 两个人的视频大全免费| av女优亚洲男人天堂| 欧美xxⅹ黑人| 国产淫片久久久久久久久| 国产免费福利视频在线观看| av女优亚洲男人天堂| av在线蜜桃| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 国产伦精品一区二区三区四那| 欧美激情国产日韩精品一区| 少妇丰满av| 日韩亚洲欧美综合| 尾随美女入室| 亚洲av福利一区| 狠狠精品人妻久久久久久综合| 日韩一本色道免费dvd| 亚洲高清免费不卡视频| 色5月婷婷丁香| 美女国产视频在线观看| 免费看av在线观看网站| 男的添女的下面高潮视频| 午夜福利视频精品| 免费看不卡的av| 七月丁香在线播放| 韩国高清视频一区二区三区| 欧美精品一区二区大全| 精品久久久精品久久久| 日韩,欧美,国产一区二区三区| 综合色av麻豆| 国产免费又黄又爽又色| 欧美xxⅹ黑人| av在线播放精品| 高清视频免费观看一区二区| 久久久精品94久久精品| 成人综合一区亚洲| 99热网站在线观看| 蜜桃亚洲精品一区二区三区| 亚洲经典国产精华液单| 视频中文字幕在线观看| 国产精品人妻久久久久久| 欧美精品国产亚洲| 老师上课跳d突然被开到最大视频| 午夜福利网站1000一区二区三区| av国产久精品久网站免费入址| 99热这里只有精品一区| 国产欧美亚洲国产| 一区二区av电影网| 欧美xxxx黑人xx丫x性爽| videos熟女内射| 免费看a级黄色片| 性插视频无遮挡在线免费观看| 美女被艹到高潮喷水动态| 男女啪啪激烈高潮av片| 18禁在线播放成人免费| 成人亚洲精品av一区二区| 高清午夜精品一区二区三区| 久久久国产一区二区| 日韩一区二区三区影片| 久久久久国产网址| 久久久久久伊人网av| 简卡轻食公司| 日韩,欧美,国产一区二区三区| 国产精品久久久久久精品电影| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 日韩伦理黄色片| 午夜福利视频1000在线观看| 久热这里只有精品99| 自拍偷自拍亚洲精品老妇| 黄色怎么调成土黄色| 国产视频内射| 欧美激情久久久久久爽电影| 亚洲国产精品专区欧美| 国产淫片久久久久久久久| 97超碰精品成人国产| 久久精品国产自在天天线| 婷婷色综合www| 欧美高清成人免费视频www| 久久久久精品久久久久真实原创| 国内精品宾馆在线| 午夜免费男女啪啪视频观看| av免费观看日本| 性色avwww在线观看| 午夜视频国产福利| 国产 一区精品| 欧美zozozo另类| 极品少妇高潮喷水抽搐| 91午夜精品亚洲一区二区三区| av国产精品久久久久影院| 真实男女啪啪啪动态图| 2022亚洲国产成人精品| 一二三四中文在线观看免费高清| 国产午夜福利久久久久久| 亚洲综合色惰| 少妇 在线观看| 国产成人精品福利久久| 777米奇影视久久| 极品少妇高潮喷水抽搐| 国产真实伦视频高清在线观看| 一区二区三区乱码不卡18| 在线播放无遮挡| 久久久久久久久大av| 午夜激情福利司机影院| 国产成人精品福利久久| 国产成人精品婷婷| 18禁动态无遮挡网站| 日本黄大片高清| 在线观看国产h片| 日日啪夜夜爽| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 欧美成人午夜免费资源| 国产免费一级a男人的天堂| 舔av片在线| 日本一本二区三区精品| 亚洲欧美日韩无卡精品| 亚洲精品日本国产第一区| 国产欧美亚洲国产| 亚洲内射少妇av| 成年av动漫网址| 亚洲av欧美aⅴ国产| 青青草视频在线视频观看| 国产在线一区二区三区精| 亚洲精品视频女| 大片免费播放器 马上看| 免费av观看视频| 国产成人91sexporn| 亚洲精品第二区| 国产男女超爽视频在线观看| 一级毛片电影观看| 尤物成人国产欧美一区二区三区| 国产精品偷伦视频观看了| 2021少妇久久久久久久久久久| 色综合色国产| 夫妻午夜视频| 久久精品国产a三级三级三级| 