• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of the whole process of shock wave overpressure of freefield air explosion

    2019-11-18 02:35:00ZaiqingXueShunpingLiChunliangXinLipingShiHongbinWu
    Defence Technology 2019年5期

    Zai-qing Xue, Shunping Li, Chun-liang Xin, Li-ping Shi, Hong-bin Wu

    Beijing Institute of Space Long March Vehicle, Beijing,100076, China

    Keywords:Air explosion Shock wave overpressure Free field Experimental verification Numerical simulation

    ABSTRACT The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem. It is generally considered that the waveform consists of overpressure peak, positive pressure zone and negative pressure zone. Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law. However, there are few models that can predict the whole waveform. The whole process of explosion shock wave overpressure, which was expressed as the product of the three factor functions of peak, attenuation and oscillation, was proposed in the present work. According to the principle of explosion similarity, the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure. Parametric numerical simulations of free-field air explosions were conducted. By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves, the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation.

    1. Introduction

    The waveform structure of the air explosion shock wave is generally considered to consist of overpressure peak, positive pressure zone and negative pressure zone, as shown in Fig. 1, in which, the overpressure peak is the most concerned, followed by the positive pressure action time and pressure decay law.As for the negative pressure zone and the subsequent oscillation zone, there is few research information published.

    Many scholars have carried out research on the overpressure and propagation laws of explosive shock waves,and summarized a number of overpressure experience and semi-empirical formulas[1?5].The formulas often used to calculate overpressure are Henrch formula[1],Brode formula[2]and Friedlander formula[3].In 1984,based on a large number of experimental data, Kingery [4,6and7]put forward the Kingery-Bulmash model to calculate overpressure, which has been widely used. After a series of tests, the Kingery-Bulmash model was modified by Kingery in 1998 [8,9]which makes the far-field overpressure prediction much higher than before.

    All these formulas assume that positive pressure decays exponentially,and do not consider the role of negative pressure zone.In the far-field of air explosion shock wave, the structural response might be influenced by both the positive and negative phases of the pressure pulse, and their interaction with the structure [10].Regarding the negative pressure zone, Martin Larcher [11]uses a double-fold line to approximate the pressure in the negative pressure zone, and the negative pressure peak value is given as:

    where w is the TNT equivalent of the charge and the unit is kg,R is the distance from detonation and the unit is m, and pmis overpressure and the unit is MPa.When the overpressure peak is lower than -0.01 MPa,it is limited to -0.01 MPa.Because it is too simple that the double-fold line model divides the duration of the negative pressure area equally,there will be a big deviation from the actual situation.

    Fig.1. Typical waveform structure of the air explosion shock wave.

    At present there is no model that can predict the whole process of shock wave overpressure under free-field air explosion. And in the research of damage and protection, in order to obtain the mechanical response of the target or equipment under impact, it is necessary to input accurate time-space distribution data of the shock wave,including the negative pressure region waveform and even the subsequent oscillation data.Therefore,the research on the shock wave modeling of the whole process is very important.In the present work,a formula,which was expressed as the product of the three factor functions of peak, attenuation and oscillation, was established to predict the shock wave overpressure of free-field air explosion. In this formula, the scaled parameters were absorbed and well fitted by numerical data. The results obtained from the formula are consistent with the data of numerical simulation models,which indicates that the formula can accurately predict the shock wave overpressure of free-field air explosion at different times and distances.The new formula can be used to calculate the shock wave overpressure of free-field air explosion, including overpressure peak, the positive pressure action time and pressure decay law, and the negative pressure zone and the subsequent oscillation zone.

    2. Modeling

    At a certain point in the free field of air explosion, the shock waveform is generally combined by the attenuation of the overpressure peak and the periodic oscillation of the gas medium,which can be expressed by the following formula,

    where pmis the overpressure peak,the function f(tg1)describes the attenuation of the overpressure with time, and the function g(tg2)describes the periodic oscillation of the pressure with time.tg1and tg2are two scaled-time.The formation and propagation of explosive shock waves in the air conform to the law of explosion similarity.In order to make Equation(2)applicable to different explosive charges,scaled-parameters are needed to describe the distance and time.The scaled-distance is defined as

    where R is the distance from the detonation point, w is the TNT equivalent of the explosive. As w increases or R changes, the duration and attenuation of the shock wave will change accordingly. In order to comply with the law of explosion similarity, the sum of the indices of R and ffiffiffiw3p in the scaled-time definition must be 1. So the scaled-time should be defined as

    where n is a constant, and t is time. When different n values are taken, different kinds of scaled-time definitions are formed.

