• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Time-Aware Collaborative Filtering Intelligent Recommendation System

    2019-11-26 06:47:34WeijinJiangJiahuiChenYirongJiangYuhuiXuYangWangLinaTanandGuoLiang
    Computers Materials&Continua 2019年11期

    Weijin Jiang,Jiahui Chen,Yirong Jiang,Yuhui XuYang WangLina Tan and Guo Liang

    Abstract:Aiming at the problem that the traditional collaborative filtering recommendation algorithm does not fully consider the influence of correlation between projects on recommendation accuracy,this paper introduces project attribute fuzzy matrix,measures the project relevance through fuzzy clustering method,and classifies all project attributes.Then,the weight of the project relevance is introduced in the user similarity calculation,so that the nearest neighbor search is more accurate.In the prediction scoring section,considering the change of user interest with time,it is proposed to use the time weighting function to improve the influence of the time effect of the evaluation,so that the newer evaluation information in the system has a relatively large weight.The experimental results show that the improved algorithm improves the recommendation accuracy and improves the recommendation quality.

    Keywords:Fuzzy clustering,time weight,attenuation function,Collaborative filtering method,recommendation algorithm.

    1 Introduction

    The problem of data overload on the Internet platform makes it more and more difficult for users to extract real and useful information.Therefore,the intelligent recommendation system emerges as the times require.Taking the commodity selection of the e-commerce platform as an example,the intelligent recommendation system can filter out the user’s most interested items by analyzing the user’s interest characteristics and purchase behaviors.Also,it can improve the information matching efficiency in the massive data,and the user experience [Chen,Teng and Chang (2015)].The existing recommendation algorithms mainly include using user behavior data,user and item feature information,time and location,other context information,and social network data for recommendation.

    The collaborative filtering recommendation algorithm achieves by obtaining the user’s preference information,calculating the similarity between users (or between projects)and predicting the target user’s rating of the target project based on similarity.The key step of collaborative filtering recommendation algorithm is to calculate the similarity between users (or between projects)[Bobadilla,Ortega and Hernando (2013)].Scholars at home and abroad have carried out a series of studies on similarity measures in collaborative filtering algorithms.Zhou et al.[Zhou,He and Huang et al.(2015)] proposed an incremental method based on SVD to calculate the singular value decomposition of the original matrix step by step to solve the sparse problem and meet the changing needs of the dynamic user interest.Ramezani et al.[ Ramezani,Moradi and Akhlaghian (2014)]used UTAOS to handle sparse and high-dimensional matrix problems and used subspace clustering to construct neighbor user trees.In addition,the user preferences among similar users can be found by uninterested items,rather than just comparing interesting items.In the similarity-based recommendation,Koohi et al.[Koohi and Kiani (2016)].studied the optimization of neighbor number selection,compared the different methods to consider different numbers of neighbors,and proposed a neighbor-user clustering collaborative filtering method based on subspace clustering.Bobadilla et al.[Bobadilla,Hemando,Orteqa et al.(2012)] proposed combining the Mean Square Difference (MSD)and Jaccard coefficients to form a Jaccard-based Mean Square Difference (JMSD).When the above method encounters a cold start problem (i.e.,when the rating information of new users and new items is small),its accuracy is affected.Sun et al.[Sun,Wu,Liu et al.(2013)] proposed the use of binary network technology to improve the collaborative filtering algorithm.The main idea is to introduce a bipartite network to describe the recommendation system in the collaborative filtering algorithm,and to use grey correlation to measure user similarity and project similarity.Liu et al.[Liu,Qu,Li et al.(2010)] use the idea of clustering to search for user neighbors.The core idea is to add the edge with the largest weight in the overlay network to the nearest neighbors in turn,classify the nodes that have loops in the set,and then use the unsupervised learning method K-means algorithm.For the second clustering,this method can improve the accuracy of the user’s similarity,but it is not easy to update dynamically.Reference[Jojic,Shukla and Bhosarekar (2011)] proposed a quality-aware Web service recommendation method based on factorization machine.Reference [Wang,Yu,Feng et al.(2014)] proposed a collaborative filtering recommendation algorithm based on time series behavior.Choi et al.[Choi,Ko and Han (2012)] studied the parallel collaborative filtering recommendation algorithm based on graph walk.Wang et al.[Wang,Ma,Cheng et al.(2016)] studied the collaborative filtering recommendation algorithm that integrates the characteristics of social networks.Guo et al.[Guo,Ma,Chen et al.(2012)] studied the recommendation method of tourism group with fusion collaborative filtering and user preference.Wu et al.[Wu,Chen,Liu et al.(2012)] studied the recommendation algorithm for integrating user social status and matrix decomposition.Liu et al.[Liu,Chen,Xiong et al.(2012)] studied the collaborative filtering algorithm based on user feature optimization clustering.Ren et al.[Ren,Zhu et al.(2013)] studied a multi-feature fusion software developer recommendation method.Reference [Yang,Steck,Guo et al.(2012)] studied an efficient social network friend recommendation program.Liu et al.[Liu,Xiang,Chen et al.(2012)] studied a superimposed joint clustering recommendation model based on social networks.Yang et al.[Yang,Steck,Guo et al.(2012)] studied the personalized recommendation mechanism based on collaborative filtering in cloud computing environment.Leng et al.[Leng,Lu and Liang (2014)] studied stack noise reduction.Self-encoder tag collaborative filtering recommendation algorithm.Leng et al.[Leng,Liang,Ding et al.(2013)] studied the online recommendation of online social network users based on cross-platform research.Huo et al.[Huo,Zheng and Gao (2018)]studied the microblog friend recommendation method based on social circle discovery and user trust degree communication.

