• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Texture Feature Extraction Method for Ground Nephogram Based on Contourlet and the Power Spectrum Analysis Algorithm

    2019-11-26 06:47:36XiaoyingChenShijunZhaoXiaoleiWangXuejinSunJingFengandNanYe
    Computers Materials&Continua 2019年11期

    Xiaoying Chen,Shijun ZhaoXiaolei WangXuejin SunJing Feng and Nan Ye

    Abstract:It is important to extract texture feature from the ground-base cloud image for cloud type automatic detection.In this paper,a new method is presented to capture the contour edge,texture and geometric structure of cloud images by using Contourlet and the power spectrum analysis algorithm.More abundant texture information is extracted.Cloud images can be obtained a multiscale and multidirection decomposition.The coefficient matrix from Contourlet transform of ground nephogram is calculated.The energy,mean and variance characteristics calculated from coefficient matrix are composed of the feature information.The frequency information of the data series from the feature vector values is obtained by the power spectrum analysis.Then Support Vector Machines (SVM)classifier is used to classify according to the frequency information of the trend graph of data series.It is shown that altocumulus and stratus with different texture frequencies can be effectively recognized and further subdivided the types of clouds.

    Keywords:Ground nephogram,super-wavelet,Contourlet,the power spectrum.

    1 Introduction

    Automated ground nephogram recognition using computers has been attempted but remains a challenging issue,because of the ever-changing shape of clouds [Chen,Song,Li et al.(2014);Hu,Yan,Xia et al.(2017)].Image recognition is a hot research topic in the scientific community and industry [Wei,Zhang,Victor et al.(2018)].The performance relies on features extraction of image.Cloud texture information is exceedingly rich and relatively stable.However,the frequency information of most different clouds varies greatly,such as stratusand cirrocumulus.It is an effective image recognition method to analyze texture in spatial frequency domain by imitating human visual system.Similar to the human visual perception system,this method can automatically decompose an observing image into separate frequency and direction components [Shan,Hu and Li (2007)].

    In this paper,a method is presented to more effectively capture the edge contour and the geometric structure of nephogram.More abundant texture information can be extracted.The classification algorithm based on Contourlet and power spectrum is represented to classify cloud types from the ground nephogram.In addition,a test run of random images is presented,which outperforms existing algorithms by yielding a higher success rate.

    2 Wavelet analysis

    Wavelet analysis [Mallat (1989)] has been used in a wide variety of applications in signal and image processing,such as image compression,edge detection,image filtering,feature extraction,solving fractal index,etc.

    The progenitor of wavelet analysis is Fourier analysis.Wavelet analysis is local analysis in the time domain and frequency domain,which represents the signal property using combination of the time domain and frequency domain.It is more superior to Fourier transform and Gabor transform.

    Wavelet analysis is the approximation of a square integrable function,ψ(t)∈L2(R).It can be expressed as follows:

    whereψ(t)is basic wavelet or mother wavelet.

    Thenψa,b(t)can be obtained forψ(t)by the expansion and translation operations:

    The functionψa,b(t)is the wavelet basis function which is generated by the basic waveletψ(t),ais expansion coefficients,bis translation coefficients.

    Wavelet Transform [Chen (2002)] is a convolution operation of the original signal and the wavelet function of scale expansion.InL2(R)space,the wavelet transform of base waveletψ(t)under the condition of any square integrable functionf(t)is constructed using

    where,ais expansion coefficients,bis translation coefficients.

    Therefore,the wavelet transform off(t)can reflect the overall information off(t)from the whole to the details by calculating expansion coefficientsa.It can also move the wavelet function on the time axis by translation coefficientsb,so that the wavelet basis function can be moved to any position.

    Further,the inversion formula can be obtained using

    3 Super-wavelets analysis based on Contourlet

    Super-wavelets [Yan (2008)] refers to the oversize space of wavelet.It is a new signal analysis and sparse signal expression method based on wavelet analysis.This method has preferable advantages over wavelet in signal multiplicity cases [Li and Wang (2007)] and is widely applied in data compression,signal de-noising,image analysis,speech signal processing,video processing [Shukla and Maury (2018)].

    The wavelet can provide excellent representation for one-dimensional piecewise smooth signals.However,when dealing with multi-dimensionalsignal with “l(fā)ine singularity” [Lu(2011)],the separable wavelet bases of wavelet transform have only several limited directions for image texture with the strong direction transformation.Some researchers try to find better method which takes advantages of the sparse representation tool of structured data than wavelet analysis.A series of methods for super-wavelets analysis is proposed.It is also called the multiscale geometric analysis which include Curvelet,Ridgelet,Contourlet,Bandelet,Wedgelet,Beamlet,and Surfacelet transform.The generation of the super-wavelets meets the requirements of the human visual cortex for image locality,directionality and multi-scale.In 2000,super-wavelets complete definition was presented [Han and Larson (2000)].In 2002,Do and Vetterli proposed Contourlet Transform (Tower Direction Filter Group),which is a two-dimensional representation of image [Do and Vetterli (2002)].This method not only inherits the anisotropic scale of Curvelet Transform,but also grasps well the geometric structure of image with flexible,changeable,multi resolution,local and directional.

