• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bore-center annular shaped charges with different liner materials penetrating into steel targets

    2019-11-18 02:34:50WenlongXuChengWngJinmingYunToDeng
    Defence Technology 2019年5期

    Wen-long Xu , Cheng Wng ,*, Jin-ming Yun , To Deng

    a State Key Lab of Explosion Science and Technology, Beijing Institute of Technology, Beijing,100081, China

    b Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore

    Keywords:Annular shaped charge Liner material Formation Numerical simulation

    ABSTRACT The bore-center annular shaped charge (BCASC) is a new type of shaped charge which can generate a larger-diameter hole in steel targets than classical shaped charges. In this paper, the influence of three liner materials, i.e. molybdenum, nickel and copper, on BCASC formation and penetrating into steel targets was investigated by experiment and numerical simulation. The simulation results were well consistent with the experimental results. This study showed that, at 0.50D standoff distance, the axial velocity of the molybdenum projectile was lower than that of the nickel and copper projectiles. The nickel and copper projectiles had almost the same head velocity. The absolute values of the radial velocity of the molybdenum projectile head was lower than that of the nickel and copper projectiles.However, at 0.75D standoff distance, the absolute values of the radial velocity of the molybdenum projectile head became much greater than that of the nickel and copper projectile heads. The projectile formed by BCASC with the molybdenum liner had the highest penetration depth of 61.5 mm, which was 10.0% and 21.3% higher than that generated by the copper and nickel projectiles.

    1. Introduction

    Classically shaped charges usually create small-diameter penetration holes, which cannot meet the requirements of largediameter penetration holes in some special applications, e.g.emergency rescue, a front shaped charge of tandem warhead, and others. Therefore, many researchers have investigated shaped charge technology of creating large-diameter holes in hard targets[1e3].Leidel[4]designed an annular-jet shaped charge by adding a steel cylinder in charge part.His study showed that the parameters of liner wall thickness variation had an important effect on the formation and penetration of annular-jet shaped charge. K€onig et al. [5] designed a shaped charge which could form an annular EFP. Their study showed that the diameter of the annular EFP formed by the structure was the same to the charge diameter;meanwhile, the length of the EFP was 1/3 times of the charge diameter.By adding a focusing structure on the traditional annular shaped charge,Xu et al.[6]proposed a new type of annular shaped charge.Based on an orthogonal optimization method,they studied the influence of the liner thickness, cone angle of the focusing structure,the diameter of the nozzle and the thickness of the shell on axial and radial velocity of annular jet.The experimental results showed that the new type of annular shaped charge could form a large-diameter annular hole in steel targets.Grace et al.[7]studied the effect of initiation mode on jet formation of annular shaped charge. Their research indicated that a modest initiation radius could form a tubular jet and peripheral initiation, which caused inward jet flow and thus ultimately resulted in a reconstituted jet.

    The liner is the key component of a shaped charge, and its material selection has an important influence on its penetration capability [8e10]. Through theoretical analysis and numerical simulation,Meister et al.[11]designed two kinds of annular shaped charge,i.e.,the center-reversed charge and the outer-wall-reversed charge. The experimental results of annular shaped charge with four different liner materials, iron, aluminum, lead and tantalum,showed that the four materials could form an annular jet with certain penetration ability. Wang et al. [12] investigated the effect of liner material(copper,steel,and aluminum)of the shaped charge on jet formation and its penetration capability by experimental and numerical methods.Their study showed that the velocity of copper jet with the strongest penetration capability was higher than that of steel jet but lower than that of aluminum jet.The aluminum jet had the largest velocity with the poorest penetration capability.Zhang et al. [13] studied the influence of liner material on shaped charge penetration created by underwater explosion. As for aluminum, copper and steel liner materials, the jet velocity in the case with the aluminum liner was higher than that for the other two cases. However, the aluminum jet demonstrated the poorest penetration capability. It implies that higher velocity does not always have more serious damage effect.

    In this work,we studied the BCASC made of three different liner materials on formation and penetrating into steel targets by experimental and numerical methods.The experimental setup and penetration results of BCASC were presented in section 2, meanwhile the simulation models, material models and parameters were provided in section 3.The validity of the numerical simulation is verified by comparing the numerical simulation results with the test data. Furthermore, the effects of the liner materials on the BCASC formation progress are discussed. Section 4 summarizes some conclusions.

