• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of the whole process of shock wave overpressure of freefield air explosion

    2019-11-18 02:35:00ZaiqingXueShunpingLiChunliangXinLipingShiHongbinWu
    Defence Technology 2019年5期

    Zai-qing Xue, Shunping Li, Chun-liang Xin, Li-ping Shi, Hong-bin Wu

    Beijing Institute of Space Long March Vehicle, Beijing,100076, China

    Keywords:Air explosion Shock wave overpressure Free field Experimental verification Numerical simulation

    ABSTRACT The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem. It is generally considered that the waveform consists of overpressure peak, positive pressure zone and negative pressure zone. Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law. However, there are few models that can predict the whole waveform. The whole process of explosion shock wave overpressure, which was expressed as the product of the three factor functions of peak, attenuation and oscillation, was proposed in the present work. According to the principle of explosion similarity, the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure. Parametric numerical simulations of free-field air explosions were conducted. By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves, the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation.

    1. Introduction

    The waveform structure of the air explosion shock wave is generally considered to consist of overpressure peak, positive pressure zone and negative pressure zone, as shown in Fig. 1, in which, the overpressure peak is the most concerned, followed by the positive pressure action time and pressure decay law.As for the negative pressure zone and the subsequent oscillation zone, there is few research information published.

    Many scholars have carried out research on the overpressure and propagation laws of explosive shock waves,and summarized a number of overpressure experience and semi-empirical formulas[1?5].The formulas often used to calculate overpressure are Henrch formula[1],Brode formula[2]and Friedlander formula[3].In 1984,based on a large number of experimental data, Kingery [4,6and7]put forward the Kingery-Bulmash model to calculate overpressure, which has been widely used. After a series of tests, the Kingery-Bulmash model was modified by Kingery in 1998 [8,9]which makes the far-field overpressure prediction much higher than before.

    All these formulas assume that positive pressure decays exponentially,and do not consider the role of negative pressure zone.In the far-field of air explosion shock wave, the structural response might be influenced by both the positive and negative phases of the pressure pulse, and their interaction with the structure [10].Regarding the negative pressure zone, Martin Larcher [11]uses a double-fold line to approximate the pressure in the negative pressure zone, and the negative pressure peak value is given as:

    where w is the TNT equivalent of the charge and the unit is kg,R is the distance from detonation and the unit is m, and pmis overpressure and the unit is MPa.When the overpressure peak is lower than -0.01 MPa,it is limited to -0.01 MPa.Because it is too simple that the double-fold line model divides the duration of the negative pressure area equally,there will be a big deviation from the actual situation.

    Fig.1. Typical waveform structure of the air explosion shock wave.

    At present there is no model that can predict the whole process of shock wave overpressure under free-field air explosion. And in the research of damage and protection, in order to obtain the mechanical response of the target or equipment under impact, it is necessary to input accurate time-space distribution data of the shock wave,including the negative pressure region waveform and even the subsequent oscillation data.Therefore,the research on the shock wave modeling of the whole process is very important.In the present work,a formula,which was expressed as the product of the three factor functions of peak, attenuation and oscillation, was established to predict the shock wave overpressure of free-field air explosion. In this formula, the scaled parameters were absorbed and well fitted by numerical data. The results obtained from the formula are consistent with the data of numerical simulation models,which indicates that the formula can accurately predict the shock wave overpressure of free-field air explosion at different times and distances.The new formula can be used to calculate the shock wave overpressure of free-field air explosion, including overpressure peak, the positive pressure action time and pressure decay law, and the negative pressure zone and the subsequent oscillation zone.

    2. Modeling

    At a certain point in the free field of air explosion, the shock waveform is generally combined by the attenuation of the overpressure peak and the periodic oscillation of the gas medium,which can be expressed by the following formula,

    where pmis the overpressure peak,the function f(tg1)describes the attenuation of the overpressure with time, and the function g(tg2)describes the periodic oscillation of the pressure with time.tg1and tg2are two scaled-time.The formation and propagation of explosive shock waves in the air conform to the law of explosion similarity.In order to make Equation(2)applicable to different explosive charges,scaled-parameters are needed to describe the distance and time.The scaled-distance is defined as

    where R is the distance from the detonation point, w is the TNT equivalent of the explosive. As w increases or R changes, the duration and attenuation of the shock wave will change accordingly. In order to comply with the law of explosion similarity, the sum of the indices of R and ffiffiffiw3p in the scaled-time definition must be 1. So the scaled-time should be defined as

    where n is a constant, and t is time. When different n values are taken, different kinds of scaled-time definitions are formed.