    None of the above algorithms considers the impact of project relevance and user interest attenuation on the recommendation accuracy.Based on this,this paper proposes the following solutions.First,the project attribute fuzzy matrix is introduced.The project correlation is measured by the fuzzy clustering method.All project attributes are classified,and the weight of the project relevance is introduced in the user similarity calculation,so that the nearest neighbor search is more accurate.Second,in the prediction scoring section,taking into account the user’s interest decay with time,it is proposed to use the time weighting function to improve the impact of the time effect of the evaluation,so that the newer evaluation information in the system has a relatively large weight.

    2 Improved collaborative filtering algorithm

    2.1 Project relevance

    In the traditional collaborative filtering-based recommendation algorithm,the specific item information is often not considered [Shi,Xia and Liu (2018);Liang,Li,Zhang et al.(2018)].The user-item evaluation matrix is mainly used to calculate the similarity of the user.Due to the subjective nature of this matrix,it often fails to reflect the real relationship between the projects,especially the project properties.Signs can often be assigned to multiple sub-attributes.Items with the same or similar sub-attributes are more recommendable when solving nearest neighbors [Chen,Gu and Chang (2018);Liu,Jing and Yu (2018)].Therefore,this article considers the analysis of the characteristic attributes of the project itself,measures the project relevance through the fuzzy clustering method,and classifies all project attributes [Guo,Wang and Hou (2018)].In this paper,the project attribute fuzzy matrix is introduced.As shown in Tab.1,multiple attributes corresponding to each project are distinguished by relevance.This paper divides the project property fuzzification into four fuzzy collections:Highly correlated (Q1),General related (Q2)Weakly related (Q 3)and irrelevant (Q4).

    The relevance between projects is very critical for obtaining a user’s similar set of nearest neighbors.Generally,similar users tend to have a more consistent view of certain specific projects.For example,cigarettes,lighters and other items,to a certain extent,skirts,lipstick and other items,there are more obvious differences in the properties.The users who like the former and those who like the latter also have more obvious group differences.So,for the number of items,a large number of scoring matrices can be classified according to the nature of the attributes.When calculating the similarity of the user,if the correlation between the items can be measured,the nearest neighbor user's solution will be more accurate [Meng,Rong,Tian et al.(2018)].In order to calculate the correlation between two items,the article first fuzzy the project attributes into different fuzzy sets,and then calculate the local fuzzy distance between different features.Here,the measurement is performed using the Euclid distance.

    Table1:The fuzzy matrix of item attributes

    For the properties of any fuzzy similarity matrix,there must be a minimal natural number k (k<n),such that the transitive closure t (X)=Xk.For all natural numbers greater than k,there is always Xl=Xk.T herefore,we can use a quadratic method to solve the transitive closure of R,that is t(X)=

    Further,by classifying the fuzzy λ-cutting matrix of the similarity matrix Xλ,the classification of Xλ at the λ level can be obtained.For different values of the condition λ∈[0,1],the final classification is often different.In order to more accurately solve the correlation between items,the F-statistic is used to determine the optimal value of λ.Then Project properties are categorized.

    First calculate the average of the membership values of the attribute j,which are:

    Then,for m attribute indexes,ˉcan be used to represent the center vector of the relevance of each item attribute.Since the number of items to be classified depends on the value of λ,we assume that the numberof item classifications is t,and the number of items in the k-th class is Attrk.There are:.Let the mean value of each attribute relevance in the k-th class be denoted byandrespectively.