    Contourlet transform [Gao (2011)] is used to approximate the image using a basic structure similar to contour segments.The support interval of Contourlet transformation is a “l(fā)ong strip” structure.It can vary with the aspect ratio of scale and can be transformed by direction analysis and multiscale analysis respectively.Therefore,it has both directivity and anisotropy.Ordinary two-dimensional wavelet is constructed by tensor product of one-dimensional wavelet.Its basis is neither direction nor anisotropic.The effect of direction information such as edge and texture can be more realistically represented by Contourlet Transform than that of two-dimensional wavelet transform.It is more effective in capturing the smooth contours and geometric structure [Xiao (2012)].Firstly,Contourlet Transform is a multi-scale analysis based on Laplacian Pyramid decomposition (LP)to deal with the singular points of different scale.Then,directional filter banks (DFB)are used to connect singular points of the same scale into lines.Thus,the multiscale and multi-direction image decomposition is completed.

    3.1 Laplasse Pyramid transformation

    The image is firstly decomposed into different frequency subband using Laplasse Pyramid [Do and Vetterli (2001)],that is,frequency division processing may be used.Laplasse Pyramid is comprised of low-pass filtering and down sampling.Laplacian pyramid decomposition of each layer obtains a low-frequency approximate signal by low-pass filtering and down-sampling decomposition.Then the difference,filtering and smoothing of the signal is utilized to make the difference between the result and the original image signal,and the high frequency signal is obtained.The multi-scale decomposition is achieved by cyclic iteration.The reconstructed structure of LP is an optimal linear reconstructed structure with time-doubled frame operators [Xiao (2012)].

    3.2 Directional filter transformation

    In Contourlet Transform,diamond filter [Bamberger and Smith (1992)] and sector filter[Do (2001)] are used to realize directional filtering.Bamberger and Smith proposed a method to construct two-dimensional filter banks using diamond type non-separable filters banks [Bamberger and Smith (1992)].It has good directionality and reconfiguration.However,diamond filter is gradually replaced by sector filter because of its complexity and difficulty in implementation.Modulation of the input signal can be avoided by using sector filter for multi-scale.Do and Vetterli proposed an improved DFB structure,including the two-channel quincunx filter bank and the shearing operation two building blocks [Do and Vetterli (2005)].

    DFB combines shearing operators together with two-direction partition of quincunx filter at each node in a binary tree-structured filter bank to obtain the desired 2-D spectrum division.The two-dimensional frequency plane is divided into wedge-shaped structures with directivity [Wang (2011)].

    3.3 Contourlet decomposition

    Coutourlet Transform combines Laplacian pyramid (LP)and the directional filter bank(DFB).The frequency division processing ability and the capability of capturing the high frequency of the input image are synthesized.It can efficiently represent the characteristics of multiresolution,multidirection and localization of images.

    Contourlet Transform can select appropriate parameters according tothe texture characteristics of the image contrast with wavelet transform.Directional subbands that can be flexibly decomposed at each chosen scale.By contrast,the wavelet transform can only decompose four directional subbands at each scale.Both transformations are just an iterative process and the Contourlet transformation program can be implemented recursively.Contourlet Transform coefficients are one-dimensional vector.The values of the elements in the vector represent the decomposition parameters of a pyramid filter bank.The number of elements in the vector is the scale parameter decomposition.If the value of an element in the vector isi,it means that in this Laplacian pyramid decomposition,the number of decomposition layers is2i.The subband is divided into 2idirection.If the directional subband number of pyramid filter bank decomposition is 0 on a certain scale,the program uses the Wavelet Transform to obtain high-frequency information and low-frequency part information in vertical,horizontal and diagonal directions.In MATLAB program,such as preferences nlevels=[3,3,3],indicating that a three Laplacian pyramid decomposition.The image is divided into three scales and processed.The low-frequency information and high-frequency information of each scale are obtained.Each scale has exploded eight directions.

    Contourlet wavelet is superior to the traditional two-dimensional wavelet transform.In this paper,this method is used to the feature extraction of ground-based cloud images.