    In practical applications,the overpressure peak of Equation(2)is usually expressed in the following form,

    where Rgis the scaled-distance between the point and the detonation point. s1, s2, and s3are constants.

    The function f etg1T in Equation (2) describes the attenuation of pressure with time.The form of the negative exponential function is taken here,

    where a, b, and k are constants. The units of a and tg1should be correspond to each other and are reciprocal to each other. tg1is a scaled-time formed by Equation (4) with different value of n.

    The function g(tg2) in Equation (2) describes the periodic oscillation of pressure with time, which is expressed in the form of a cosine function.

    where c and q are constants,the unit of c should correspond to tg2.tg2is another scaled-time formed by Equation (4) with difference value of n.The denominator cosq is only for satisfying the result of 1 when tg2is 0.

    Substituting Equation (6) and Equation (7) into Equation (2),

    3. Parameter determination of the model

    With the development of numerical method, many explosion problems has been solved by numerical simulation [12?14]. Explosion shock wave can be solved more accurately [11,15?17].Generally speaking, the software based on finite difference and finite volume method,such as AUTODYN,Air3D,DYTRAN,DYSMAS and so on, is more accurate than finite element software, such as LS-DYNA and EUROPLEXUS.The AUTODYN numerical results of the free-field explosion are used to determine the parameters of the shock wave model.

    In order to simulate the spherical symmetry explosion, a twodimensional axisymmetric wedge model in Autodyn2D [18] is used to establish a small hollow wedge-shaped charge with an inner radius of 2 mm and an outer radius of 106 mm.The corresponding spherical TNT charge is 8 kg.The same modeling method is used for air domain, which has an inner radius on the outer surface of the charge and an outer radius of 20 m. The established numerical model is shown in Fig. 2. The grid number of explosion and air domain is 52 and 9949 respectively.The interval of the grid is 2 mm.

    Fig. 2. Numerical model of free-field explosion.

    Air and TNT are simulated by Euler processor.Air mass density is 1.225 kg m-3, air initial internal energy is 2.068×105kJ kg-1, and ideal gas constant is 1.4, which are standard constants of air and TNT from Autodyn2D material library.And air is presumed to have equation of state of ideal gas. The TNT charge detonation product adopts the JWL equation of state, that is, the pressure of the detonation product is

    where E is the unit mass internal energy,V is the specific volume.A,B,R1,R2,and u are constants.The first term on the right end of the equation plays a major role in the high pressure section.The second term plays a major role in the medium pressure section. And the third term represents the low pressure section.In the later stage of the expansion of the detonation product,the effects of the first and second term in the equation are negligible.In order to speed up the solution,the explosive equation of state is converted from the JWL equation of state to a simpler ideal gas state equation. The JWL equation of state for explosive detonation products is taken from the AUTODYN material database, seeing Table 1. Where r0Tis the initial density of TNT charge, D is the detonation velocity, E0is the initial internal energy, and PCJis the detonation pressure.

    3.1. Parameter determination of pm

    According to experimental data of TNT shock wave overpressure under free-field air explosion,the following similarity ratio formula was proposed by Henrch [1],

    By numerical simulation,a formula of shock wave overpressure of infinite ideal gas was fitted by Brode as follows [2],where the unit of pmis MPa, and the unit of scaled-distance Rgis

    Fig. 3. Numerical overpressure at different positions from the detonation point.

    According to Ruce Wang[19],the overpressure peak of spherical charge explosion can be calculated by the following formula,where the unit of pmis MPa, and the unit of RgisThe comparison shows that the formula is very close to the simulation result of AUTODYN when Rgis larger than 0.5. And no change is needed.The values of s1,s2,and s3in equation(12)should be 0.082,0.26 and 0.69 respectively. The formula is no longer applicable when Rgis smaller than 0.5.

    3.2. Parameter determination of g(tg2)

    The parameter values of g(tg2) and f(tg1) require reliable data support. When the accurate and credible experimental data is insufficient,the rigorous numerical results are a good basis.In this paper, Fig. 2, the pressure waveform calculated by AUTODYN, is used to determine the parameters. The action time of the positive and the negative pressure zone of the shock wave is determined by the factor function g(tg2), and there are clear numerical results. So parameters of g(tg2) is determined firstly. Parameters of f(tg1) are further determined based on the parameters.