    Then the cluster center vector of the k-th class iswhere

    Then calculate the Euclidean distance between the cluster center vector a and the center vector p of each class.

    Next,the distance between the item attribute relevance in each class and the cluster center vector of the class is compared.

    Then you can get the sum of the distance of all the project attributes in the class and the cluster center vector of the class.

    Finally,we can find the F statistic:

    Since the F statistic follows the F-distribution of degree of freedom t-1,n-t,we can see from the expression that the larger the value of F,the more obvious the gap between categories and the more reasonable the classification.Obviously,for the similarities between users based on item classification proposed in this paper,the accuracy of nearest neighbor matching is also higher.

    After completing the above clustering,all project attributes are divided into several categories.Thus,we can set the similarity of items belonging to the same class to 1;otherwise,it means 0:

    2.2 Attenuation function

    In the collaborative filtering recommendation model,user evaluation tends to show attenuation characteristics over time.The influence of the previous evaluation on the current prediction value is inversely proportional to the length of the time span,that is,the long-term evaluation information in the system is time-efficient.Low-level information,in the process of making recommendations based on the user’s interests,is less recommended than the fresh evaluation information [Tang,Zhang and Yang (2018)].In order to fully reflect the influence of the “time effect” on the recommendation results,this paper adds a decay function to the prediction scoring process.This gives the user a relatively larger weight for the recently tagged item than the earlier tagged item,making the new evaluation more useful.The time weighting function is defined as follows:

    2.3 Modified user similarity calculation

    According to the classification of the project attributes,the weight of the project relevance is introduced in the user similarity calculation,so that the neighbor users found are more accurate.This method is a combination of user-based and project-based collaborative filtering algorithms,but it is different from the previous way of linear combination of the two,but the two are combined in a non-linear way.That means in the process of computing user similarity,the weight of project relevance is introduced,that is,integrating projects based on users.At the same time,the relevance of the project is not calculated using the Pearson correlation coefficient,but is calculated based on the project feature attributes,which is more objective.The improved user similarity formula is as follows:

    2.4 Predictive score

    In order to achieve more accurate real-time recommendations,in the prediction score,we take the timefactor into account andimprove the weighted prediction score of the unrated item by the target user u to:

    wherein,it represents the average score ofuser,and K is the set of neighbor users of the target user u.is the similarity value between user u and user v in the nearest neighbor set.is the user v rating of the item.

    3 Experimental results and analysis

    Experimental data uses a user-rated movie data set ml-data provided by the Movie Lens website.This data set contains 943 users’ 100,000 ratings data for 1682 movies.The rating value is an integer from 1 to 5,and the user’s preference of a movie is proportional to the size of the number.The text experiment randomly selected 400 users' rating data for 1500 movies.In addition,each movie was described by 20 attribute items,namely:unknown,Action,Adventure,Animation,Children’s,Comedy,Crime,Documentary,Drama,Fantasy,Film-Noir,Horror,Musical,Mystery,Romance,Sci-Fi,Thriller,War,Western,etc.The project attribute fuzzy matrix is constructed according to the above attributes to classify the movies in the sample set.

    This article compares the performance of the algorithm from two aspects,the accuracy of prediction and the accuracy of classification.The prediction accuracy rate is divided into Mean Absolute Error (MAE)and Root Mean Square Error (RMSE)[Yang,Steck,Guo et al.(2012)].The smaller the MAE and RMSE values,the higher the accuracy of the prediction.The accuracy of the prediction reflects the accuracy of the algorithm for the prediction of unscored items.The difference in the number of nearest neighbors will result in a certain difference in the prediction accuracy.The nearest neighbor number K is used as the independent variable,and the attenuation factor δ is 0.5.The analysis is based on different The Collaborative Filtering Algorithm of Similarity Metrics.

    Fig.1.shows the algorithms proposed in this paper (our model)and various similarity measures based on the MovieLens dataset with different neighbor numbers (e.g.,PMA[Ren,Zhu,Li et al.(2013)],CMRCI [Wu,Chen,Liu et al.(2012)],MRAGC [Tang,Zang and Yang (2018)]).The collaborative filtering recommendation accuracy comparison.In Fig.2.,the values of MAE and RMSE decrease as K increases.It can be seen that the MAE value of our model is lower than the collaborative filtering recommended MAE values of other measurement methods.At K=10,the MAE value of our model is 8.69%lower than that of PMA,6.67%,7 %,1.18%.At K=10,the RMSE of our model is 8.19%,5.88%,1.75% is lower than PMA,CMRCI,and MRAGC,respectively.The algorithm proposed in this paper introduces the project relevance measurement method when users calculate the nearest neighbor [Xu,Zheng and Lyu (2016)].We can see that the matching of the nearest neighbor user is more accurate.In addition,in the predictive scoring process,taking into account the user's interest decay over time,the use of the time-weighted function to improve the impact of the time effect of the evaluation,the relatively new weight of the newer evaluation information in the system,which also has an impact on the accuracy of the recommendation.