    4 Texture feature extraction Algorithm of ground nephogram based on Contourlet and power spectrum

    4.1 Texture feature extraction

    In this paper,the image can be decomposed flexible multi-scale and multi-directional by the Contourlet Transform.The transform coefficients contain a lot of texture information.The feature vector is extracted from the coefficients of nephogram samples by the Contourlet Transform.The feature information in the coefficient is preserved to distinguish from other kinds of nephogram.The coefficients transformed by Contourlet are represented as eigenvectors.

    Specific steps to realize this algorithm are as follows:

    Contourlet decomposition.First,the cloud images were intercepted into 256×256 pixels of nephogram samples,then Contourlet Transform is performed.According to the transformation rules,the coefficients contain several subbands.Contourlet transform of several nephogram with nlevels=[3,3,3] is shown in Fig.1.

    Figure1:(a0),(b0),(c0)for the sample cumulus humilis 1,cumulus humilis 3,altocumulus 7;(a1),(b1),(c1)is corresponding Contourlet decomposition image with nlevels=[3,3,3]

    The Contourlet transform image of sample altocumulus 7 under different parameter settings is shown in Fig.2.As can be seen from the figure,when the parameter of a layer is 0,the decomposed image of this layer is the same as that of the parameter of 2,which are all four images.

    The meaning with nlevels=[3,3,3] is to adopt three-scale Contourlet transform and each scale is decomposed into eight directions.Three scales produce 24 elements reflecting high frequency information and one element reflecting low frequency information.There are 25 elements in total.Contourlet is used to process nephogram samples,and multi-scale and multi-directional analysis of nephogram can more accurately describe the nephogram texture.

    Select the feature vector[Yang (2011)] The energy,mean and variance of each subband after Contourlet decomposition are taken as the eigenvalues,that is energy:

    means:

    Figure2:Contourlet decomposition image of altocumulus 7 at nlevels=[0,2,3,4],nlevels=[0,2],nlevels=[0,2,3],nlevels=[3,3,4]

    whereCk(x,y,i,j)is the decomposition coefficients of subband coefficient matrix in thejthdirection,iis the number of layers of Contourlet transform decomposition,andjis the number of directions.The original image isM×Nin pixels,with gray valuef(x,y),(x=1,…,M,y=1,…,N).

    4.2 Results

    Firstly,the features of ground-based cloud image samples were extracted using Contourlet algorithm in the super -wavelets method.There are 40 nephograms in each category and 400 pictures in 10 categories.The images were captured with 512×512 pixels as learning samples which contained the region of main cloud texture.The Contourlet algorithm was written by using the MATLAB tools.Nephogram features were extracted and classified by support vector machine (SVM).

    Nephogram feature extraction process is defined as follows:

    1)First,the observers are asked to artificially judge the type of cloud image.The cloud images are classified manually and the cloud image database is established.Then the clouds divided class will be captured with 512×512 pixels.

    2)20 samples of each category clouds were selected as learning samples.Another 20 samples are used as predicting samples.

    3)Contourlet transform is applied to all samples to obtain Contourlet transform coefficients.

    4)The characteristics vectors such as energy,mean and variance were calculated by Contourlet Transform coefficients for each sample.

    When the nephogram samples were decomposed using Contourlet transform,the DFB parameters were selected as nlevels=[3,3,3].The image is filtered by a filter bank consisting of a frequency and four directions.Each kind of sample cloud image is a feature sample.After the Contourlet transform of class image,the Contourlet coefficient matrix in 3 layers and eight directions is calculated.The features such as energy,mean and variance of each coefficient matrix were extracted as the attribute value with 72 eigenvalues.These 72 eigenvectors were written as training text and predictive text according to a fixed input format,and then the training and the predicting are performed.The feature extraction of stratus and altocumulus is taken as an example to illustrate the feature extraction method.Several 256×256 pixels stratus samples and altocumulus samples were selected as learning samples.An eigenvector with 72 eigenvalues for each sample is calculated.And then some additional stratus and altocumulus samples were selected to calculate the feature vectors using the same method.Finally,the classification method of support vector machine is used to classify cloud.It is found that the classification effect is not satisfactory.Therefore,the feature vector for each sample are analyzed to find ways to extract more suitable feature values.The feature vector data with 72-dimensional row vector of a stratus sample is selected.The trend graph of data series from the feature vector values which is calculated based on the coefficient matrix Contourlet Transform are shown in Fig.3.The position of the data onto the array is used as the abscissa in Fig.3.The ordinate is the size of each element of the feature vector values.