    2. BCASC experiments

    The bore-center annular shaped charge (BCASC) used in experiments is shown in Fig.1.The BCASC is mainly composed of a liner,steel shell and composition B explosive(TNT:RDX?40%:60%).The D100 mm×L180 mm cylindrical explosive is fully filled in the shell. The thickness of the shell is 2.0 mm.Design and structure of the liners of BCASC is shown in Fig. 2. Three materials of molybdenum,nickel and copper were used for the liners in experiments to study the effect of liner materials on formation and penetration of BCASC. The dimensions of the liners are given in Fig. 2 (b).

    The test setup of BCASC penetrating into targets is illustrated in Fig.3.The material of the targets is 4340 steel.The booster charge with diameter of 25.0 mm was mounted in the end of the BCASC sample. After the booster charge was initiated by a detonator, it would detonate the main charge inside the BCASC sample. The standoff distance between the BCASC sample and the target is 75.0 mm. The targets were made of two stacked cylinders. The diameter of the cylinder target is 250.0 mm and the height is 80.0 mm.

    Penetration results of the BCASC with three materials at the standoff distance of 0.75D are shown in Fig. 4. All the projectiles were able to generate an annular bullet hole with a rough central conical core in the targets. As listed in Table 1, penetration diameters of annular hole formed by the molybdenum and nickel projectiles are slightly larger than that formed by the copper projectile. The projectile formed by BCASC with the molybdenum liner has the highest penetration depth of 61.5 mm,which is 10.0%and 21.3% higher than that of the copper and nickel projectiles,respectively.

    Fig.1. The structure of a bore-center annular shaped charge.

    Fig. 2. Design of the liners.

    Fig. 3. Test setup of bore-center annular shaped charge penetrating into steel targets.

    3. Numerical simulation

    3.1. Numerical simulation methods

    The remapping technology in hydrocode Autodyn was applied to study formation and penetration of BCASC with different liner materials of molybdenum,nickel and copper.Firstly,the formation process of BCASC projectiles was simulated by using Euler solver and 2-dimensional axisymmetric formulation, as shown in Fig. 5.

    Fig. 4. Penetration results of the BCASC with three materials at 0.75D standoff distance.

    Table 1 The measured parameters of the penetrated target.

    Fig. 5. The simulation model for the formation of BCASC with molybdenum liner.

    The coordinate origin is located at the axis of the central hole of the liner with a simulation region of 400 mm×160 mm and flow-out non-reflection boundaries. Secondly, the simulated results were remapped into the 2D axisymmetric Lagrange mesh to simulate the penetration progress, as shown in Fig. 6. As presented in the previous study[1],to balance reasonable accuracy and computational costs,the size of square mesh for both the Euler and Lagrange was set to be 0.4 mm×0.4 mm.

    The ideal gas model with the below equation of state (EOS) is applied,

    The composition B explosive is described by JWL EOS

    where PBis the pressure;V ?1=rBis the specific volume;rBis the density of composition B;E0is the specific internal energy per unit mass; A1, B1, R1, R2and u are material constants. The input values are listed in Table 2.

    Fig. 6. The simulation model for the penetration of BCASC with molybdenum liner.

    The EOS of the molybdenum,nickel and copper liner is a shock model.And,the strength model of liner is neglected because a liner behaves like a fluid under the extremely large pressure and temperature during collapse [14]. The relationship between material shock velocity (US) and particle velocity (up), is specified as

    where C0is the bulk acoustic sound speed, S is a constant.

    Based on the shock Hugoniot,a Mie-Gruneisen form of the EOS is established

    The EOS of the steel material(shells and targets)is also a shock model and the strength is described by Johnson-Cook model which defines the yield stress Y as

    where εPis effective plastic strain,withis normalized effective plastic strain rate andis the homologous temperature,Tmeltis the melting temperature,Troomis the room temperature,A,B,C,n and m are the material constants.The detailed parameters of the above models are obtained from the Autodyn material library.The input values of the liner,shell and target materials are listed in Table 3.

    3.2. Verification of simulation model

    At 0.75D standoff distance, the progress of BCASCs with different liner materials penetrating into steel targets are shown in Fig. 7. As shown in simulation results, the penetrated hole walls display a blade shape, which is caused by the radial impact of the projectile. The predicted penetrated diameter and depth of the annular hole are all smaller than the experimental results. The maximum deviation in the diameter and depth of the annular holes between the numerical simulation results and the experimental ones are -9.5% and -8.1%, respectively (see Table 4). The simulation results are consistent well with the test data, indicating that the established simulation model is reliable.