    In practical applications,the overpressure peak of Equation(2)is usually expressed in the following form,

    where Rgis the scaled-distance between the point and the detonation point. s1, s2, and s3are constants.

    The function f etg1T in Equation (2) describes the attenuation of pressure with time.The form of the negative exponential function is taken here,

    where a, b, and k are constants. The units of a and tg1should be correspond to each other and are reciprocal to each other. tg1is a scaled-time formed by Equation (4) with different value of n.

    The function g(tg2) in Equation (2) describes the periodic oscillation of pressure with time, which is expressed in the form of a cosine function.

    where c and q are constants,the unit of c should correspond to tg2.tg2is another scaled-time formed by Equation (4) with difference value of n.The denominator cosq is only for satisfying the result of 1 when tg2is 0.

    Substituting Equation (6) and Equation (7) into Equation (2),

    3. Parameter determination of the model

    With the development of numerical method, many explosion problems has been solved by numerical simulation [12?14]. Explosion shock wave can be solved more accurately [11,15?17].Generally speaking, the software based on finite difference and finite volume method,such as AUTODYN,Air3D,DYTRAN,DYSMAS and so on, is more accurate than finite element software, such as LS-DYNA and EUROPLEXUS.The AUTODYN numerical results of the free-field explosion are used to determine the parameters of the shock wave model.

    In order to simulate the spherical symmetry explosion, a twodimensional axisymmetric wedge model in Autodyn2D [18] is used to establish a small hollow wedge-shaped charge with an inner radius of 2 mm and an outer radius of 106 mm.The corresponding spherical TNT charge is 8 kg.The same modeling method is used for air domain, which has an inner radius on the outer surface of the charge and an outer radius of 20 m. The established numerical model is shown in Fig. 2. The grid number of explosion and air domain is 52 and 9949 respectively.The interval of the grid is 2 mm.

    Fig. 2. Numerical model of free-field explosion.

    Air and TNT are simulated by Euler processor.Air mass density is 1.225 kg m-3, air initial internal energy is 2.068×105kJ kg-1, and ideal gas constant is 1.4, which are standard constants of air and TNT from Autodyn2D material library.And air is presumed to have equation of state of ideal gas. The TNT charge detonation product adopts the JWL equation of state, that is, the pressure of the detonation product is

    where E is the unit mass internal energy,V is the specific volume.A,B,R1,R2,and u are constants.The first term on the right end of the equation plays a major role in the high pressure section.The second term plays a major role in the medium pressure section. And the third term represents the low pressure section.In the later stage of the expansion of the detonation product,the effects of the first and second term in the equation are negligible.In order to speed up the solution,the explosive equation of state is converted from the JWL equation of state to a simpler ideal gas state equation. The JWL equation of state for explosive detonation products is taken from the AUTODYN material database, seeing Table 1. Where r0Tis the initial density of TNT charge, D is the detonation velocity, E0is the initial internal energy, and PCJis the detonation pressure.

    3.1. Parameter determination of pm

    According to experimental data of TNT shock wave overpressure under free-field air explosion,the following similarity ratio formula was proposed by Henrch [1],

    By numerical simulation,a formula of shock wave overpressure of infinite ideal gas was fitted by Brode as follows [2],where the unit of pmis MPa, and the unit of scaled-distance Rgis

    Fig. 3. Numerical overpressure at different positions from the detonation point.

    According to Ruce Wang[19],the overpressure peak of spherical charge explosion can be calculated by the following formula,where the unit of pmis MPa, and the unit of RgisThe comparison shows that the formula is very close to the simulation result of AUTODYN when Rgis larger than 0.5. And no change is needed.The values of s1,s2,and s3in equation(12)should be 0.082,0.26 and 0.69 respectively. The formula is no longer applicable when Rgis smaller than 0.5.

    3.2. Parameter determination of g(tg2)

    The parameter values of g(tg2) and f(tg1) require reliable data support. When the accurate and credible experimental data is insufficient,the rigorous numerical results are a good basis.In this paper, Fig. 2, the pressure waveform calculated by AUTODYN, is used to determine the parameters. The action time of the positive and the negative pressure zone of the shock wave is determined by the factor function g(tg2), and there are clear numerical results. So parameters of g(tg2) is determined firstly. Parameters of f(tg1) are further determined based on the parameters.