    In the function g(tg2),the relationship between the positive and negative pressure action time and the distance is determined by tg2.According to the comparative analysis and fitting of the curve data on the values at different distances,the value of n in Equation(4)is determined to be 0.75. At this time

    In the function g(tg2), the oscillation period of the pressure is determined by c, that is, the boundary point between the positive pressure zone and the negative pressure zone is determined. The distribution of the action time of the positive and negative pressure zones is determined by q. When q is p/4, the positive pressureaction time is 1/4 of the negative pressure action time.Based on the extrapolation analysis of the numerical curve shown in Fig.4,q?p/4 is considered to be suitable.Similarly,according to the oscillation period calculated from numerical results, the value of c is 0.9575 when the time unit is ms,the distance unit is m,the mass unit is kg,and the pressure unit is MPa.Then

    Table 1 JWL equation of state parameters of TNT detonation product.

    Fig. 4. Extrapolation analysis of numerical data with scaled-distance of 1.

    3.2.1. Parameter determination of f(tg1)

    In the function f(tg1), tg1is closely related to the shape of the shock wave attenuation curve changing with the distance. According to the comparative analysis of the numerical curve at different distances, it is considered that a value of 1.75 for n in Equation(4)is suitable when the time unit is ms,the distance unit is m, and the mass unit is kg. Then

    In the function f(tg1),the variation law of the pressure waveform at different times and different distances is determined by a and k.According to the analysis of the numerical curve Fig.2,the values of a and k are 1.915 and 1.4 respectively when the time unit is ms,the distance unit is m,the mass unit is kg,and the pressure unit is MPa.The value is of b is mainly used to ensure that the value of f(tg1)is 1 when tg1is 0.And its value has a certain influence on the waveform.This paper takes 0.13 as b. So there is

    So far,all the parameters in the free-field explosion shock wave model have been determined. Substituting Equations (13)e(16)into Equation (2),

    Substituting Equation (3) into Equation (12),

    Substituting equation (18) into Equation (17),

    where t≥0. P is 0 when t<0.

    This formula(19) is the model of the free-field pressure of the explosion shock wave.It should be noted that the model is valid in the range of the scaled-distance bigger than 0.5.

    4. Verification

    4.1. Experimental verification of the numerical method

    In order to confirm the accuracy of AUTODYN numerical method,a near-surface explosion experiment is implemented.The near-surface explosion shock wave will experience more complicated conditions than free-field explosions, such as free-field propagation, ground positive reflection, ground oblique reflection and Mach reflection,which make the verification of the numerical method more rigorous.

    A two-dimensional axisymmetric model of AUTODYN is used to establish a cylinder-shaped TNT with a charge of 5 kg.The height from the ground is 1.5 m.The air domain has a radius of 20 m and a height of 7.5 m. The established numerical model is shown in Fig. 5(a). The numerical shock wave propagation and the groundgenerated Mach reflection process are shown in Fig. 5(b) and (c).The result of overpressure curve is shown in Fig.7(a).

    The experiment of 5 kg cylindrical TNT near ground explosion was carried out. The experimental setup is shown in Fig. 6. The height of the TNT charge from the ground is 1.5 m.Two sensors are placed at 3 m, 5 m, 7 m and 9 m from the charge respectively. The pressure sensor is used to test the horizontal shock wave overpressure curve. The measured ground reflection overpressure curves are shown in Fig. 7(b).

    From Figs.7(a)and Fig.6(b),the peak value and propagation of the shock wave calculated by AUTODYN are in good agreement with the experimental results.The simulation data is considered to be credible.

    Fig. 5. Numerical model of free-field explosion.

    Fig. 6. Experiment setup diagram.

    4.2. Numerical verification

    From the detonation moment,defining the scaled-time tdgwhen the front edge of the shock wave reaches a certain position is

    where tdis the time when the front edge of the shock wave reaches a certain position,and the unit is ms.

    According to the relationship between the position of the shock wave front and the time calculated by the numerical value, the scaled-distance of the shock wave reaching at a certain scaled-time can be fitted,and when tdg≥0.1,

    where tdgis the scaled-time.When 0

    Substituting Equations (3) and (18) into equation (19)

    Let the total time from the detonation time be tz, then the relationship between the time t in Equation(17)and the total time in Equation (20) is The equations, consisting of Equations (17), (20) and (21) can completely predict the spatiotemporal characteristics of the freefield overpressure of the explosion shock wave. In order to visually display the accuracy of the model,the results of the calculation can be compared with the results of the numerical method. Fig. 8 shows the pressure curves of shock waves at different distances of 64 kg spherical TNT charge of analytical and simulated methods,respectively. Fig. 9 shows the analytical and simulated curves of 1 kg spherical TNT charge. As can be seen from the curves in the figures, the two curves are in very good agreement, respectively.