    3.3. Discussion

    The radial velocities (VY) of the projectile are given by the velocity of the elements along a straight path(measuring line)whichpasses the center of the projectiles formed by the liner. The distribution of the radial velocities of the projectiles along the path at 0.50D standoff distance is shown in Fig.8.Along with the direction of the projectile length,the radial velocity of the projectiles formed by the three different liner materials decreases first,then increases and decreases again. Between the tail and the middle part, the difference of the radial velocity of the projectile formed by the three linear materials is negligible.The radial velocity of all the projectile heads is negative, which means, at 0.50D standoff distance, the head of the projectile deflects towards the axis of the charge.Compared to the nickel and copper projectiles,the absolute values of the radial velocity of the head of the molybdenum projectile is obviously lower.

    Table 3 The input parameters for the liner, shell and target materials.

    The axial velocities of the projectile mode of the three different liner materials are plotted in Fig. 9. It can be seen that the axial velocities of the projectile gradually increase along the length.Both the nickel and copper projectiles display the same velocity profile,but the axial velocity of the molybdenum projectile is lower than that of the nickel and copper projectiles. However, the numerical simulation and experimental results show that the penetration depth of the molybdenum projectile is higher than that of copper and nickel projectiles.Considering that the density of molybdenum material is much larger than that of copper and nickel, this means that the penetration ability of the projectiles is not only related to the penetration velocity, but also affected by the density of the projectile materials.

    The projectiles formed by three liner materials at the moment of impact targets (0.75D) are illustrated in Fig.10. The velocity (axial velocity VX’, radial velocity VY’) and diameter (DP) of the projectile head and length of the projectile (LP) formed by the three liner materials are listed in Table 5.It is consistent with the conclusions obtained at 0.50D, for 0.75D standoff distance the VX’ value of molybdenum projectile is less than that of nickel and copper projectiles. However, at 0.75D standoff distance, the radial velocity of the molybdenum projectile head is positive,indicating the head of the projectile turns away from the axis of the charge. Meanwhile,the radial velocity of the head of the molybdenum projectile is much higher than that of the nickel and copper projectile.Both the nickel and copper projectiles display the same configurations with the same DPand LP,but the values of DPand LPfor the molybdenum projectile is slightly larger than that of the nickel and copper projectiles.Although the diameter(DP)of the projectile head is smaller than that of the charge,the diameter of the penetration hole on the targets is larger than that of the charge because of the radial velocity of the projectiles.

    4. Conclusions

    Fig. 7. The progress of BCASCs with different liner materials penetrating into steel targets.

    Table 4 The details of numerical and experimental results.

    Fig. 8. Distribution of radial velocities of the projectiles along the length at 0.50D standoff.

    The effect of the liner materials, i.e. molybdenum, nickel and copper, on the BCASC formation and penetrating into steel targets are investigated by simulation and experiment.The conclusions are drawn as follows:

    1) The projectile formed by BCASC with molybdenum liner has the highest penetration depth of 61.5 mm,which is 10.0%and 21.3%higher than that of the copper and nickel projectiles, respectively(Table 1 and Fig. 4).

    2) Along with the direction of the projectile length, the radial velocity of the projectiles formed by the materials of molybdenum,nickel and copper decreases first, then increases and decreases again (Fig. 8).

    3) At 0.50D standoff distance, the velocity of nickel and copper projectiles head is similar. The absolute values of the radial velocity of the molybdenum projectile head is less than that of the nickel and copper projectile heads (Fig. 8). The axial velocity of the molybdenum projectile is less than that of the nickel and copper projectiles (Fig. 9).

    Fig. 9. Distribution of axial velocities of the projectiles along the length at 0.50D standoff.

    4) At 0.75D standoff distance, the diameter (DP) of the projectile head and length (LP) of the projectile formed by BCASC with nickel and copper liners are exactly the same. The values of DPand LPof molybdenum projectile is slightly larger than that of the nickel and copper projectiles. The absolute values of the radial velocity of the molybdenum projectile head is much larger than that of the nickel and copper projectile heads(Fig.10 and Table 5).