    Fig.2 shows the accuracy and recall of different recommended items under the MovieLens dataset.As can be seen from Fig.2,our model can get the best recommended classification accuracy,and the effect is very obvious compared with other methods.In addition,it can be seen that the accuracy rate will decrease as the number of recommendations increases.Compared with PMA,when N=10,the accuracy rate of our model MODEL increases by 65.23%.the recall rate will increase with the increase in the number of recommendations.Compared with CMRCI,when N = 10,the recall rate of our model is increased by 53.42%.

    Figure1:MAE and RMSE values of different similarity measures

    Figure2:Precision and recall values of different recommendation items

    4 Conclusion

    This paper first analyzes the traditional collaborative filtering recommendation algorithm because it does not fully consider the influence of the correlation between projects on the recommendation accuracy.Also,it introduces the project attribute fuzzy matrix,measures the project relevance through the fuzzy clustering method,and classifies all the project attributes.Then,in the calculation of user similarity,the weight of the project relevance is introduced to make the nearest neighbor search more accurate.In addition,in the predictive scoring process,the time-weighted function is used to improve the time effect of the evaluation,taking into account the user's interest decay over time.The impact of the system makes relatively new evaluation information in the system relatively heavy.Experimental results show that the improved algorithm improves the recommendation accuracy and improves the recommendation quality.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China (61772196;61472136),the Hunan Provincial Focus Social Science Fund (2016ZDB006),Hunan Provincial Social Science Achievement Review Committee results appraisal identification project (Xiang social assessment 2016JD05),Key Project of Hunan Provincial Social Science Achievement Review Committee (XSP 19ZD1005).The authors gratefully acknowledge the financial support provided by the Key Laboratory of Hunan Province for New Retail Virtual Reality Technology(2017TP1026).