    In the function g(tg2),the relationship between the positive and negative pressure action time and the distance is determined by tg2.According to the comparative analysis and fitting of the curve data on the values at different distances,the value of n in Equation(4)is determined to be 0.75. At this time

    In the function g(tg2), the oscillation period of the pressure is determined by c, that is, the boundary point between the positive pressure zone and the negative pressure zone is determined. The distribution of the action time of the positive and negative pressure zones is determined by q. When q is p/4, the positive pressureaction time is 1/4 of the negative pressure action time.Based on the extrapolation analysis of the numerical curve shown in Fig.4,q?p/4 is considered to be suitable.Similarly,according to the oscillation period calculated from numerical results, the value of c is 0.9575 when the time unit is ms,the distance unit is m,the mass unit is kg,and the pressure unit is MPa.Then

    Table 1 JWL equation of state parameters of TNT detonation product.

    Fig. 4. Extrapolation analysis of numerical data with scaled-distance of 1.

    3.2.1. Parameter determination of f(tg1)

    In the function f(tg1), tg1is closely related to the shape of the shock wave attenuation curve changing with the distance. According to the comparative analysis of the numerical curve at different distances, it is considered that a value of 1.75 for n in Equation(4)is suitable when the time unit is ms,the distance unit is m, and the mass unit is kg. Then

    In the function f(tg1),the variation law of the pressure waveform at different times and different distances is determined by a and k.According to the analysis of the numerical curve Fig.2,the values of a and k are 1.915 and 1.4 respectively when the time unit is ms,the distance unit is m,the mass unit is kg,and the pressure unit is MPa.The value is of b is mainly used to ensure that the value of f(tg1)is 1 when tg1is 0.And its value has a certain influence on the waveform.This paper takes 0.13 as b. So there is

    So far,all the parameters in the free-field explosion shock wave model have been determined. Substituting Equations (13)e(16)into Equation (2),

    Substituting Equation (3) into Equation (12),

    Substituting equation (18) into Equation (17),

    where t≥0. P is 0 when t<0.

    This formula(19) is the model of the free-field pressure of the explosion shock wave.It should be noted that the model is valid in the range of the scaled-distance bigger than 0.5.

    4. Verification

    4.1. Experimental verification of the numerical method

    In order to confirm the accuracy of AUTODYN numerical method,a near-surface explosion experiment is implemented.The near-surface explosion shock wave will experience more complicated conditions than free-field explosions, such as free-field propagation, ground positive reflection, ground oblique reflection and Mach reflection,which make the verification of the numerical method more rigorous.

    A two-dimensional axisymmetric model of AUTODYN is used to establish a cylinder-shaped TNT with a charge of 5 kg.The height from the ground is 1.5 m.The air domain has a radius of 20 m and a height of 7.5 m. The established numerical model is shown in Fig. 5(a). The numerical shock wave propagation and the groundgenerated Mach reflection process are shown in Fig. 5(b) and (c).The result of overpressure curve is shown in Fig.7(a).

    The experiment of 5 kg cylindrical TNT near ground explosion was carried out. The experimental setup is shown in Fig. 6. The height of the TNT charge from the ground is 1.5 m.Two sensors are placed at 3 m, 5 m, 7 m and 9 m from the charge respectively. The pressure sensor is used to test the horizontal shock wave overpressure curve. The measured ground reflection overpressure curves are shown in Fig. 7(b).

    From Figs.7(a)and Fig.6(b),the peak value and propagation of the shock wave calculated by AUTODYN are in good agreement with the experimental results.The simulation data is considered to be credible.

    Fig. 5. Numerical model of free-field explosion.

    Fig. 6. Experiment setup diagram.

    4.2. Numerical verification

    From the detonation moment,defining the scaled-time tdgwhen the front edge of the shock wave reaches a certain position is

    where tdis the time when the front edge of the shock wave reaches a certain position,and the unit is ms.

    According to the relationship between the position of the shock wave front and the time calculated by the numerical value, the scaled-distance of the shock wave reaching at a certain scaled-time can be fitted,and when tdg≥0.1,

    where tdgis the scaled-time.When 0

    Substituting Equations (3) and (18) into equation (19)

    Let the total time from the detonation time be tz, then the relationship between the time t in Equation(17)and the total time in Equation (20) is The equations, consisting of Equations (17), (20) and (21) can completely predict the spatiotemporal characteristics of the freefield overpressure of the explosion shock wave. In order to visually display the accuracy of the model,the results of the calculation can be compared with the results of the numerical method. Fig. 8 shows the pressure curves of shock waves at different distances of 64 kg spherical TNT charge of analytical and simulated methods,respectively. Fig. 9 shows the analytical and simulated curves of 1 kg spherical TNT charge. As can be seen from the curves in the figures, the two curves are in very good agreement, respectively.