    The experiments show radial cracking in the targets (Fig. 7),which two-dimensional symmetrical simulation presented in this paper is unable to predict. Three-dimensional simulation work is on-going to investigate how radial cracking affects BCASC penetration into steel targets.

    Fig.10. The projectiles formed by three liner materials at the moment of impact targets (0.75D).

    Table 5 The key parameter values of projectiles at the standoff distance of 0.75D.

    Acknowledgments

    This research is supported by the National Natural Science Foundation of China (No. 11732003), Beijing Natural Science Foundation (No. 8182050), Science Challenge Project (No.TZ2016001) and National Key R&D Program of China(No.2017YFC0804700).

    亚洲少妇的诱惑av| 日韩国内少妇激情av| 成人18禁高潮啪啪吃奶动态图| 伦理电影免费视频| av片东京热男人的天堂| 国产精品 国内视频| 看片在线看免费视频| 大码成人一级视频| 黄片大片在线免费观看| 欧美成人一区二区免费高清观看 | 青草久久国产| 日韩视频一区二区在线观看| 欧美激情极品国产一区二区三区| 国产麻豆69| 久久午夜亚洲精品久久| 男人的好看免费观看在线视频 | 十八禁人妻一区二区| 亚洲欧美一区二区三区黑人| 欧美在线一区亚洲| 高清毛片免费观看视频网站| 三级毛片av免费| 热99re8久久精品国产| 极品人妻少妇av视频| 操美女的视频在线观看| 高清在线国产一区| 国产日韩一区二区三区精品不卡| 精品久久久精品久久久| 又紧又爽又黄一区二区| 午夜视频精品福利| 国产单亲对白刺激| 国产区一区二久久| 成人国语在线视频| 亚洲精品久久国产高清桃花| 国产精品日韩av在线免费观看 | www国产在线视频色| 免费一级毛片在线播放高清视频 | 国产xxxxx性猛交| 巨乳人妻的诱惑在线观看| 欧美老熟妇乱子伦牲交| 国产精品自产拍在线观看55亚洲| 久久中文字幕一级| av在线天堂中文字幕| 免费女性裸体啪啪无遮挡网站| 麻豆av在线久日| 精品国产一区二区久久| 欧美国产日韩亚洲一区| 一区二区三区国产精品乱码| 亚洲自偷自拍图片 自拍| 精品一区二区三区视频在线观看免费| av电影中文网址| 亚洲精品中文字幕在线视频| 婷婷精品国产亚洲av在线| 国产又色又爽无遮挡免费看| 岛国视频午夜一区免费看| 日本精品一区二区三区蜜桃| 黄频高清免费视频| 99久久精品国产亚洲精品| 可以免费在线观看a视频的电影网站| 国产精品电影一区二区三区| 天天一区二区日本电影三级 | 午夜福利免费观看在线| 一级片免费观看大全| 制服诱惑二区| 在线观看免费午夜福利视频| 久久人妻熟女aⅴ| av网站免费在线观看视频| 成人手机av| 久久久精品国产亚洲av高清涩受| 日韩有码中文字幕| 日韩一卡2卡3卡4卡2021年| 欧美成人免费av一区二区三区| 日韩大尺度精品在线看网址 | 黑丝袜美女国产一区| 丝袜人妻中文字幕| 国产国语露脸激情在线看| 黄色片一级片一级黄色片| 日本免费a在线| 精品一品国产午夜福利视频| 999久久久精品免费观看国产| 中文字幕久久专区| 