    Figure3:The change of Contourlet coefficient of one of stratus

    Then an altocumulus sample is selected.The trend map is also shown in Fig.4.It is found that the frequency change of stratus samples is small and the trend is relatively gentle.However,the frequency change of altocumulus samples varies greatly and the trend is more intense.In order to find out the general rule,the trend maps of the characteristic vectors of all the learning samples of stratus and altocumulus are shown in Fig.5.Although the variation of amplitude is quite different in the trend map of characteristic vectors of altocumulus samples,the frequency of variation is relatively close.The location of the frequency extreme is very close.There are many sharp peaks and troughs.In the trend map of the characteristic vectors of stratus samples,the frequency of change is similar and the data change is mainly in a gentle step shape.

    To further extract information from these features effectively,the power spectrum distribution of the data sequence is calculated for these features.Fig.6 shows the power spectrum distribution of the Contourlet coefficient characteristic associated with a sample of stratus.Fig.7 shows the power spectrum distribution of the Contourlet coefficient characteristic associated with a sample of altocumulus.it can be seen from Fig.6 and Fig.7 that there is only one relatively large peak at low frequency stage and no peak at high frequency stage in the power spectrum distribution of stratus samples (Fig.6).With the increase of frequency,the trend of oscillation become smaller.There is more than one relatively large peak in the low frequency stage and also a large peak in the high frequency stage for the power spectrum distribution of altocumulus samples (Fig.7).

    Figure4:Changes in the Contourlet coefficient of one of the altocumulus clouds

    Figure5:Changes of Contourlet coefficient in ten stratus and ten altocumulus samples

    Figure6:The power variation characteristics of Contourlet coefficient of the sample volume stratus spectrum

    Figure7:Power spectrum change of Contourlet coefficient eigenvalue of one of the altocumulus samples

    These features could be found during analyzing twenty learning samples of cloud image.Therefore,extracting the frequency information of the Contourlet coefficient with each cloud image can be effectively classified altocumulus and stratus with different texture frequencies.

    Finally,Support Vector Machine (SVM)classifier is used to train and predict cloud image samples.According to the above analysis,40 cloud images samples were identified and the experimental results of classification are shown in Tab.1.

    Table1:Cloud classification confusion matrix

    Compare with wavelet transform,Contourlet can provide a flexible multiscale and directional decomposition for images and better description of the image edge information.The experimental results show that the extraction algorithm based on Contourlet and power spectrum for cloud image is effective.

    5 Conclusions

    In this paper,a ground nephogram feature extraction algorithm based on Contourlet and power spectrum is presented.The ground-based cloud images are decomposed by Contourlet transform.The feature information includes in the energy,mean and variance characteristics calculated from coefficient matrix.The frequency information of data series is obtained by the power spectrum analysis.Then Support Vector Machines (SVM)classifier is used to train and predict cloud image samples.The experimental results showed that this method can effectively capture the cloud edge contour and texture geometry features and improve the recognition rate of typical clouds from ground nephograms.

    Acknowledgement:Project supported by the National Natural Science Foundation of China (Grant Nos.41775165,41305137,41706109,41475022).