    Fig.9. Comparison of shock wave pressure-time curves of 1 kg TNT charge at multiple distances of analytical and simulated calculations.

    Fig. 7. Numerical(a) and experimental(b) overpressure curve.

    Fig.10. Shock wave overpressure-distance curves at multiple times.

    Fig.11. Shock wave overpressure-time curves at multiple distances.

    In addition, equations (17), (20) and (21) can describe the relationship of shock wave pressure and distance at different times,and the relationship of shock wave pressure and time at different distances,which are shown as Fig.10 and Fig.11 respectively.Both the explosion is 8 kg spherical TNT charge.The shock wave pressure at different times and at different distances can be displayed and studied in three dimensions.

    5. Conclusion

    A new model establishment method of shock wave overpressure under free-field air explosion was studied in this paper.The free-field explosion shock wave overpressure was expressed as a product of the three factor functions of peak, attenuation and oscillation. The attenuation of the explosion shock wave conforms to the law of negative exponential decay,and the initial stage of the oscillation process basically conforms to the law of cosine oscillation.Further,the parameters of a,b,k,c and q were well fitted by the numerical data.By comparing the calculated results from Equations(17), (20) and (21) with numerical data, it was found that the analytical and simulated curves are in very good agreement,which indicates that the equations can accurately calculate the shock wave overpressure under free-field air explosion.Furthermore,the equations can realize three-dimensional display of the shock wave pressure with time and distance.

    The new formulas of this model can predict shock wave pressure well of the free-field air explosion. But because that careful parameter determination is through simulation, and the ground reflection of explosion shock wave is so complex that the measurement of free-field overpressure in experiment is very difficult,new measurement methods should be developed and a wide range of test conditions should be carried out to modify the parameters in the formulas.Focusing on these issues,further investigation will be conducted in our succedent research based on the analytical model.

    Acknowledgments

    This work was partially sponsored by Foundation of PLA Rocket Force.