    Fig.9. Comparison of shock wave pressure-time curves of 1 kg TNT charge at multiple distances of analytical and simulated calculations.

    Fig. 7. Numerical(a) and experimental(b) overpressure curve.

    Fig.10. Shock wave overpressure-distance curves at multiple times.

    Fig.11. Shock wave overpressure-time curves at multiple distances.

    In addition, equations (17), (20) and (21) can describe the relationship of shock wave pressure and distance at different times,and the relationship of shock wave pressure and time at different distances,which are shown as Fig.10 and Fig.11 respectively.Both the explosion is 8 kg spherical TNT charge.The shock wave pressure at different times and at different distances can be displayed and studied in three dimensions.

    5. Conclusion

    A new model establishment method of shock wave overpressure under free-field air explosion was studied in this paper.The free-field explosion shock wave overpressure was expressed as a product of the three factor functions of peak, attenuation and oscillation. The attenuation of the explosion shock wave conforms to the law of negative exponential decay,and the initial stage of the oscillation process basically conforms to the law of cosine oscillation.Further,the parameters of a,b,k,c and q were well fitted by the numerical data.By comparing the calculated results from Equations(17), (20) and (21) with numerical data, it was found that the analytical and simulated curves are in very good agreement,which indicates that the equations can accurately calculate the shock wave overpressure under free-field air explosion.Furthermore,the equations can realize three-dimensional display of the shock wave pressure with time and distance.

    The new formulas of this model can predict shock wave pressure well of the free-field air explosion. But because that careful parameter determination is through simulation, and the ground reflection of explosion shock wave is so complex that the measurement of free-field overpressure in experiment is very difficult,new measurement methods should be developed and a wide range of test conditions should be carried out to modify the parameters in the formulas.Focusing on these issues,further investigation will be conducted in our succedent research based on the analytical model.

    Acknowledgments

    This work was partially sponsored by Foundation of PLA Rocket Force.