    一区二区三区激情视频| 波多野结衣巨乳人妻| 脱女人内裤的视频| 亚洲一区中文字幕在线| 国产精品香港三级国产av潘金莲| 欧美性猛交╳xxx乱大交人| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久成人av| 欧美 亚洲 国产 日韩一| 日本熟妇午夜| 精华霜和精华液先用哪个| 亚洲av电影在线进入| 一本久久中文字幕| 精品第一国产精品| 日本成人三级电影网站| 亚洲激情在线av| 成人午夜高清在线视频| 欧美日韩亚洲国产一区二区在线观看| 女人爽到高潮嗷嗷叫在线视频| 91字幕亚洲| 亚洲熟妇中文字幕五十中出| 日本一二三区视频观看| 久久午夜综合久久蜜桃| 999久久久精品免费观看国产| 久久天堂一区二区三区四区| 毛片女人毛片| 国产1区2区3区精品| 久久精品91蜜桃| 国产高清激情床上av| 日日干狠狠操夜夜爽| 成人国语在线视频| 欧美日韩国产亚洲二区| 啦啦啦免费观看视频1| 欧美日韩亚洲综合一区二区三区_| 国产麻豆成人av免费视频| 亚洲 欧美一区二区三区| 亚洲电影在线观看av| 日韩欧美一区二区三区在线观看| 国产成人影院久久av| 欧美另类亚洲清纯唯美| 亚洲专区国产一区二区| 欧美黑人欧美精品刺激| 国产成人aa在线观看| 窝窝影院91人妻| 少妇粗大呻吟视频| 亚洲国产欧美人成| 在线看三级毛片| 黑人操中国人逼视频| 成人国产一区最新在线观看| 国产精品九九99| 麻豆成人午夜福利视频| 黄色a级毛片大全视频| 亚洲成人免费电影在线观看| 亚洲,欧美精品.| 日本一二三区视频观看| 国产1区2区3区精品| 男人舔女人的私密视频| 我要搜黄色片| 婷婷丁香在线五月| 少妇熟女aⅴ在线视频| 久久久国产欧美日韩av| 亚洲aⅴ乱码一区二区在线播放 | 99久久久亚洲精品蜜臀av| www.999成人在线观看| 91国产中文字幕| 久久国产精品人妻蜜桃| 18禁观看日本| 少妇裸体淫交视频免费看高清 | 人妻夜夜爽99麻豆av| 亚洲国产欧洲综合997久久,| 无人区码免费观看不卡| 超碰成人久久| 少妇被粗大的猛进出69影院| 亚洲欧美日韩高清专用| 久久精品国产综合久久久| 午夜福利高清视频| 精品国产乱码久久久久久男人| 成年免费大片在线观看| av福利片在线观看| 丰满人妻一区二区三区视频av | 99在线人妻在线中文字幕| 最近在线观看免费完整版| 高潮久久久久久久久久久不卡| 身体一侧抽搐| 亚洲九九香蕉| 日韩欧美在线二视频| 国产精品国产高清国产av| 国产高清激情床上av| 亚洲精品久久国产高清桃花| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 欧美黑人巨大hd| 国产精品 欧美亚洲| 久热爱精品视频在线9| 香蕉av资源在线| 高清毛片免费观看视频网站| 成人精品一区二区免费| 精品久久久久久,| 最近最新中文字幕大全免费视频| 99热这里只有是精品50| 婷婷精品国产亚洲av在线| 制服丝袜大香蕉在线| 国产单亲对白刺激| 亚洲熟女毛片儿| 波多野结衣高清作品| 久99久视频精品免费| 日韩欧美在线乱码| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区精品| 亚洲自偷自拍图片 自拍| 美女午夜性视频免费| 国产黄a三级三级三级人| 国产亚洲av嫩草精品影院| 亚洲精品av麻豆狂野| 久久欧美精品欧美久久欧美| 日日干狠狠操夜夜爽| 成人18禁在线播放| 日本黄大片高清| 琪琪午夜伦伦电影理论片6080| 久久这里只有精品19| 丁香六月欧美| 国产午夜福利久久久久久| 欧美在线黄色| 国产一区二区三区在线臀色熟女| 18美女黄网站色大片免费观看| av超薄肉色丝袜交足视频| 99热6这里只有精品| 亚洲在线自拍视频| 岛国在线观看网站| 此物有八面人人有两片| 欧美午夜高清在线| 99国产综合亚洲精品| 最近在线观看免费完整版| 夜夜躁狠狠躁天天躁| www.