    男人操女人黄网站| 嫩草影视91久久| 91在线观看av| 黄色丝袜av网址大全| 国产精品永久免费网站| 久久久久视频综合| 免费久久久久久久精品成人欧美视频| 亚洲综合色网址| 色尼玛亚洲综合影院| 啦啦啦视频在线资源免费观看| 中文字幕高清在线视频| 久久午夜综合久久蜜桃| 国产区一区二久久| 午夜精品久久久久久毛片777| 成在线人永久免费视频| 男女之事视频高清在线观看| 午夜福利在线观看吧| 两性夫妻黄色片| 99久久国产精品久久久| 人人妻人人澡人人看| 首页视频小说图片口味搜索| 免费av中文字幕在线| 精品电影一区二区在线| 国产精品一区二区精品视频观看| 亚洲欧美日韩高清在线视频| 天天躁日日躁夜夜躁夜夜| 看黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看 | 免费观看a级毛片全部| 国产欧美日韩综合在线一区二区| 亚洲成a人片在线一区二区| 亚洲精品国产一区二区精华液| 久久影院123| 一区二区三区国产精品乱码| 久久精品亚洲熟妇少妇任你| 丰满饥渴人妻一区二区三| av天堂在线播放| 午夜福利乱码中文字幕| 久久久水蜜桃国产精品网| 五月开心婷婷网| 啪啪无遮挡十八禁网站| 操出白浆在线播放| 国内久久婷婷六月综合欲色啪| 两个人看的免费小视频| 日日爽夜夜爽网站| 中文字幕av电影在线播放| 香蕉国产在线看| 日韩欧美一区二区三区在线观看 | 99热只有精品国产| 久久久水蜜桃国产精品网| 俄罗斯特黄特色一大片| 狠狠狠狠99中文字幕| 国产伦人伦偷精品视频| 欧美成狂野欧美在线观看| e午夜精品久久久久久久| 国产高清国产精品国产三级| 丝袜美足系列| 国产精品99久久99久久久不卡| 999久久久国产精品视频| 啦啦啦免费观看视频1| 日本黄色日本黄色录像| 亚洲黑人精品在线| 99精品久久久久人妻精品| 女人精品久久久久毛片| 看免费av毛片| 午夜激情av网站| 久久久久久人人人人人| 亚洲成人免费电影在线观看| www.999成人在线观看| 国产淫语在线视频| www.自偷自拍.com| 亚洲视频免费观看视频| 一本一本久久a久久精品综合妖精| 国产欧美日韩一区二区三| 精品国产一区二区三区四区第35| 中文字幕制服av| 亚洲精品国产区一区二| 美国免费a级毛片| 日韩中文字幕欧美一区二区| 国产一区有黄有色的免费视频| 欧美午夜高清在线| 一夜夜www| 国产av又大| 久久这里只有精品19| 18禁黄网站禁片午夜丰满| 免费不卡黄色视频| 中文字幕最新亚洲高清| 王馨瑶露胸无遮挡在线观看| 亚洲欧美精品综合一区二区三区| 亚洲专区中文字幕在线| 精品人妻在线不人妻| 91成年电影在线观看| 中国美女看黄片| 亚洲一区高清亚洲精品| 国产激情欧美一区二区| 欧美乱色亚洲激情| 欧美日韩国产mv在线观看视频| 免费观看精品视频网站| 久久精品亚洲精品国产色婷小说| 国产精品免费视频内射| 国产高清视频在线播放一区| 国产又色又爽无遮挡免费看| 女性生殖器流出的白浆| 18禁裸乳无遮挡免费网站照片 | 国产黄色免费在线视频| 99久久国产精品久久久| 搡老乐熟女国产| 又黄又粗又硬又大视频| 久久人人97超碰香蕉20202| 久久精品熟女亚洲av麻豆精品| avwww免费| 亚洲国产精品一区二区三区在线| 最近最新中文字幕大全电影3 | 亚洲国产欧美一区二区综合| 丁香六月欧美| 国产成人系列免费观看| 久久九九热精品免费| 制服人妻中文乱码| 亚洲精品国产色婷婷电影| 国产成人欧美在线观看 | 久久人人97超碰香蕉20202| 老司机在亚洲福利影院| 99国产极品粉嫩在线观看| 99精国产麻豆久久婷婷| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 欧美黑人欧美精品刺激| 极品人妻少妇av视频| 无限看片的www在线观看| 国产又爽黄色视频| 99香蕉大伊视频| netflix在线观看网站| www.