    多毛熟女@视频| 精品人妻在线不人妻| 青春草国产在线视频| 美女国产高潮福利片在线看| 亚洲欧美日韩另类电影网站| 午夜激情av网站| 老司机亚洲免费影院| 大香蕉97超碰在线| 国产片特级美女逼逼视频| 一边摸一边做爽爽视频免费| 免费看av在线观看网站| 18禁动态无遮挡网站| 97在线人人人人妻| 久久精品国产亚洲av天美| 国产在线一区二区三区精| 熟妇人妻不卡中文字幕| 久久亚洲国产成人精品v| 高清黄色对白视频在线免费看| 亚洲美女视频黄频| 日本av手机在线免费观看| 人妻系列 视频| av视频免费观看在线观看| 国产熟女欧美一区二区| xxx大片免费视频| 亚洲欧美清纯卡通| 一级爰片在线观看| 亚洲精品美女久久久久99蜜臀 | 欧美日韩精品成人综合77777| 中文字幕最新亚洲高清| 黄色视频在线播放观看不卡| 免费看不卡的av| 日韩av不卡免费在线播放| 国国产精品蜜臀av免费| 99热6这里只有精品| 80岁老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 美女xxoo啪啪120秒动态图| 少妇熟女欧美另类| 精品人妻熟女毛片av久久网站| 国产黄频视频在线观看| 亚洲精品av麻豆狂野| 欧美成人精品欧美一级黄| 深夜精品福利| 视频区图区小说| 亚洲欧美日韩卡通动漫| 极品少妇高潮喷水抽搐| 国产福利在线免费观看视频| 精品一区在线观看国产| 欧美丝袜亚洲另类| 国产成人精品福利久久| 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 少妇的逼水好多| 视频在线观看一区二区三区| 色视频在线一区二区三区| av女优亚洲男人天堂| 国产色婷婷99| 久久久亚洲精品成人影院| √禁漫天堂资源中文www| 亚洲国产色片| av视频免费观看在线观看| 1024视频免费在线观看| 亚洲国产精品一区三区| 国产一级毛片在线| 免费高清在线观看日韩| 色吧在线观看| 春色校园在线视频观看| 考比视频在线观看| 在线观看免费日韩欧美大片| 99久久综合免费| 中文字幕亚洲精品专区| 岛国毛片在线播放| 国产成人91sexporn| 人妻人人澡人人爽人人| 国产xxxxx性猛交| 久久99精品国语久久久| 亚洲欧美成人综合另类久久久| 免费大片18禁| 国产精品一区www在线观看| 天天躁夜夜躁狠狠躁躁| 国产成人精品久久久久久| 最近最新中文字幕免费大全7| 国语对白做爰xxxⅹ性视频网站| 涩涩av久久男人的天堂| 男的添女的下面高潮视频| 男女国产视频网站| 中文字幕制服av| 久久久国产精品麻豆| 精品一区二区免费观看| 人妻少妇偷人精品九色| 久久久久久久久久成人| 婷婷色综合大香蕉| 中文字幕精品免费在线观看视频 | 伦理电影免费视频| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 精品久久久久久电影网| 午夜激情av网站| 日韩在线高清观看一区二区三区| 亚洲av国产av综合av卡| av福利片在线| av线在线观看网站| 亚洲国产毛片av蜜桃av| 国产在线视频一区二区| 高清黄色对白视频在线免费看| 国产男女内射视频| 热re99久久精品国产66热6| 亚洲在久久综合| 最新中文字幕久久久久| 老司机亚洲免费影院| 亚洲人成网站在线观看播放| 国产极品粉嫩免费观看在线| 国产亚洲精品久久久com| 日韩视频在线欧美| 一区在线观看完整版| 国产成人a∨麻豆精品| 丁香六月天网| 只有这里有精品99| av电影中文网址| 免费少妇av软件| 一级片免费观看大全| 黑人欧美特级aaaaaa片| 乱码一卡2卡4卡精品| 男女下面插进去视频免费观看 | 欧美精品高潮呻吟av久久| 天天操日日干夜夜撸| 狂野欧美激情性xxxx在线观看| 亚洲精品456在线播放app| 女性生殖器流出的白浆| xxx大片免费视频| 秋霞在线观看毛片| 老司机影院毛片| 国产男人的电影天堂91| 啦啦啦啦在线视频资源| 全区人妻精品视频| 黄片播放在线免费| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 啦啦啦中文免费视频观看日本| 精品99又大又爽又粗少妇毛片| 国产av码专区亚洲av| 有码 亚洲区| 丰满饥渴人妻一区二区三| 九草在线视频观看| 成人国产av品久久久| 久久午夜综合久久蜜桃| 久久久久久人人人人人| 久久人妻熟女aⅴ| 国产欧美另类精品又又久久亚洲欧美| 国产一级毛片在线| 交换朋友夫妻互换小说| 国产精品久久久久久av不卡| 