自偷自拍.com| 男女视频在线观看网站免费 | 久久香蕉国产精品| 国产精品 欧美亚洲| 国产精品免费视频内射| 女生性感内裤真人,穿戴方法视频| 久久久久性生活片| 日本成人三级电影网站| 成在线人永久免费视频| 亚洲欧洲精品一区二区精品久久久| 国产一级毛片七仙女欲春2| 色综合站精品国产| 午夜成年电影在线免费观看| 一级黄色大片毛片| 99国产极品粉嫩在线观看| 国内久久婷婷六月综合欲色啪| netflix在线观看网站| 18禁观看日本| 国产av不卡久久| 99国产精品一区二区蜜桃av| 黄色丝袜av网址大全| 三级男女做爰猛烈吃奶摸视频| 免费在线观看完整版高清| 1024手机看黄色片| 午夜成年电影在线免费观看| 99久久99久久久精品蜜桃| 欧美日韩黄片免| 国产又色又爽无遮挡免费看| 亚洲av美国av| 国产成人精品无人区| xxxwww97欧美| 国产激情欧美一区二区| 亚洲熟女毛片儿| 亚洲片人在线观看| 午夜亚洲福利在线播放| 热99re8久久精品国产| 中文资源天堂在线| 男女做爰动态图高潮gif福利片| 国产精华一区二区三区| 亚洲欧美日韩东京热| 久久精品国产清高在天天线| e午夜精品久久久久久久| 午夜激情av网站| 亚洲av成人av| 老司机福利观看| 色哟哟哟哟哟哟| 亚洲九九香蕉| 国产精品电影一区二区三区| 99久久精品热视频| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久久久电影 | 欧美又色又爽又黄视频| 99久久无色码亚洲精品果冻| 久久久久久久久中文| 巨乳人妻的诱惑在线观看| 午夜免费激情av| 亚洲午夜理论影院| 国产欧美日韩一区二区三| 热99re8久久精品国产| 老司机在亚洲福利影院| a级毛片a级免费在线| www.精华液| 日本免费一区二区三区高清不卡| 亚洲五月天丁香| 国产精品野战在线观看| 亚洲精品久久成人aⅴ小说| 国产精品 国内视频| 欧美丝袜亚洲另类 | 桃红色精品国产亚洲av| 18禁黄网站禁片午夜丰满| 国产精品一区二区免费欧美| 国产成人av激情在线播放| 在线观看免费视频日本深夜| 美女免费视频网站| 国产精品日韩av在线免费观看| 欧美成人一区二区免费高清观看 | xxx96com| 在线观看免费视频日本深夜| 免费在线观看完整版高清| 免费在线观看成人毛片| 精品一区二区三区视频在线观看免费| 嫩草影院精品99| 亚洲天堂国产精品一区在线| av国产免费在线观看| 最近在线观看免费完整版| 亚洲最大成人中文| 舔av片在线| 一本精品99久久精品77| 国产不卡一卡二| 欧美日韩一级在线毛片| 黑人巨大精品欧美一区二区mp4| 最近视频中文字幕2019在线8| 日韩欧美在线二视频| 此物有八面人人有两片| 国产熟女午夜一区二区三区| 在线观看免费视频日本深夜| 人成视频在线观看免费观看| 精品高清国产在线一区| 男女床上黄色一级片免费看| 国产精品永久免费网站| 午夜影院日韩av| 欧美乱妇无乱码| 国产精品乱码一区二三区的特点| 舔av片在线| 精品一区二区三区av网在线观看| 精品久久久久久,| 好男人在线观看高清免费视频| 亚洲国产精品合色在线| 久久人妻福利社区极品人妻图片| 中文字幕高清在线视频| 九色成人免费人妻av| 欧美性猛交╳xxx乱大交人| 欧美一级毛片孕妇| 免费看a级黄色片| 毛片女人毛片| 欧美成人午夜精品| 精品免费久久久久久久清纯| 国产1区2区3区精品| 久久精品国产清高在天天线| 日韩欧美在线二视频| 男女午夜视频在线观看| 午夜激情福利司机影院| 三级国产精品欧美在线观看 | 国产精品精品国产色婷婷| 精品人妻1区二区| 精品久久久久久久毛片微露脸| 日本一区二区免费在线视频| 成人欧美大片| 悠悠久久av| 九色成人免费人妻av| 俺也久久电影网| 黑人欧美特级aaaaaa片| 黑人巨大精品欧美一区二区mp4| 免费电影在线观看免费观看| 亚洲五月婷婷丁香| 曰老女人黄片| 日本免费a在线| 天堂av国产一区二区熟女人妻 | 一级片免费观看大全| 亚洲成av人片在线播放无| 国产精品免费一区二区三区在线| 狂野欧美激情性xxxx| 日本免费一区二区三区高清不卡| 麻豆国产av国片精品| 国产精品99久久99久久久不卡| av在线天堂中文字幕| 免费在线观看日本一区| 美女免费视频网站| 国产单亲对白刺激| 97碰自拍视频| 亚洲人与动物交配视频| 一区二区三区高清视频在线| 日韩av在线大香蕉| 色老头精品视频在线观看| 欧美一区二区国产精品久久精品 | 欧美日韩精品网址| 淫秽高清视频在线观看| 亚洲免费av在线视频| 麻豆成人av在线观看| 性色av乱码一区二区三区2| 日日爽夜夜爽网站| 九色成人免费人妻av| 中文在线观看免费www的网站 | 高潮久久久久久久久久久不卡| 久久99热这里只有精品18| 91麻豆av在线| 美女免费视频网站| 婷婷丁香在线五月| 欧美在线黄色| 亚洲av电影不卡..