自偷自拍.com| 69av精品久久久久久| 亚洲一区高清亚洲精品| 欧美日韩亚洲国产一区二区在线观看 | 法律面前人人平等表现在哪些方面| 成人手机av| 自拍欧美九色日韩亚洲蝌蚪91| 久久 成人 亚洲| 黑人巨大精品欧美一区二区mp4| 国产又爽黄色视频| 免费女性裸体啪啪无遮挡网站| 亚洲成a人片在线一区二区| 大片电影免费在线观看免费| 免费日韩欧美在线观看| 欧美日韩瑟瑟在线播放| 电影成人av| 别揉我奶头~嗯~啊~动态视频| 99精品久久久久人妻精品| 国产精品久久久久久人妻精品电影| 天堂中文最新版在线下载| 欧美日韩视频精品一区| 亚洲综合色网址| 法律面前人人平等表现在哪些方面| 国产乱人伦免费视频| 欧美另类亚洲清纯唯美| 亚洲五月婷婷丁香| 久久久久久亚洲精品国产蜜桃av| 国产高清videossex| 高清欧美精品videossex| 成人特级黄色片久久久久久久| 亚洲av成人不卡在线观看播放网| 午夜免费成人在线视频| 久久中文看片网| 国产精品 国内视频| 三级毛片av免费| 成人18禁高潮啪啪吃奶动态图| 久久国产精品影院| 久久国产精品大桥未久av| 国产亚洲欧美精品永久| 丝袜在线中文字幕| 国产成人精品久久二区二区91| 日韩欧美在线二视频 | 男女午夜视频在线观看| 亚洲av成人av| 夜夜躁狠狠躁天天躁| 99久久国产精品久久久| 日本一区二区免费在线视频| 女人精品久久久久毛片| 亚洲精品久久午夜乱码| 看免费av毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 超碰97精品在线观看| 后天国语完整版免费观看| 国产亚洲精品久久久久5区| 叶爱在线成人免费视频播放| 欧美日韩亚洲综合一区二区三区_| 亚洲第一青青草原| 亚洲国产欧美一区二区综合| 在线av久久热| 99国产精品99久久久久| 国产成人欧美| 成年人免费黄色播放视频| 又大又爽又粗| 亚洲色图综合在线观看| 久久国产精品男人的天堂亚洲| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| 亚洲第一av免费看| 青草久久国产| av不卡在线播放| 搡老岳熟女国产| 亚洲成av片中文字幕在线观看| 成人影院久久| 久久ye,这里只有精品| 中文字幕精品免费在线观看视频| 亚洲全国av大片| 美女高潮喷水抽搐中文字幕| 国产精华一区二区三区| 脱女人内裤的视频| 午夜日韩欧美国产| 亚洲国产欧美网| 中亚洲国语对白在线视频| 久久中文字幕一级| 久久香蕉国产精品| a级毛片在线看网站| 久久久国产一区二区| 一本综合久久免费| 国产亚洲精品第一综合不卡| 国产欧美亚洲国产| 午夜老司机福利片| 亚洲欧美一区二区三区久久| 精品福利观看| 69av精品久久久久久| 大型av网站在线播放| aaaaa片日本免费| 国产日韩一区二区三区精品不卡| 亚洲中文日韩欧美视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品中文字幕一二三四区| 99久久综合精品五月天人人| 18禁观看日本| 亚洲国产欧美一区二区综合| 99久久99久久久精品蜜桃| 在线观看免费视频网站a站| 制服诱惑二区| 亚洲成人免费电影在线观看| 亚洲一码二码三码区别大吗| 国产成人精品久久二区二区免费| 国产不卡av网站在线观看| 一级作爱视频免费观看| 欧美不卡视频在线免费观看 | 老鸭窝网址在线观看| 成熟少妇高潮喷水视频| 精品久久蜜臀av无| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 久久热在线av| 亚洲 国产 在线| 成人免费观看视频高清| 国产成人一区二区三区免费视频网站| 人人澡人人妻人| 色婷婷久久久亚洲欧美| 欧美 日韩 精品 国产| 久久国产乱子伦精品免费另类| 午夜福利视频在线观看免费| 久久久久久久午夜电影 | 一二三四社区在线视频社区8| 国产精品美女特级片免费视频播放器 | 亚洲五月色婷婷综合| 欧美激情极品国产一区二区三区| 精品午夜福利视频在线观看一区| 午夜两性在线视频| 精品乱码久久久久久99久播| 免费在线观看亚洲国产| 97人妻天天添夜夜摸| 国产精品二区激情视频| 男人操女人黄网站| 91九色精品人成在线观看| 波多野结衣av一区二区av| 91av网站免费观看| 狂野欧美激情性xxxx| 午夜日韩欧美国产| 大型黄色视频在线免费观看| 俄罗斯特黄特色一大片| 18禁美女被吸乳视频| 国产成人av教育| 亚洲一区二区三区不卡视频| 91九色精品人成在线观看| 女人高潮潮喷娇喘18禁视频| 少妇被粗大的猛进出69影院| 大香蕉久久成人网| 热re99久久国产66热| 国产av一区二区精品久久| 国产精品成人在线| 黄色毛片三级朝国网站| 搡老岳熟女国产| 黄片大片在线免费观看| 啦啦啦在线免费观看视频4| 曰老女人黄片| 国产欧美亚洲国产| 日韩大码丰满熟妇| 国产熟女午夜一区二区三区| 首页视频小说图片口味搜索| 久久热在线av| 99国产精品一区二区三区| 久久久精品区二区三区| 日韩欧美免费精品| 成人18禁在线播放| 久久久久久人人人人人| 久久国产精品影院| 黑人巨大精品欧美一区二区mp4| 成人18禁在线播放| 成人手机av| 深夜精品福利| 亚洲国产看品久久| 