美女 人体艺术 gogo| 宅男免费午夜| 黄色 视频免费看| netflix在线观看网站| 一级毛片女人18水好多| 黄色丝袜av网址大全| 99riav亚洲国产免费| 老鸭窝网址在线观看| 亚洲精品粉嫩美女一区| 一a级毛片在线观看| 亚洲成人久久性| av欧美777| 国产av一区二区精品久久| 色综合站精品国产| 99国产精品一区二区蜜桃av| 中文字幕人妻熟女乱码| 久久久久精品国产欧美久久久| 激情在线观看视频在线高清| 亚洲伊人色综图| 国产免费av片在线观看野外av| 成人亚洲精品一区在线观看| av超薄肉色丝袜交足视频| 国产国语露脸激情在线看| 久久久国产成人精品二区| 校园春色视频在线观看| 午夜久久久久精精品| 亚洲第一电影网av| 免费在线观看视频国产中文字幕亚洲| 一进一出抽搐gif免费好疼| 午夜福利18| 他把我摸到了高潮在线观看| 一个人免费在线观看的高清视频| 免费看美女性在线毛片视频| 欧美成狂野欧美在线观看| 可以免费在线观看a视频的电影网站| 国产aⅴ精品一区二区三区波| 精品久久久精品久久久| ponron亚洲| 久久婷婷人人爽人人干人人爱 | 久久国产精品人妻蜜桃| 欧美日韩瑟瑟在线播放| 动漫黄色视频在线观看| 搡老岳熟女国产| 国产精品免费一区二区三区在线| 国产精品爽爽va在线观看网站 | 国产精品影院久久| 国产欧美日韩一区二区三| 男女之事视频高清在线观看| 成人手机av| 国产伦人伦偷精品视频| 国产亚洲av嫩草精品影院| 色综合欧美亚洲国产小说| 啦啦啦韩国在线观看视频| 国产精品国产高清国产av| 大型黄色视频在线免费观看| 色在线成人网| 黄色女人牲交| 国产精品久久久久久人妻精品电影| 可以在线观看的亚洲视频| 久久精品国产99精品国产亚洲性色 | 亚洲久久久国产精品| 欧美日韩中文字幕国产精品一区二区三区 | 乱人伦中国视频| 国产高清激情床上av| 19禁男女啪啪无遮挡网站| 美女午夜性视频免费| 国产精品久久久人人做人人爽| 亚洲国产看品久久| 天堂√8在线中文| 国产高清有码在线观看视频 | 亚洲午夜精品一区,二区,三区| 亚洲电影在线观看av| 999久久久国产精品视频| 99在线人妻在线中文字幕| 视频在线观看一区二区三区| 国产精品永久免费网站| 成熟少妇高潮喷水视频| 91老司机精品| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| 深夜精品福利| 中亚洲国语对白在线视频| 久久这里只有精品19| 久久青草综合色| 精品一区二区三区视频在线观看免费| 国产91精品成人一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 色哟哟哟哟哟哟| 一级a爱片免费观看的视频| 国产亚洲精品久久久久5区| 99精品久久久久人妻精品| 成人亚洲精品av一区二区| 国产精品野战在线观看| 成人国产综合亚洲| 国产av在哪里看| 亚洲精品国产精品久久久不卡| 极品教师在线免费播放| 人人妻人人澡人人看| 午夜久久久在线观看| 国产亚洲精品av在线| 麻豆久久精品国产亚洲av| 亚洲美女黄片视频| 天堂√8在线中文| 亚洲国产欧美一区二区综合| 最新在线观看一区二区三区| 亚洲成国产人片在线观看| 最新美女视频免费是黄的| 97人妻天天添夜夜摸| 女人高潮潮喷娇喘18禁视频| 日本精品一区二区三区蜜桃| 日本免费a在线| 成人三级做爰电影| 天天一区二区日本电影三级 | 日本撒尿小便嘘嘘汇集6| 国产1区2区3区精品| 国产成人欧美| 国产精品久久久久久精品电影 | 亚洲男人天堂网一区| 免费观看人在逋| 可以在线观看的亚洲视频| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区精品视频观看| 久久婷婷人人爽人人干人人爱 | 中文亚洲av片在线观看爽| 国产精品久久久久久精品电影 | 一二三四社区在线视频社区8| 一边摸一边抽搐一进一小说| 午夜福利成人在线免费观看| 日韩大尺度精品在线看网址 | 国产欧美日韩一区二区精品| 久久午夜综合久久蜜桃| 欧美日韩瑟瑟在线播放| 日韩欧美国产一区二区入口| 90打野战视频偷拍视频| 亚洲成av人片免费观看| www.