在线观看| www日本黄色视频网| 97超级碰碰碰精品色视频在线观看| 一区二区三区高清视频在线| 亚洲五月婷婷丁香| 动漫黄色视频在线观看| 十八禁人妻一区二区| 欧美不卡视频在线免费观看 | 动漫黄色视频在线观看| 91国产中文字幕| 久久国产精品影院| 亚洲精华国产精华精| 亚洲va日本ⅴa欧美va伊人久久| 成在线人永久免费视频| 国产亚洲精品一区二区www| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久精免费| 国产精品免费一区二区三区在线| 久久国产精品人妻蜜桃| 久久久久久久久久黄片| 夜夜躁狠狠躁天天躁| 久久中文看片网| 可以免费在线观看a视频的电影网站| 国产精品一区二区精品视频观看| 久久天堂一区二区三区四区| 日韩欧美三级三区| 亚洲人成77777在线视频| 久久人妻av系列| 97人妻精品一区二区三区麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 国语自产精品视频在线第100页| 亚洲av电影在线进入| 国产人伦9x9x在线观看| 亚洲成人精品中文字幕电影| 别揉我奶头~嗯~啊~动态视频| 一二三四在线观看免费中文在| 视频区欧美日本亚洲| 国产av一区在线观看免费| 国产三级中文精品| 亚洲九九香蕉| 免费在线观看日本一区| 国产高清激情床上av| 午夜激情福利司机影院| 精品不卡国产一区二区三区| videosex国产| 老司机午夜福利在线观看视频| 亚洲 欧美 日韩 在线 免费| 国产亚洲欧美在线一区二区| 老司机福利观看| 国产精品久久久久久久电影 | 男男h啪啪无遮挡| 五月玫瑰六月丁香| 窝窝影院91人妻| 国产av不卡久久| 啦啦啦观看免费观看视频高清| 免费电影在线观看免费观看| 黄色a级毛片大全视频| 深夜精品福利| 啦啦啦韩国在线观看视频| 五月玫瑰六月丁香| 一级毛片精品| 嫩草影院精品99| 欧美日本视频| 欧美日韩亚洲综合一区二区三区_| 国产熟女xx| 亚洲性夜色夜夜综合| 中文字幕av在线有码专区| 亚洲精品国产精品久久久不卡| 国内精品久久久久精免费| 亚洲av成人av| 中文字幕高清在线视频| 国内毛片毛片毛片毛片毛片| 国产精品亚洲美女久久久| 少妇裸体淫交视频免费看高清 | 视频区欧美日本亚洲| 中文字幕av在线有码专区| 久久久久久大精品| 特级一级黄色大片| 69av精品久久久久久| 免费无遮挡裸体视频| av超薄肉色丝袜交足视频| 婷婷精品国产亚洲av| 最近最新免费中文字幕在线| 亚洲电影在线观看av| 香蕉国产在线看| 99久久久亚洲精品蜜臀av| 亚洲人成电影免费在线| 99国产极品粉嫩在线观看| 欧美色欧美亚洲另类二区| 国产野战对白在线观看| 亚洲av电影不卡..在线观看| 欧美午夜高清在线| 中文字幕久久专区| 久久久久久久午夜电影| 亚洲国产日韩欧美精品在线观看 | 国产一区二区在线av高清观看| 免费一级毛片在线播放高清视频| 嫩草影院精品99| 国产伦一二天堂av在线观看| 69av精品久久久久久| 一二三四在线观看免费中文在| 日韩高清综合在线| 免费在线观看影片大全网站| 香蕉国产在线看| 在线观看免费视频日本深夜| 久久久久久久午夜电影| 视频区欧美日本亚洲| 国产区一区二久久| 国产亚洲精品一区二区www| 国产私拍福利视频在线观看| 精品久久蜜臀av无| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人澡欧美一区二区| 18禁黄网站禁片午夜丰满| 亚洲va日本ⅴa欧美va伊人久久| 日韩三级视频一区二区三区| 欧美另类亚洲清纯唯美| 精品人妻1区二区| 亚洲精华国产精华精| 欧美性长视频在线观看| 哪里可以看免费的av片| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 亚洲欧美日韩无卡精品| 久久中文字幕人妻熟女| 99热这里只有精品一区 | 国产麻豆成人av免费视频| 久久久久免费精品人妻一区二区| www.999成人在线观看| 色尼玛亚洲综合影院| 久久久国产欧美日韩av| www.www免费av| 亚洲自偷自拍图片 自拍| 国产av不卡久久| 麻豆国产av国片精品| 久久久久国产精品人妻aⅴ院| 老汉色av国产亚洲站长工具| 成人18禁在线播放| 亚洲精品久久成人aⅴ小说| 狂野欧美激情性xxxx| av超薄肉色丝袜交足视频| 欧美日韩乱码在线| 一级毛片精品| 99久久精品热视频| 精品日产1卡2卡| 国产精品影院久久| 好男人在线观看高清免费视频| 女同久久另类99精品国产91| 男女之事视频高清在线观看| 高潮久久久久久久久久久不卡| 亚洲国产看品久久| av片东京热男人的天堂| 12—13女人毛片做爰片一| 亚洲欧美一区二区三区黑人| 国产又黄又爽又无遮挡在线| 天天躁狠狠躁夜夜躁狠狠躁| 成人av在线播放网站| 白带黄色成豆腐渣| 天天添夜夜摸| 亚洲 欧美一区二区三区| 美女高潮喷水抽搐中文字幕| www.