    国产一区二区在线av高清观看| 久久伊人香网站| 一区二区三区四区激情视频 | 可以在线观看毛片的网站| 嫁个100分男人电影在线观看| av欧美777| 精品一区二区三区视频在线观看免费| 九色国产91popny在线| 成年人黄色毛片网站| 国产黄色小视频在线观看| 无遮挡黄片免费观看| 成人国产综合亚洲| 男女那种视频在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲av免费高清在线观看| 国产高清视频在线观看网站| 国产乱人伦免费视频| 亚洲精品456在线播放app | 在线a可以看的网站| 女人被狂操c到高潮| 欧美zozozo另类| 欧美午夜高清在线| 亚洲经典国产精华液单 | 在线十欧美十亚洲十日本专区| 国产人妻一区二区三区在| 女人十人毛片免费观看3o分钟| 在线观看一区二区三区| 白带黄色成豆腐渣| 内地一区二区视频在线| 好男人在线观看高清免费视频| 丰满人妻一区二区三区视频av| 国产爱豆传媒在线观看| 成人国产综合亚洲| 又黄又爽又刺激的免费视频.| 麻豆国产av国片精品| 中文字幕熟女人妻在线| 亚洲精品成人久久久久久| h日本视频在线播放| 欧洲精品卡2卡3卡4卡5卡区| 日韩av在线大香蕉| 亚洲 国产 在线| 亚洲一区二区三区不卡视频| 首页视频小说图片口味搜索| 欧美zozozo另类| 久久久久久久久大av| 亚洲 国产 在线| 一本综合久久免费| 最近最新中文字幕大全电影3| 91在线精品国自产拍蜜月| 国产精品一及| 人人妻人人澡欧美一区二区| 在线观看免费视频日本深夜| 夜夜躁狠狠躁天天躁| 极品教师在线视频| 一进一出抽搐动态| 成人无遮挡网站| 舔av片在线| 久久久成人免费电影| 好男人电影高清在线观看| 国产精品98久久久久久宅男小说| av在线老鸭窝| 中出人妻视频一区二区| 日韩高清综合在线| 一级毛片久久久久久久久女| 丰满人妻一区二区三区视频av| 不卡一级毛片| 欧美激情国产日韩精品一区| 精品久久久久久久久久免费视频| 岛国在线免费视频观看| 欧美区成人在线视频| 国产熟女xx| 色综合欧美亚洲国产小说| 91在线精品国自产拍蜜月| 亚洲av免费在线观看| 91av网一区二区| 久久久久亚洲av毛片大全| 99视频精品全部免费 在线| 两个人的视频大全免费| 啦啦啦韩国在线观看视频| 啪啪无遮挡十八禁网站| 哪里可以看免费的av片| 亚洲成人中文字幕在线播放| 欧美日韩瑟瑟在线播放| 老司机午夜十八禁免费视频| 男女视频在线观看网站免费| 天美传媒精品一区二区| 女生性感内裤真人,穿戴方法视频| 最新中文字幕久久久久| 亚洲国产精品999在线| 又粗又爽又猛毛片免费看| 国产精品亚洲一级av第二区| 亚洲欧美日韩高清在线视频| 夜夜夜夜夜久久久久| 在线免费观看不下载黄p国产 | 噜噜噜噜噜久久久久久91| 久久久久久国产a免费观看| 国产精品免费一区二区三区在线| 国产精品久久久久久亚洲av鲁大| 国产视频一区二区在线看| 成人高潮视频无遮挡免费网站| 成人一区二区视频在线观看| 夜夜躁狠狠躁天天躁| 国产av一区在线观看免费| 欧美中文日本在线观看视频| 1024手机看黄色片| 91在线精品国自产拍蜜月| or卡值多少钱| 露出奶头的视频| 亚洲国产欧美人成| 免费av毛片视频| 免费在线观看亚洲国产| 99久久精品国产亚洲精品| 色噜噜av男人的天堂激情| 丝袜美腿在线中文| 国内少妇人妻偷人精品xxx网站| 中文字幕av在线有码专区| 高潮久久久久久久久久久不卡| 精品99又大又爽又粗少妇毛片 | а√天堂www在线а√下载| 久久久久久国产a免费观看| 欧美黄色片欧美黄色片| 婷婷精品国产亚洲av在线| 久久热精品热| 在线天堂最新版资源| .国产精品久久| 久久精品国产亚洲av涩爱 | 夜夜夜夜夜久久久久| 青草久久国产| 欧美zozozo另类| 日本免费a在线| 亚洲内射少妇av| 国产精品久久久久久精品电影| 久久久久亚洲av毛片大全| 亚洲中文字幕一区二区三区有码在线看| 久久国产精品影院| 欧美+日韩+精品| 国产亚洲精品综合一区在线观看| 色尼玛亚洲综合影院| 成人鲁丝片一二三区免费| 99精品久久久久人妻精品| 欧美黑人巨大hd| 一个人免费在线观看的高清视频| 在线免费观看的www视频| 男女做爰动态图高潮gif福利片| 人人妻,人人澡人人爽秒播| 日韩欧美 国产精品| 成人av一区二区三区在线看| 在线观看免费视频日本深夜| 搞女人的毛片| 天天一区二区日本电影三级| 久久精品国产亚洲av涩爱 | 日本与韩国留学比较| 国产精品一区二区性色av| 一区二区三区激情视频| 国产老妇女一区| 亚洲av五月六月丁香网| 一个人看视频在线观看www免费| 午夜精品一区二区三区免费看| 蜜桃久久精品国产亚洲av| 在线看三级毛片| 亚洲成a人片在线一区二区| 色综合欧美亚洲国产小说| 内地一区二区视频在线| 国产精品久久电影中文字幕| 亚洲av电影不卡..