熟女人妻精品国产| 亚洲专区国产一区二区| 亚洲欧美日韩无卡精品| 51午夜福利影视在线观看| 一级作爱视频免费观看| 免费一级毛片在线播放高清视频 | 大香蕉久久成人网| 成人亚洲精品av一区二区| 中文字幕精品免费在线观看视频| 亚洲第一av免费看| а√天堂www在线а√下载| 成年人黄色毛片网站| 黄色丝袜av网址大全| 中文亚洲av片在线观看爽| 免费av毛片视频| 极品教师在线免费播放| 91国产中文字幕| 精品久久蜜臀av无| 国产乱人伦免费视频| 别揉我奶头~嗯~啊~动态视频| 久久久久精品国产欧美久久久| 九色亚洲精品在线播放| 亚洲国产看品久久| 免费女性裸体啪啪无遮挡网站| 久久精品国产99精品国产亚洲性色 | 精品一区二区三区av网在线观看| 欧美日本视频| 乱人伦中国视频| 亚洲精品国产精品久久久不卡| 欧美乱妇无乱码| 在线av久久热| 91在线观看av| 亚洲全国av大片| 中文字幕人成人乱码亚洲影| 成在线人永久免费视频| 国产极品粉嫩免费观看在线| 搞女人的毛片| 久久久国产欧美日韩av| 满18在线观看网站| 亚洲男人的天堂狠狠| 757午夜福利合集在线观看| 午夜免费成人在线视频| or卡值多少钱| 欧美另类亚洲清纯唯美| 777久久人妻少妇嫩草av网站| 亚洲美女黄片视频| 欧美成人性av电影在线观看| 多毛熟女@视频| 国产精品免费视频内射| АⅤ资源中文在线天堂| 操美女的视频在线观看| 国产精品野战在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲中文av在线| 国产精华一区二区三区| 亚洲国产精品久久男人天堂| 久热爱精品视频在线9| 老汉色av国产亚洲站长工具| 精品国产一区二区久久| 色综合婷婷激情| 国产99白浆流出| 久久久久久久午夜电影| 国产精品秋霞免费鲁丝片| av电影中文网址| 欧美精品亚洲一区二区| 久久久久亚洲av毛片大全| 啦啦啦 在线观看视频| 午夜免费激情av| 九色国产91popny在线| 欧美性长视频在线观看| 亚洲欧美日韩无卡精品| 制服丝袜大香蕉在线| 三级毛片av免费| 中文字幕高清在线视频| 亚洲国产精品sss在线观看| 精品免费久久久久久久清纯| 久久精品国产99精品国产亚洲性色 | 欧美中文综合在线视频| 亚洲午夜精品一区,二区,三区| 午夜福利一区二区在线看| 高清黄色对白视频在线免费看| 自拍欧美九色日韩亚洲蝌蚪91| 少妇熟女aⅴ在线视频| 美女免费视频网站| 午夜福利视频1000在线观看 | 国产成年人精品一区二区| 在线观看日韩欧美| 怎么达到女性高潮| 男人舔女人的私密视频| 日韩av在线大香蕉| 欧美国产精品va在线观看不卡| 黄色视频不卡| 一级毛片精品| 国产欧美日韩精品亚洲av| 久久伊人香网站| 国产xxxxx性猛交| 免费不卡黄色视频| 97碰自拍视频| 国产麻豆成人av免费视频| 在线观看www视频免费| 亚洲一码二码三码区别大吗| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出| 91老司机精品| 国产精品一区二区三区四区久久 | 国产精品电影一区二区三区| www.999成人在线观看| 在线播放国产精品三级| 欧美黑人精品巨大| 亚洲精品国产一区二区精华液| 无遮挡黄片免费观看| 三级毛片av免费| 色哟哟哟哟哟哟| 青草久久国产| 精品国产超薄肉色丝袜足j| a级毛片在线看网站| 欧美国产精品va在线观看不卡| 久久久精品欧美日韩精品| 日日夜夜操网爽| 国产精品免费一区二区三区在线| 黑人欧美特级aaaaaa片| 99热只有精品国产| 精品久久久久久久久久免费视频| 免费在线观看完整版高清| 亚洲天堂国产精品一区在线| av视频免费观看在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲美女黄片视频| 极品人妻少妇av视频| 