熟女人妻精品国产| 亚洲国产看品久久| 美女 人体艺术 gogo| 黑人巨大精品欧美一区二区mp4| 九九热线精品视视频播放| 久久伊人香网站| 此物有八面人人有两片| 男插女下体视频免费在线播放| 白带黄色成豆腐渣| 听说在线观看完整版免费高清| 成人一区二区视频在线观看| 国产成年人精品一区二区| 亚洲第一电影网av| avwww免费| 精品久久蜜臀av无| 亚洲全国av大片| 午夜免费激情av| 亚洲va日本ⅴa欧美va伊人久久| 伊人久久大香线蕉亚洲五| 18禁美女被吸乳视频| 中文资源天堂在线| 天堂动漫精品| 色av中文字幕| 女人高潮潮喷娇喘18禁视频| 亚洲欧美日韩高清专用| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站| 久久久精品大字幕| 久久99热这里只有精品18| 国产激情久久老熟女| 午夜福利高清视频| 久久久久国内视频| 婷婷精品国产亚洲av| 麻豆国产97在线/欧美 | 国产午夜精品论理片| 舔av片在线| 女人爽到高潮嗷嗷叫在线视频| 俄罗斯特黄特色一大片| 一区二区三区国产精品乱码| 国产一区二区在线av高清观看| 99精品在免费线老司机午夜| 久久精品影院6| 啦啦啦韩国在线观看视频| 波多野结衣高清作品| 中文字幕最新亚洲高清| 国产免费av片在线观看野外av| www国产在线视频色| 此物有八面人人有两片| 成年人黄色毛片网站| 欧美日韩精品网址| 岛国在线免费视频观看| 国内精品久久久久精免费| 宅男免费午夜| 国产日本99.免费观看| 悠悠久久av| 1024手机看黄色片| 动漫黄色视频在线观看| 日本一二三区视频观看| 亚洲精品在线美女| 国产真实乱freesex| 一进一出抽搐gif免费好疼| 可以在线观看的亚洲视频| 18禁观看日本| 美女 人体艺术 gogo| 精品人妻1区二区| 国产单亲对白刺激| 一级a爱片免费观看的视频| 一卡2卡三卡四卡精品乱码亚洲| 少妇被粗大的猛进出69影院| www.精华液| 他把我摸到了高潮在线观看| 两个人看的免费小视频| 波多野结衣高清作品| 欧美一级毛片孕妇| 亚洲片人在线观看| 久久热在线av| 免费高清视频大片| 成人欧美大片| 一个人免费在线观看的高清视频| 国产在线精品亚洲第一网站| 久久久国产欧美日韩av| 女人被狂操c到高潮| 日韩欧美精品v在线| 欧美日韩福利视频一区二区| 国产99白浆流出| 麻豆av在线久日| 久热爱精品视频在线9| 欧美成人一区二区免费高清观看 | 成人欧美大片| 深夜精品福利| 欧美一级a爱片免费观看看 | 中文字幕久久专区| 亚洲av日韩精品久久久久久密| 国产亚洲精品av在线| 亚洲精品中文字幕一二三四区| 老司机在亚洲福利影院| 欧美成狂野欧美在线观看| 国产高清视频在线播放一区| 一进一出抽搐动态| av天堂在线播放| 欧美一级毛片孕妇| 在线观看一区二区三区| 日韩欧美在线二视频| 精品人妻1区二区| 1024视频免费在线观看| 夜夜看夜夜爽夜夜摸| 欧美乱妇无乱码| 亚洲国产精品合色在线| 国产伦人伦偷精品视频| 成人永久免费在线观看视频| 亚洲av电影在线进入| 国产伦一二天堂av在线观看| 天天添夜夜摸| 亚洲专区字幕在线| 大型av网站在线播放| 在线观看免费视频日本深夜| 亚洲一卡2卡3卡4卡5卡精品中文| 久久欧美精品欧美久久欧美| 狂野欧美激情性xxxx| 国产蜜桃级精品一区二区三区| 男女那种视频在线观看| 国产黄a三级三级三级人| 91九色精品人成在线观看| 国产高清有码在线观看视频 | av在线播放免费不卡| 成人18禁高潮啪啪吃奶动态图| 亚洲国产看品久久| svipshipincom国产片| 99久久精品热视频| 高清在线国产一区| 国产精品,欧美在线| 日日夜夜操网爽| 日韩欧美免费精品| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 激情在线观看视频在线高清| 日本 欧美在线| 熟女电影av网| 日韩有码中文字幕| 日韩欧美精品v在线| www.熟女人妻精品国产| 九色成人免费人妻av| 又紧又爽又黄一区二区| 欧美3d第一页| 九色成人免费人妻av| 少妇熟女aⅴ在线视频| 久久久久国内视频| 12—13女人毛片做爰片一| 又爽又黄无遮挡网站| 久久精品aⅴ一区二区三区四区| 欧美久久黑人一区二区|