在线观看| 国产精品久久久久久久久免 | 亚洲avbb在线观看| 成年免费大片在线观看| 很黄的视频免费| 日本 av在线| 亚洲国产精品sss在线观看| 自拍偷自拍亚洲精品老妇| 国产三级在线视频| 亚洲乱码一区二区免费版| 亚洲自拍偷在线| 一级a爱片免费观看的视频| 91av网一区二区| 久久精品国产自在天天线| 久久这里只有精品中国| avwww免费| 99久久精品热视频| 村上凉子中文字幕在线| 91av网一区二区| 国产精品av视频在线免费观看| 97碰自拍视频| 一区二区三区高清视频在线| 自拍偷自拍亚洲精品老妇| 日本与韩国留学比较| 国产一区二区在线观看日韩| 少妇人妻一区二区三区视频| 91字幕亚洲| 1000部很黄的大片| 国产乱人视频| 国产乱人视频| 中文字幕av成人在线电影| 国产av在哪里看| 人人妻人人澡欧美一区二区| 精品人妻1区二区| 色在线成人网| 午夜福利欧美成人| 九九久久精品国产亚洲av麻豆| 日韩人妻高清精品专区| 亚洲专区中文字幕在线| 国产午夜福利久久久久久| 国产精品久久久久久久电影| 亚洲人成网站在线播放欧美日韩| 成人国产综合亚洲| 日本成人三级电影网站| 日本黄色视频三级网站网址| 成人av一区二区三区在线看| 色哟哟哟哟哟哟| 日韩人妻高清精品专区| 亚洲无线观看免费| 成人欧美大片| 伦理电影大哥的女人| 成年女人看的毛片在线观看| 日本与韩国留学比较| 97超视频在线观看视频| 亚洲无线在线观看| 亚洲av熟女| 嫁个100分男人电影在线观看| 午夜福利视频1000在线观看| 少妇人妻精品综合一区二区 | 97热精品久久久久久| 国产综合懂色| 亚洲中文日韩欧美视频| 色5月婷婷丁香| 国产视频一区二区在线看| 日本五十路高清| 欧美午夜高清在线| 在线观看美女被高潮喷水网站 | 少妇人妻精品综合一区二区 | 国产精品久久久久久人妻精品电影| 99久久无色码亚洲精品果冻| 欧美色视频一区免费| 成年女人毛片免费观看观看9| 色综合欧美亚洲国产小说| 九色国产91popny在线| 中文字幕av在线有码专区| h日本视频在线播放| 国产午夜福利久久久久久| 亚洲美女黄片视频| 搡老妇女老女人老熟妇| 深爱激情五月婷婷| 亚洲五月天丁香| 亚洲五月婷婷丁香| 国产精品亚洲av一区麻豆| 尤物成人国产欧美一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲人成网站高清观看| 日日夜夜操网爽| 少妇熟女aⅴ在线视频| 变态另类成人亚洲欧美熟女| 国产老妇女一区| 麻豆久久精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 久久欧美精品欧美久久欧美| 少妇被粗大猛烈的视频| 欧美一区二区精品小视频在线| 99视频精品全部免费 在线| 精品国产亚洲在线| h日本视频在线播放| 亚洲av二区三区四区| 内射极品少妇av片p| 两性午夜刺激爽爽歪歪视频在线观看| a级一级毛片免费在线观看| 搡老熟女国产l中国老女人| 亚洲av五月六月丁香网| 在线观看66精品国产| 好男人电影高清在线观看| 美女免费视频网站| 欧美黄色片欧美黄色片| 国产伦人伦偷精品视频| 久久久久九九精品影院| 首页视频小说图片口味搜索| 老女人水多毛片| 中文字幕高清在线视频| 黄色日韩在线| 男女做爰动态图高潮gif福利片| 国产伦精品一区二区三区视频9| 日韩欧美一区二区三区在线观看| 亚洲精品色激情综合| 舔av片在线| 亚洲最大成人av| 禁无遮挡网站| 国产美女午夜福利| 亚洲久久久久久中文字幕| 脱女人内裤的视频| 日本熟妇午夜| av天堂中文字幕网| 日韩欧美国产一区二区入口| 一区福利在线观看| 婷婷六月久久综合丁香| 国产黄a三级三级三级人| 欧美在线一区亚洲| 少妇人妻精品综合一区二区 | 久久99热这里只有精品18| 久久久精品欧美日韩精品| 男人的好看免费观看在线视频| 欧美色视频一区免费| 精品日产1卡2卡| 观看免费一级毛片| 国产伦一二天堂av在线观看| 在线a可以看的网站| 日本 av在线| 