日本免费一区二区三区高清不卡 | 精品人妻1区二区| 女警被强在线播放| 日韩免费av在线播放| 后天国语完整版免费观看| 黄网站色视频无遮挡免费观看| 中亚洲国语对白在线视频| 色老头精品视频在线观看| а√天堂www在线а√下载| 美国免费a级毛片| 亚洲人成77777在线视频| 亚洲中文日韩欧美视频| 国产精品九九99| 脱女人内裤的视频| 久久久水蜜桃国产精品网| xxx96com| 长腿黑丝高跟| 日日夜夜操网爽| 免费高清视频大片| 91精品国产国语对白视频| 99国产精品免费福利视频| 国产在线精品亚洲第一网站| 亚洲av美国av| 免费观看精品视频网站| 国产午夜精品久久久久久| 淫妇啪啪啪对白视频| 日韩欧美三级三区| 国产成人av激情在线播放| 日韩欧美三级三区| 一级毛片女人18水好多| 美女高潮到喷水免费观看| 日日爽夜夜爽网站| 久久香蕉国产精品| 一级毛片高清免费大全| av在线天堂中文字幕| 国产亚洲精品av在线| 国产亚洲欧美在线一区二区| netflix在线观看网站| 久久精品国产亚洲av高清一级| 亚洲一区二区三区不卡视频| 一夜夜www| 757午夜福利合集在线观看| 51午夜福利影视在线观看| 免费在线观看视频国产中文字幕亚洲| 69av精品久久久久久| 亚洲国产日韩欧美精品在线观看 | e午夜精品久久久久久久| 久久欧美精品欧美久久欧美| 青草久久国产| 一区二区三区高清视频在线| 热99re8久久精品国产| 97碰自拍视频| 国产亚洲欧美98| 人人妻人人澡欧美一区二区 | av视频免费观看在线观看| 色尼玛亚洲综合影院| 日韩欧美一区二区三区在线观看| 久久久久精品国产欧美久久久| 国产91精品成人一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲第一青青草原| 夜夜躁狠狠躁天天躁| 天堂动漫精品| 一级毛片高清免费大全| 欧美日韩乱码在线| 亚洲一区中文字幕在线| av超薄肉色丝袜交足视频| 久久国产精品影院| 欧美乱妇无乱码| 国产高清视频在线播放一区| 国产精品秋霞免费鲁丝片| 午夜影院日韩av| 狂野欧美激情性xxxx| 一级a爱片免费观看的视频| 一卡2卡三卡四卡精品乱码亚洲| avwww免费| 中文字幕最新亚洲高清| 长腿黑丝高跟| 亚洲av成人一区二区三| 两个人视频免费观看高清| 亚洲国产精品合色在线| 午夜免费激情av| 欧美日韩黄片免| 操出白浆在线播放| 午夜免费成人在线视频| 中出人妻视频一区二区| 人人妻人人澡欧美一区二区 | 在线观看免费视频日本深夜| 久久 成人 亚洲| 日韩 欧美 亚洲 中文字幕| 悠悠久久av| 国产99久久九九免费精品| 亚洲国产精品sss在线观看| 极品人妻少妇av视频| 一进一出抽搐gif免费好疼| 国产色视频综合| 老熟妇乱子伦视频在线观看| 国产av精品麻豆| 精品一区二区三区av网在线观看| 久久精品aⅴ一区二区三区四区| 可以在线观看的亚洲视频| 国产精品99久久99久久久不卡| 亚洲一码二码三码区别大吗| 9色porny在线观看| avwww免费| 午夜福利成人在线免费观看| 日韩精品免费视频一区二区三区| 亚洲第一欧美日韩一区二区三区| 亚洲少妇的诱惑av| 精品熟女少妇八av免费久了| 身体一侧抽搐| 给我免费播放毛片高清在线观看| 日本黄色视频三级网站网址| 精品免费久久久久久久清纯| 男男h啪啪无遮挡| 久久久久久久午夜电影| 91在线观看av| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 久久天堂一区二区三区四区| 最新美女视频免费是黄的| 亚洲男人天堂网一区| 多毛熟女@视频| 男女做爰动态图高潮gif福利片 | 亚洲精品av麻豆狂野| 女生性感内裤真人,穿戴方法视频| 亚洲 欧美一区二区三区| 久久天堂一区二区三区四区| 亚洲一区高清亚洲精品| www.