亚洲av国产av综合av卡| 好男人视频免费观看在线| 日日摸夜夜添夜夜添av毛片| 国产精品一及| 性色av一级| 身体一侧抽搐| 欧美成人a在线观看| 熟女av电影| 大码成人一级视频| 欧美日韩亚洲高清精品| 男的添女的下面高潮视频| 欧美xxxx黑人xx丫x性爽| 国产伦理片在线播放av一区| 18禁裸乳无遮挡动漫免费视频 | 麻豆成人av视频| 啦啦啦在线观看免费高清www| 成年av动漫网址| 国产亚洲5aaaaa淫片| 免费观看的影片在线观看| 精品酒店卫生间| 国产精品精品国产色婷婷| 亚洲在线观看片| 男女下面进入的视频免费午夜| 99热6这里只有精品| 日本-黄色视频高清免费观看| 女人十人毛片免费观看3o分钟| 国产又色又爽无遮挡免| 国产一区亚洲一区在线观看| 女的被弄到高潮叫床怎么办| www.色视频.com| 亚洲av免费高清在线观看| 亚洲成色77777| 欧美日韩视频高清一区二区三区二| 男女无遮挡免费网站观看| 日韩不卡一区二区三区视频在线| 最近的中文字幕免费完整| 日本免费在线观看一区| 欧美激情在线99| 国产高清三级在线| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久久性| 久久热精品热| 在线 av 中文字幕| 夜夜看夜夜爽夜夜摸| 欧美另类一区| 免费少妇av软件| av免费在线看不卡| 成人亚洲精品av一区二区| 蜜臀久久99精品久久宅男| 人妻少妇偷人精品九色| 永久网站在线| 18禁在线播放成人免费| 少妇的逼水好多| 国产黄a三级三级三级人| videos熟女内射| 一区二区av电影网| 成年免费大片在线观看| 成年女人看的毛片在线观看| 禁无遮挡网站| 寂寞人妻少妇视频99o| 国产人妻一区二区三区在| 国产永久视频网站| 人妻系列 视频| 亚洲天堂av无毛| 亚洲av不卡在线观看| 日本wwww免费看| 丝袜喷水一区| 亚州av有码| 99久久精品一区二区三区| 舔av片在线| 久久鲁丝午夜福利片| 91精品伊人久久大香线蕉| 夫妻性生交免费视频一级片| 高清欧美精品videossex| 亚洲av日韩在线播放| 51国产日韩欧美| 久久99精品国语久久久| 亚洲av不卡在线观看| 美女国产视频在线观看| 黄色欧美视频在线观看| 国产av不卡久久| 国产免费又黄又爽又色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲一区二区精品| av播播在线观看一区| 国产69精品久久久久777片| 成人黄色视频免费在线看| 99热这里只有精品一区| 亚洲av成人精品一二三区| 久久久久久久久久久丰满| 菩萨蛮人人尽说江南好唐韦庄| 在线观看人妻少妇| 成人特级av手机在线观看| 青春草视频在线免费观看| 成人国产av品久久久| 久久久久久久大尺度免费视频| 久久国产乱子免费精品| 日本黄色片子视频| 亚洲欧美精品专区久久| 久久精品久久久久久久性| 街头女战士在线观看网站| 干丝袜人妻中文字幕| 黄片无遮挡物在线观看| 国产精品久久久久久精品古装| 日本色播在线视频| 美女视频免费永久观看网站| 亚洲自拍偷在线| 中国国产av一级| 日日摸夜夜添夜夜添av毛片| 国产视频首页在线观看| 看黄色毛片网站| 国产精品精品国产色婷婷| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品456在线播放app| 欧美日韩在线观看h| 欧美成人精品欧美一级黄| 26uuu在线亚洲综合色| 久久久久久久国产电影| 亚洲av成人精品一二三区| 久久精品国产鲁丝片午夜精品| 亚洲av男天堂| 国产精品麻豆人妻色哟哟久久| 国产一区亚洲一区在线观看| 亚洲三级黄色毛片| 丰满乱子伦码专区| 欧美老熟妇乱子伦牲交| 欧美一区二区亚洲| 九草在线视频观看| 成人无遮挡网站| 寂寞人妻少妇视频99o| 精品人妻熟女av久视频| 亚洲av国产av综合av卡| 国产精品久久久久久精品古装| 3wmmmm亚洲av在线观看|