国内毛片毛片毛片毛片毛片| 18禁裸乳无遮挡免费网站照片| 在线看三级毛片| 欧美潮喷喷水| 又紧又爽又黄一区二区| 成人三级黄色视频| 哪里可以看免费的av片| 中国美女看黄片| 国产精品伦人一区二区| 在线播放无遮挡| 国产精品亚洲一级av第二区| 日本与韩国留学比较| 丰满乱子伦码专区| 好男人在线观看高清免费视频| 亚洲久久久久久中文字幕| 国产免费男女视频| 精品人妻偷拍中文字幕| 亚洲激情在线av| 狠狠狠狠99中文字幕| 最新在线观看一区二区三区| 99热精品在线国产| 久久香蕉精品热| 在线观看一区二区三区| 我要搜黄色片| 99久久精品国产亚洲精品| 免费观看精品视频网站| 黄色一级大片看看| 精品久久久久久,| 九九热线精品视视频播放| 国产精华一区二区三区| 国产精品久久电影中文字幕| 国产在线男女| 999久久久精品免费观看国产| 欧美一区二区精品小视频在线| 成年版毛片免费区| 乱码一卡2卡4卡精品| 日日干狠狠操夜夜爽| 哪个播放器可以免费观看大片| 看黄色毛片网站| 少妇的逼水好多| 天天一区二区日本电影三级| 三级国产精品欧美在线观看| 国产伦精品一区二区三区视频9| 国产av不卡久久| 午夜亚洲福利在线播放| 最近的中文字幕免费完整| 成人漫画全彩无遮挡| 丝袜美腿在线中文| 麻豆乱淫一区二区| 国产欧美日韩一区二区三区在线 | 黄色视频在线播放观看不卡| 久久精品国产a三级三级三级| 少妇的逼水好多| 麻豆久久精品国产亚洲av| 99热网站在线观看| 一区二区三区四区激情视频| 国产视频内射| 亚洲天堂国产精品一区在线| 免费看光身美女| 国产一区二区三区av在线| 在线观看国产h片| 久久久久网色| 最近最新中文字幕大全电影3| 99热这里只有是精品50| 搞女人的毛片| 成人毛片a级毛片在线播放| 国产精品人妻久久久影院| 国产免费视频播放在线视频| 欧美日韩亚洲高清精品| 亚洲国产日韩一区二区| 91久久精品电影网| 七月丁香在线播放| 18禁在线无遮挡免费观看视频| 免费在线观看成人毛片| 国产毛片在线视频| 欧美日韩精品成人综合77777| 亚洲综合色惰| 禁无遮挡网站| 一级毛片aaaaaa免费看小| freevideosex欧美| 噜噜噜噜噜久久久久久91| 久久久久性生活片| 人妻一区二区av| 国产精品偷伦视频观看了| 成人特级av手机在线观看| 国产v大片淫在线免费观看| 白带黄色成豆腐渣| 精品午夜福利在线看| 国产精品熟女久久久久浪| 精品一区二区三卡| 欧美日韩一区二区视频在线观看视频在线 | 毛片女人毛片| 亚洲人成网站在线播| 亚洲色图av天堂| 国产精品秋霞免费鲁丝片| 欧美日韩国产mv在线观看视频 | 精品久久久精品久久久| 91精品国产九色| 伦精品一区二区三区| 精品人妻视频免费看| 观看美女的网站| 欧美极品一区二区三区四区| 国产伦在线观看视频一区| 美女主播在线视频| 国产成人免费无遮挡视频| 尤物成人国产欧美一区二区三区| 日韩,欧美,国产一区二区三区| 黄片wwwwww| 少妇猛男粗大的猛烈进出视频 | 精品国产露脸久久av麻豆| 国产精品久久久久久精品电影| 天美传媒精品一区二区| 三级国产精品片| 内射极品少妇av片p| 最新中文字幕久久久久| 亚洲精品影视一区二区三区av| 韩国高清视频一区二区三区| 欧美激情国产日韩精品一区| 婷婷色综合大香蕉| 国产免费一区二区三区四区乱码| 欧美成人精品欧美一级黄| 欧美激情久久久久久爽电影| 亚洲av成人精品一二三区| 少妇猛男粗大的猛烈进出视频 | 日韩av在线免费看完整版不卡| 国产精品三级大全| 禁无遮挡网站| 欧美极品一区二区三区四区| 亚洲成色77777| xxx大片免费视频| 国产黄色视频一区二区在线观看| 欧美一级a爱片免费观看看| av网站免费在线观看视频| 一级毛片电影观看| 国产精品伦人一区二区| 中文资源天堂在线| eeuss影院久久| 日韩欧美精品免费久久| 欧美97在线视频| 深夜a级毛片| 热99国产精品久久久久久7| 欧美潮喷喷水| 制服丝袜香蕉在线| 国产高清国产精品国产三级 | 国产精品嫩草影院av在线观看| 中文字幕久久专区| tube8黄色片| 欧美最新免费一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 乱系列少妇在线播放| 青春草视频在线免费观看| 国产一区二区三区av在线| 王馨瑶露胸无遮挡在线观看| 赤兔流量卡办理| 草草在线视频免费看| 国产精品女同一区二区软件| 日本三级黄在线观看| 国产乱人视频| 欧美成人a在线观看| av在线亚洲专区| 最近最新中文字幕免费大全7| 国产精品嫩草影院av在线观看| 亚洲精品一二三| 亚洲综合色惰| 日韩一区二区三区影片| .