精品久久久久久,| 亚洲美女黄片视频| 亚洲 国产 在线| 国产有黄有色有爽视频| cao死你这个sao货| 欧美在线一区亚洲| 午夜久久久在线观看| 国精品久久久久久国模美| 自线自在国产av| 国产深夜福利视频在线观看| 国产高清视频在线播放一区| 少妇 在线观看| 亚洲精品成人av观看孕妇| 国产精品99久久99久久久不卡| 欧美国产精品va在线观看不卡| 91在线观看av| 韩国av一区二区三区四区| 一区二区三区国产精品乱码| 99国产精品99久久久久| 国产精品电影一区二区三区 | 成人av一区二区三区在线看| 亚洲五月色婷婷综合| 亚洲午夜精品一区,二区,三区| 国产在视频线精品| 成年人午夜在线观看视频| 在线观看舔阴道视频| 美女福利国产在线| 欧美久久黑人一区二区| 亚洲精品国产一区二区精华液| 国产麻豆69| 亚洲免费av在线视频| 久久久久久亚洲精品国产蜜桃av| 99热网站在线观看| 国产精品亚洲av一区麻豆| 久久久国产成人精品二区 | 久久久久久久精品吃奶| 最近最新中文字幕大全免费视频| 大型av网站在线播放| 亚洲国产欧美一区二区综合| 久久精品成人免费网站| 久久精品亚洲av国产电影网| 波多野结衣一区麻豆| 国产极品粉嫩免费观看在线| 老司机午夜十八禁免费视频| 在线观看日韩欧美| 亚洲欧美激情综合另类| 久久精品国产99精品国产亚洲性色 | 国产精品久久久人人做人人爽| 国产欧美日韩一区二区三| 欧美黄色片欧美黄色片| 久久香蕉国产精品| 99精国产麻豆久久婷婷| 日本a在线网址| 人成视频在线观看免费观看| 午夜福利在线观看吧| 十八禁人妻一区二区| 黄色片一级片一级黄色片| 久久久精品国产亚洲av高清涩受| 亚洲成a人片在线一区二区| 狂野欧美激情性xxxx| 欧美日韩亚洲高清精品| 19禁男女啪啪无遮挡网站| 亚洲精品乱久久久久久| 国产精品1区2区在线观看. | 日韩欧美免费精品| 久久青草综合色| 久久久久久久久免费视频了| 99国产精品99久久久久| 亚洲午夜理论影院| 亚洲欧美一区二区三区久久| 欧美激情久久久久久爽电影 | 国产av一区二区精品久久| 日本精品一区二区三区蜜桃| 亚洲熟妇熟女久久| 中文字幕另类日韩欧美亚洲嫩草| 电影成人av| av福利片在线| 99久久综合精品五月天人人| 久久人妻av系列| 亚洲情色 制服丝袜| 久久精品国产综合久久久| 欧美激情久久久久久爽电影 | 亚洲精品粉嫩美女一区| 极品教师在线免费播放| 老鸭窝网址在线观看| 中文字幕人妻熟女乱码| 成人国语在线视频| av一本久久久久| 热re99久久国产66热| 手机成人av网站| 成人特级黄色片久久久久久久| 老熟妇仑乱视频hdxx| 欧美av亚洲av综合av国产av| 亚洲成人国产一区在线观看| 90打野战视频偷拍视频| 久久人妻熟女aⅴ| 一区二区三区精品91| 十分钟在线观看高清视频www| 国产片内射在线| 精品卡一卡二卡四卡免费| 亚洲欧美精品综合一区二区三区| ponron亚洲| 80岁老熟妇乱子伦牲交| 欧美激情极品国产一区二区三区| 大型av网站在线播放| 在线观看免费午夜福利视频| 亚洲精品国产一区二区精华液| 99精品在免费线老司机午夜| 一本大道久久a久久精品| 国产精品久久久久久精品古装| 日韩视频一区二区在线观看| 精品国产乱子伦一区二区三区| 精品久久久久久,| 免费女性裸体啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 老熟妇乱子伦视频在线观看| 80岁老熟妇乱子伦牲交| 91国产中文字幕| 亚洲国产中文字幕在线视频| 亚洲成人免费av在线播放| 夜夜爽天天搞| 狂野欧美激情性xxxx| 中文字幕高清在线视频| 久久久精品区二区三区| 精品国产一区二区三区四区第35| 国产一区二区三区综合在线观看| 亚洲七黄色美女视频| 久9热在线精品视频| 久久人妻福利社区极品人妻图片| 亚洲精品美女久久av网站| 电影成人av| 国产成人欧美在线观看 | tube8黄色片| 18在线观看网站| 一区二区三区国产精品乱码| 80岁老熟妇乱子伦牲交| 欧美日韩视频精品一区| 久久精品国产综合久久久| 欧美 日韩 精品 国产| 精品久久蜜臀av无| 黄色丝袜av网址大全| 精品久久久精品久久久| 精品少妇一区二区三区视频日本电影| 村上凉子中文字幕在线| 午夜福利乱码中文字幕| 日韩欧美免费精品| 精品一区二区三区四区五区乱码| 午夜免费鲁丝| 亚洲午夜精品一区,二区,三区| 国产高清视频在线播放一区| 精品乱码久久久久久99久播| 久久久久久久久久久久大奶| 国产单亲对白刺激| 咕卡用的链子| 国产深夜福利视频在线观看| 日本黄色日本黄色录像| 