男人添女人高潮全过程视频| 美女主播在线视频| 一区二区三区乱码不卡18| 乱码一卡2卡4卡精品| 欧美日韩综合久久久久久| 国产精品久久久久久av不卡| 国产片特级美女逼逼视频| 狠狠精品人妻久久久久久综合| 一级爰片在线观看| 大陆偷拍与自拍| 看非洲黑人一级黄片| 久久久久久久精品精品| 巨乳人妻的诱惑在线观看| 婷婷色麻豆天堂久久| 国精品久久久久久国模美| 欧美精品高潮呻吟av久久| 18在线观看网站| 免费观看无遮挡的男女| 午夜视频国产福利| 国产一区二区在线观看av| 欧美精品亚洲一区二区| 老司机影院毛片| 欧美国产精品一级二级三级| 国产深夜福利视频在线观看| 蜜臀久久99精品久久宅男| 久久韩国三级中文字幕| 免费在线观看完整版高清| 少妇人妻 视频| 男人爽女人下面视频在线观看| 久久av网站| 日韩制服骚丝袜av| 99热这里只有是精品在线观看| 亚洲成色77777| 精品久久国产蜜桃| 高清在线视频一区二区三区| 日本与韩国留学比较| 日韩欧美精品免费久久| 亚洲成av片中文字幕在线观看 | 国产欧美日韩综合在线一区二区| 最近的中文字幕免费完整| 亚洲中文av在线| 欧美精品国产亚洲| 久久精品国产鲁丝片午夜精品| av网站免费在线观看视频| 91在线精品国自产拍蜜月| 一个人免费看片子| 精品国产乱码久久久久久小说| 精品一区二区三区视频在线| 人人妻人人澡人人爽人人夜夜| 九色成人免费人妻av| 晚上一个人看的免费电影| 国产免费福利视频在线观看| 美女福利国产在线| 久久这里有精品视频免费| 免费在线观看黄色视频的| 美女国产高潮福利片在线看| www.av在线官网国产| 极品人妻少妇av视频| 我要看黄色一级片免费的| 精品国产一区二区三区四区第35| 少妇被粗大猛烈的视频| 99久久综合免费| 久久久精品免费免费高清| 日韩伦理黄色片| 水蜜桃什么品种好| 99国产综合亚洲精品| 成人漫画全彩无遮挡| 精品亚洲成国产av| 最新中文字幕久久久久| 久久精品久久久久久久性| 熟女电影av网| 免费观看无遮挡的男女| 亚洲性久久影院| 五月玫瑰六月丁香| 黑人巨大精品欧美一区二区蜜桃 | 晚上一个人看的免费电影| 亚洲一码二码三码区别大吗| 国产免费一区二区三区四区乱码| 国产探花极品一区二区| 日本猛色少妇xxxxx猛交久久| 精品99又大又爽又粗少妇毛片| 国产精品 国内视频| 亚洲成人手机| 精品人妻熟女毛片av久久网站| 国产国拍精品亚洲av在线观看| 三上悠亚av全集在线观看| 久久免费观看电影| 亚洲精品国产av成人精品| 亚洲久久久国产精品| 高清av免费在线| 自线自在国产av| 亚洲av国产av综合av卡| 亚洲国产精品成人久久小说| 国产av码专区亚洲av| 午夜免费鲁丝| 国产成人午夜福利电影在线观看| 久久人人爽人人爽人人片va| 又黄又爽又刺激的免费视频.| 五月伊人婷婷丁香| 99热这里只有是精品在线观看| 成年美女黄网站色视频大全免费| 亚洲成人手机| 精品酒店卫生间| 精品一区在线观看国产| 内地一区二区视频在线| av.在线天堂| 国产精品免费大片| 国产片特级美女逼逼视频| 亚洲第一av免费看| 大话2 男鬼变身卡| 好男人视频免费观看在线| 亚洲精品一二三| 国产精品国产三级国产av玫瑰| 婷婷成人精品国产| 91国产中文字幕| 丝袜脚勾引网站| 国产男女超爽视频在线观看| 日日爽夜夜爽网站| 午夜福利,免费看| 国产激情久久老熟女| 亚洲av在线观看美女高潮| 国产精品偷伦视频观看了| 亚洲欧美中文字幕日韩二区| 成年美女黄网站色视频大全免费| 亚洲综合精品二区| 亚洲av电影在线进入| 国产成人av激情在线播放| 精品视频人人做人人爽| 在线观看三级黄色| 国产日韩欧美在线精品| 少妇的丰满在线观看| 中文字幕亚洲精品专区| 五月伊人婷婷丁香| 久热久热在线精品观看| 国产一区二区三区av在线| 97人妻天天添夜夜摸| 99国产综合亚洲精品| 免费观看无遮挡的男女| 黄色配什么色好看| 久久青草综合色| 另类亚洲欧美激情| 一级毛片电影观看| av视频免费观看在线观看| 亚洲精品色激情综合| 免费黄网站久久成人精品| 香蕉国产在线看| 亚洲人与动物交配视频| 22中文网久久字幕| 国产 精品1| 在线天堂最新版资源| 国产成人免费无遮挡视频| 欧美人与善性xxx| 各种免费的搞黄视频| 麻豆精品久久久久久蜜桃| 女人久久www免费人成看片| 中文精品一卡2卡3卡4更新| 曰老女人黄片| 欧美老熟妇乱子伦牲交| 国产一区二区在线观看日韩| 18禁在线无遮挡免费观看视频| 又黄又爽又刺激的免费视频.