国产精品久久| 国产男女内射视频| 蜜桃亚洲精品一区二区三区| 亚洲第一区二区三区不卡| 国产亚洲最大av| 尤物成人国产欧美一区二区三区| 亚洲第一区二区三区不卡| 国产精品爽爽va在线观看网站| 亚洲国产成人一精品久久久| 免费观看av网站的网址| 免费大片18禁| 精品一区二区三卡| 3wmmmm亚洲av在线观看| 国产免费视频播放在线视频| 国产91av在线免费观看| 91久久精品电影网| 国产亚洲91精品色在线| 国产乱来视频区| 高清午夜精品一区二区三区| 校园人妻丝袜中文字幕| 免费少妇av软件| 五月伊人婷婷丁香| 久久久色成人| 白带黄色成豆腐渣| 99九九线精品视频在线观看视频| 欧美高清性xxxxhd video| 日产精品乱码卡一卡2卡三| 久久久久九九精品影院| 国产伦理片在线播放av一区| 高清av免费在线| 国产日韩欧美亚洲二区| 久久国产乱子免费精品| 狂野欧美白嫩少妇大欣赏| 美女脱内裤让男人舔精品视频| 成人漫画全彩无遮挡| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 狂野欧美激情性bbbbbb| 免费观看在线日韩| 久久6这里有精品| 亚洲精华国产精华液的使用体验| 菩萨蛮人人尽说江南好唐韦庄| 性色av一级| 久久99精品国语久久久| 国产中年淑女户外野战色| 全区人妻精品视频| 国产高清有码在线观看视频| 国产成人a区在线观看| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频 | 国产精品秋霞免费鲁丝片| 女人被狂操c到高潮| 两个人的视频大全免费| 久久午夜福利片| 日本熟妇午夜| 一级毛片久久久久久久久女| 午夜免费男女啪啪视频观看| 777米奇影视久久| av在线app专区| 国内揄拍国产精品人妻在线| 女人被狂操c到高潮| 亚洲精品视频女| 国产片特级美女逼逼视频| 高清午夜精品一区二区三区| 在线观看免费高清a一片| 国产探花极品一区二区| 久久久精品欧美日韩精品| 可以在线观看毛片的网站| 国产精品人妻久久久影院| av在线app专区| 视频区图区小说| 国产91av在线免费观看| 国产亚洲5aaaaa淫片| 国产黄色视频一区二区在线观看| 成人亚洲欧美一区二区av| 国产免费视频播放在线视频| 免费看光身美女| 亚洲av一区综合| 久久这里有精品视频免费| 午夜激情久久久久久久| av在线老鸭窝| 亚洲国产av新网站| 欧美高清性xxxxhd video| 久久99蜜桃精品久久| 国产成人aa在线观看| 国产女主播在线喷水免费视频网站| 六月丁香七月| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 国产成人freesex在线| 亚洲av电影在线观看一区二区三区 | 看黄色毛片网站| 久久久国产一区二区| 夜夜爽夜夜爽视频| 亚州av有码| 国产亚洲av片在线观看秒播厂| 少妇被粗大猛烈的视频| 如何舔出高潮| av播播在线观看一区| 久久99热6这里只有精品| 亚洲精品自拍成人| 在线免费十八禁| 肉色欧美久久久久久久蜜桃 | 特级一级黄色大片| 青春草亚洲视频在线观看| 18+在线观看网站| 国产精品爽爽va在线观看网站| 国产精品麻豆人妻色哟哟久久| 精品国产三级普通话版| 晚上一个人看的免费电影| 亚洲熟女精品中文字幕| 婷婷色av中文字幕| 日韩欧美精品v在线| 国产视频内射| 一区二区三区精品91| 久久99热6这里只有精品| 日日啪夜夜撸| 国产69精品久久久久777片| 国产精品成人在线| 亚洲精品中文字幕在线视频 | 久久人人爽人人爽人人片va| 国产成人a区在线观看| 国产成年人精品一区二区| 老女人水多毛片| 国产成人精品婷婷| 精品久久久久久久人妻蜜臀av| 国国产精品蜜臀av免费| 看黄色毛片网站| 一级二级三级毛片免费看| 欧美激情国产日韩精品一区| 噜噜噜噜噜久久久久久91| 欧美日本视频| 午夜亚洲福利在线播放| 伦理电影大哥的女人| 国产精品久久久久久av不卡| 精品国产露脸久久av麻豆| 好男人在线观看高清免费视频| 日本-黄色视频高清免费观看| 日韩免费高清中文字幕av| 国产午夜福利久久久久久| 男人爽女人下面视频在线观看| 肉色欧美久久久久久久蜜桃 | 看免费成人av毛片|