久久性视频一级片| 老司机福利观看| 国产成+人综合+亚洲专区| 18禁观看日本| 在线天堂中文资源库| 两性夫妻黄色片| 多毛熟女@视频| 欧美不卡视频在线免费观看 | 露出奶头的视频| 18禁黄网站禁片午夜丰满| 免费观看精品视频网站| 国产99白浆流出| 亚洲第一青青草原| 最新的欧美精品一区二区| 黑人猛操日本美女一级片| 精品福利观看| 国产高清激情床上av| 久久99一区二区三区| 久久精品国产99精品国产亚洲性色 | 国产精华一区二区三区| 丰满迷人的少妇在线观看| 亚洲五月色婷婷综合| 精品国产美女av久久久久小说| 日韩人妻精品一区2区三区| 国产精品免费大片| 757午夜福利合集在线观看| 亚洲欧美色中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品一二三| 久久精品成人免费网站| 欧美精品av麻豆av| 亚洲三区欧美一区| 亚洲久久久国产精品| 麻豆国产av国片精品| 国产激情欧美一区二区| 男人舔女人的私密视频| 国产精品一区二区在线观看99| 日本一区二区免费在线视频| 精品高清国产在线一区| 人人妻,人人澡人人爽秒播| 90打野战视频偷拍视频| 日本vs欧美在线观看视频| 精品高清国产在线一区| 国产日韩欧美亚洲二区| 男女之事视频高清在线观看| 人妻久久中文字幕网| 国产精品99久久99久久久不卡| 亚洲视频免费观看视频| 欧美成狂野欧美在线观看| 欧美最黄视频在线播放免费 | 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久成人av| 亚洲国产看品久久| 在线观看午夜福利视频| 午夜免费鲁丝| 嫩草影视91久久| 叶爱在线成人免费视频播放| 精品欧美一区二区三区在线| 欧美日韩av久久| 91麻豆精品激情在线观看国产 | 天堂动漫精品| 国产精品秋霞免费鲁丝片| 亚洲自偷自拍图片 自拍| 国产淫语在线视频| 亚洲五月婷婷丁香| 91精品国产国语对白视频| 国产野战对白在线观看| 电影成人av| 免费观看精品视频网站| 人人妻,人人澡人人爽秒播| 精品国产一区二区三区四区第35| 久久精品91无色码中文字幕| 9色porny在线观看| 日韩免费av在线播放| 狠狠婷婷综合久久久久久88av| 午夜成年电影在线免费观看| 不卡一级毛片| 亚洲av电影在线进入| 亚洲第一欧美日韩一区二区三区| 老司机在亚洲福利影院| 人人妻人人爽人人添夜夜欢视频| 99久久国产精品久久久| 欧美激情久久久久久爽电影 | 欧美日韩一级在线毛片| 搡老熟女国产l中国老女人| 成年动漫av网址| 久久久国产成人免费| 王馨瑶露胸无遮挡在线观看| 一区福利在线观看| 男人操女人黄网站| 成人永久免费在线观看视频| 免费少妇av软件| 在线观看免费日韩欧美大片| 黑人操中国人逼视频| 国产av一区二区精品久久| 欧美日韩一级在线毛片| 欧美激情久久久久久爽电影 | 三级毛片av免费| 国产乱人伦免费视频| 啦啦啦 在线观看视频| 欧美成人免费av一区二区三区 | 视频区欧美日本亚洲| 黑人欧美特级aaaaaa片| 国产高清激情床上av| 国产单亲对白刺激| 国产精品久久久久久精品古装| 一级,二级,三级黄色视频| 岛国在线观看网站| 99国产综合亚洲精品| 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品| 久99久视频精品免费| 国产精品1区2区在线观看. | 人成视频在线观看免费观看| 高潮久久久久久久久久久不卡| 成人国产一区最新在线观看| 亚洲av日韩精品久久久久久密| 午夜久久久在线观看| 亚洲熟女毛片儿| 国产精品二区激情视频| 欧美成人免费av一区二区三区 | 国产精品香港三级国产av潘金莲| 免费在线观看黄色视频的| 国产精品一区二区精品视频观看| 老司机影院毛片| 黄色a级毛片大全视频| 午夜福利欧美成人| 午夜老司机福利片| 精品国产超薄肉色丝袜足j| 又大又爽又粗| 亚洲五月色婷婷综合| 99国产精品一区二区蜜桃av | 国产精品一区二区在线观看99| 国产激情久久老熟女| 波多野结衣av一区二区av| 麻豆国产av国片精品| 国产一区二区三区视频了| 中文欧美无线码| 欧美亚洲日本最大视频资源| 91国产中文字幕| 国产精品1区2区在线观看. | 中文欧美无线码| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 脱女人内裤的视频| 久久中文看片网| 国产精品欧美亚洲77777| 精品久久久久久,| 久久这里只有精品19| 国产成人欧美| 青草久久国产| 欧美人与性动交α欧美软件|