自偷自拍.com| 国产熟女午夜一区二区三区| 亚洲欧美激情在线| av网站免费在线观看视频| 国产精品亚洲美女久久久| 久久久精品欧美日韩精品| 真人做人爱边吃奶动态| www.999成人在线观看| 国产aⅴ精品一区二区三区波| 日韩欧美一区二区三区在线观看| 国产区一区二久久| 精品不卡国产一区二区三区| 亚洲av熟女| 成人特级黄色片久久久久久久| 男人的好看免费观看在线视频 | 黑人操中国人逼视频| 久久人妻熟女aⅴ| 一级a爱视频在线免费观看| 欧美人与性动交α欧美精品济南到| 国产av在哪里看| 色尼玛亚洲综合影院| 亚洲av成人av| 久久精品亚洲熟妇少妇任你| 亚洲人成电影观看| 午夜免费成人在线视频| 欧美国产日韩亚洲一区| 女生性感内裤真人,穿戴方法视频| 亚洲专区字幕在线| 久久久久国内视频| 伊人久久大香线蕉亚洲五| 久久草成人影院| 欧美黄色片欧美黄色片| 久久精品国产综合久久久| 中亚洲国语对白在线视频| 每晚都被弄得嗷嗷叫到高潮| 婷婷丁香在线五月| 日本精品一区二区三区蜜桃| 一本大道久久a久久精品| 中国美女看黄片| 伊人久久大香线蕉亚洲五| 精品午夜福利视频在线观看一区| 国产av一区二区精品久久| 亚洲第一电影网av| 一区二区日韩欧美中文字幕| 午夜福利18| 欧美成狂野欧美在线观看| 曰老女人黄片| 最近最新中文字幕大全免费视频| 美女国产高潮福利片在线看| 久久亚洲真实| 日韩中文字幕欧美一区二区| 亚洲国产精品成人综合色| 777久久人妻少妇嫩草av网站| 两个人视频免费观看高清| 欧美日韩瑟瑟在线播放| a级毛片在线看网站| 亚洲 欧美 日韩 在线 免费| 69精品国产乱码久久久| 纯流量卡能插随身wifi吗| 精品国产一区二区久久| 天天躁狠狠躁夜夜躁狠狠躁| 99久久综合精品五月天人人| 午夜a级毛片| 欧美大码av| 岛国视频午夜一区免费看| 夜夜躁狠狠躁天天躁| 国产午夜精品久久久久久| 看片在线看免费视频| 成人亚洲精品一区在线观看| 咕卡用的链子| 制服丝袜大香蕉在线| 9热在线视频观看99| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美日韩无卡精品| 丰满人妻熟妇乱又伦精品不卡| 90打野战视频偷拍视频| 亚洲专区国产一区二区| 精品无人区乱码1区二区| 国产精品久久久久久精品电影 | 女人高潮潮喷娇喘18禁视频| 亚洲天堂国产精品一区在线| 亚洲性夜色夜夜综合| 日韩中文字幕欧美一区二区| 亚洲欧美激情综合另类| 在线免费观看的www视频| 国产亚洲精品av在线| 嫁个100分男人电影在线观看| 亚洲三区欧美一区| 给我免费播放毛片高清在线观看| 国产精品亚洲美女久久久| 国产精品乱码一区二三区的特点 | 亚洲欧美精品综合久久99| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片午夜丰满| 久久婷婷成人综合色麻豆| 在线观看日韩欧美| 亚洲全国av大片| 极品人妻少妇av视频| 国产野战对白在线观看| 99久久综合精品五月天人人| 久久亚洲精品不卡| 级片在线观看| 国产黄a三级三级三级人| 精品卡一卡二卡四卡免费| 亚洲性夜色夜夜综合| 女同久久另类99精品国产91| 国产区一区二久久| 亚洲男人天堂网一区| 男男h啪啪无遮挡| 午夜亚洲福利在线播放| 一二三四在线观看免费中文在| 中文字幕人妻熟女乱码| 欧美黑人精品巨大| 欧美乱码精品一区二区三区| 亚洲五月婷婷丁香| 日本欧美视频一区| 久久热在线av| 国产精品爽爽va在线观看网站 | 色老头精品视频在线观看| 欧美成人一区二区免费高清观看 | 两人在一起打扑克的视频| 丰满的人妻完整版| 亚洲自偷自拍图片 自拍| 波多野结衣一区麻豆| 欧美黑人精品巨大| 国产亚洲精品av在线| 后天国语完整版免费观看| 在线观看一区二区三区| 黑人操中国人逼视频| 日韩大码丰满熟妇| 美女免费视频网站| 国产精品野战在线观看| 高清毛片免费观看视频网站| 亚洲国产毛片av蜜桃av| 91精品国产国语对白视频| 一边摸一边抽搐一进一小说| 国产成人系列免费观看| 国产精品电影一区二区三区| 一边摸一边抽搐一进一小说| 色在线成人网| 久久国产亚洲av麻豆专区| 免费看十八禁软件|