| 亚洲欧美一区二区三区黑人 | 久久精品夜色国产| 日韩av在线免费看完整版不卡| 老司机影院成人| 国产av码专区亚洲av| 热re99久久国产66热| 免费大片黄手机在线观看| 久久综合国产亚洲精品| 久久毛片免费看一区二区三区| 大片电影免费在线观看免费| 男人添女人高潮全过程视频| 国产亚洲欧美精品永久| 男女无遮挡免费网站观看| 色吧在线观看| 欧美精品高潮呻吟av久久| 一级毛片 在线播放| 九九爱精品视频在线观看| 国产 一区精品| 建设人人有责人人尽责人人享有的| 成年美女黄网站色视频大全免费| 老司机亚洲免费影院| 狠狠婷婷综合久久久久久88av| 久久午夜福利片| 五月开心婷婷网| 亚洲色图综合在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩卡通动漫| videosex国产| 美女内射精品一级片tv| 国产高清不卡午夜福利| videossex国产| 日韩熟女老妇一区二区性免费视频| 天美传媒精品一区二区| 精品少妇黑人巨大在线播放| 久久97久久精品| 亚洲成av片中文字幕在线观看 | 性色avwww在线观看| 黑丝袜美女国产一区| 大片免费播放器 马上看| 久久久国产精品麻豆| 国产成人免费无遮挡视频| 黄色配什么色好看| 黄色毛片三级朝国网站| 亚洲精品美女久久久久99蜜臀 | 日本免费在线观看一区| av电影中文网址| 插逼视频在线观看| 亚洲国产最新在线播放| 久久人妻熟女aⅴ| 亚洲四区av| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 狠狠婷婷综合久久久久久88av| 夜夜骑夜夜射夜夜干| 肉色欧美久久久久久久蜜桃| 免费观看性生交大片5| 在线观看免费视频网站a站| 91午夜精品亚洲一区二区三区| 亚洲av国产av综合av卡| 两个人看的免费小视频| 久久久a久久爽久久v久久| 日韩,欧美,国产一区二区三区| 欧美另类一区| 精品亚洲成a人片在线观看| 在线观看免费日韩欧美大片| 9191精品国产免费久久| 亚洲国产精品999| 国产黄色免费在线视频| www.熟女人妻精品国产 | 视频在线观看一区二区三区| 日韩欧美精品免费久久| 18+在线观看网站| 亚洲伊人久久精品综合| 秋霞在线观看毛片| 少妇高潮的动态图| 夫妻午夜视频| 亚洲av综合色区一区| 永久免费av网站大全| 国产老妇伦熟女老妇高清| 亚洲av欧美aⅴ国产| 欧美精品亚洲一区二区| 久久99蜜桃精品久久| 国产精品久久久久久精品古装| 五月伊人婷婷丁香| 精品亚洲乱码少妇综合久久| 欧美精品一区二区免费开放| 91精品国产国语对白视频| 国产精品一区二区在线不卡| 建设人人有责人人尽责人人享有的| 黑丝袜美女国产一区| 天堂8中文在线网| 美女中出高潮动态图| 日本vs欧美在线观看视频| 久久99热6这里只有精品| 精品熟女少妇av免费看| 国产综合精华液| 国产xxxxx性猛交| 26uuu在线亚洲综合色| 欧美国产精品va在线观看不卡| 欧美日本中文国产一区发布| 亚洲伊人久久精品综合| 欧美丝袜亚洲另类| 天堂中文最新版在线下载| 久久 成人 亚洲| 午夜免费男女啪啪视频观看| 亚洲伊人久久精品综合| 少妇人妻精品综合一区二区| 久久女婷五月综合色啪小说| 丰满迷人的少妇在线观看| 又黄又爽又刺激的免费视频.| 如日韩欧美国产精品一区二区三区| 最近的中文字幕免费完整| 国产精品久久久久久久电影| 在线观看国产h片| 国产xxxxx性猛交| 99热国产这里只有精品6| 性色av一级| 视频在线观看一区二区三区| 欧美xxxx性猛交bbbb| 22中文网久久字幕| 日本欧美国产在线视频| 夫妻性生交免费视频一级片| 啦啦啦视频在线资源免费观看| 黄色配什么色好看| 午夜免费鲁丝| 亚洲精品美女久久久久99蜜臀 | 最后的刺客免费高清国语| 久久久国产精品麻豆| 热re99久久国产66热| 捣出白浆h1v1| 久久精品久久精品一区二区三区| 青春草视频在线免费观看| 欧美精品国产亚洲| 久久狼人影院| 亚洲内射少妇av| 欧美精品高潮呻吟av久久| 中国三级夫妇交换| 丁香六月天网| 日韩大片免费观看网站| av黄色大香蕉| 国产精品国产三级国产av玫瑰| 纯流量卡能插随身wifi吗| 亚洲欧美精品自产自拍| 美国免费a级毛片| 不卡视频在线观看欧美| 校园人妻丝袜中文字幕| 亚洲性久久影院| 久久人人爽av亚洲精品天堂| 亚洲精华国产精华液的使用体验| 日韩不卡一区二区三区视频在线| 性色av一级| 成人手机av| 老司机亚洲免费影院| 精品人妻熟女毛片av久久网站| 伦理电影免费视频| 日韩欧美一区视频在线观看| 视频中文字幕在线观看| 黄色配什么色好看| 亚洲 欧美一区二区三区| 亚洲性久久影院| 久久久欧美国产精品| 色吧在线观看| 亚洲图色成人| 美女主播在线视频| 亚洲av综合色区一区| av在线观看视频网站免费| 侵犯人妻中文字幕一二三四区| 中文天堂在线官网| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在| 亚洲精品国产av成人精品| 亚洲精品自拍成人| 高清毛片免费看| 亚洲综合色网址| 欧美+日韩+精品| 一二三四中文在线观看免费高清| 午夜福利网站1000一区二区三区| 国产成人欧美| 精品午夜福利在线看| 欧美激情 高清一区二区三区| 丝袜美足系列| 国产精品 国内视频| 国产精品蜜桃在线观看| 啦啦啦在线观看免费高清www| 色5月婷婷丁香| 18禁在线无遮挡免费观看视频| 伊人亚洲综合成人网| 飞空精品影院首页| 欧美精品国产亚洲| 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 国产 一区精品| 少妇精品久久久久久久| 国产综合精华液| 全区人妻精品视频| 国产69精品久久久久777片| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻在线不人妻| 国精品久久久久久国模美| 最近最新中文字幕大全免费视频 | 日日啪夜夜爽| 亚洲成av片中文字幕在线观看 | 亚洲精华国产精华液的使用体验| 91久久精品国产一区二区三区| 国产淫语在线视频| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 中文字幕免费在线视频6| 日本与韩国留学比较| 欧美成人精品欧美一级黄| 国产国语露脸激情在线看| 十八禁高潮呻吟视频| 亚洲欧美成人综合另类久久久| 久久久久久久国产电影| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av片在线观看秒播厂| 18禁裸乳无遮挡动漫免费视频| 久久精品熟女亚洲av麻豆精品| 高清av免费在线| 新久久久久国产一级毛片| 成人国语在线视频| 日韩视频在线欧美| 久久久国产一区二区| 久久久a久久爽久久v久久| 国产精品国产三级国产av玫瑰| 午夜影院在线不卡| 亚洲欧洲国产日韩| 欧美精品高潮呻吟av久久| 久久人人爽人人爽人人片va| av视频免费观看在线观看| 日本爱情动作片www.在线观看| 女性生殖器流出的白浆| 嫩草影院入口| 天堂中文最新版在线下载| 最近2019中文字幕mv第一页| freevideosex欧美| 亚洲精品中文字幕在线视频| 欧美日韩精品成人综合77777| 丝袜在线中文字幕| 免费播放大片免费观看视频在线观看| av天堂久久9| 秋霞伦理黄片| 亚洲精品日韩在线中文字幕| 国产精品久久久久久久久免| 国产成人一区二区在线| 国产av国产精品国产| 国产有黄有色有爽视频| 欧美日韩av久久| 免费高清在线观看视频在线观看| 欧美 日韩 精品 国产| 视频区图区小说| 高清毛片免费看| 久久久久视频综合| kizo精华| 免费大片18禁| 国产在线免费精品| 一级毛片我不卡| 亚洲国产精品一区二区三区在线| 熟女人妻精品中文字幕| 汤姆久久久久久久影院中文字幕| 在线观看www视频免费| 人人妻人人澡人人看| 国产亚洲精品第一综合不卡 | 丝袜在线中文字幕| www.色视频.com| 国产成人午夜福利电影在线观看| 亚洲欧美清纯卡通| 五月伊人婷婷丁香| 午夜免费男女啪啪视频观看| 亚洲精品国产av成人精品| 观看av在线不卡| 国产午夜精品一二区理论片| 午夜福利影视在线免费观看| 国产精品成人在线| 美女中出高潮动态图| 好男人视频免费观看在线| 两性夫妻黄色片 | 亚洲av.av天堂| 色5月婷婷丁香| 曰老女人黄片| 亚洲av.av天堂| 成年人免费黄色播放视频| 亚洲精品第二区| 大码成人一级视频| 久久久久久久久久久免费av| 国产精品一二三区在线看| 国产国拍精品亚洲av在线观看| 免费高清在线观看日韩| 欧美亚洲日本最大视频资源| 欧美少妇被猛烈插入视频| 国产av码专区亚洲av| 中文字幕制服av| 国产日韩一区二区三区精品不卡| 亚洲一码二码三码区别大吗| 精品亚洲乱码少妇综合久久| 精品少妇久久久久久888优播| 久久免费观看电影| 少妇精品久久久久久久| 在线观看免费高清a一片| 只有这里有精品99| 在线观看免费视频网站a站| 午夜福利影视在线免费观看|