• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of in-bore balloting and control of jump variability

    2019-11-18 02:34:32SatoruShoji
    Defence Technology 2019年5期

    Satoru Shoji

    21-104, Wakayama-dai, Shimamoto, Osaka, Japan

    Keywords:Jump variability Coupled vibration In-bore balloting Cantilever tube

    ABSTRACT The variability of projectile jump is the long-term issue to improve weapon accuracy.Nowadays we have many simulation codes to predict Jump. However, these codes cannot explain explicitly how the variability of jump arises.The aims of this paper are,1)to give fundamental explanations for the variability of Jump, and 2) to offer design factors to make the variability of Jump less. The model presented here was formulated in accordance with the transition of the system in reverse way commencing from the target impact stage to the chambering stage. Objects of the simulation are generic 120 mm smooth bore and long rod system which are extremely simplified to the vibration of tube, the spring effect by sabot, and the free-ends beam of penetrator. Parametric calculations clarified that high Jump-variability is generated only when the last rebound is on the muzzle line. This particular state of rebound is achieved by many combinations of input-variable. Guide map named JV-Chart is proposed to show the high Jumpvariability zone.

    1. Introduction

    Projectile jump (?jump for short), is the sight angle difference between the calculated aiming point and the actual impact point.The serious problem of jump is that the angle difference is not stable and we cannot fix the offset for the FCS(fire control system)of a tank. We conventionally call this unstable jump “occasion-tooccasion variation” or “shot-to-shot dispersion”, and we call them“jump-variability” in this paper.

    We have two aims in this paper. One is to fully understand the mechanism of jump-variability, and the second is to find design guides to decrease jump-variability. Nowadays many simulation software have been developed but those are ineffective for investigating jump-variability because,

    a. They do not point out the fundamental cause of jumpvariability.

    b. They have no assured grounds for assigning input elements.

    Taking into account the background of jump investigation, we will build a new jump model that can predict and explain the jumpvariability.

    2. Jump simulation model

    2.1. Scope of modelling

    1) Simulation was limited to two dimensional motion,and we have neglected some muzzle exit effects such as uneven pressure,gaseous explosion, or irregular discard of sabot.

    2) A generic 120 mm smooth bore gun and long rod projectile were taken for a simulation object.

    3) Appendix A: “Symbols and Data” shows main default values,symbols and configuration for convenience of reference. The physical unit system used in this paper is “gram-millimetermillisecond” unless otherwise noted.

    4) “Rebound” means either the name of motion or magnitude of force of the rebound. “Input-variable” is the input or cause which is prepared for parametric calculation.

    5) Appendix B: “Flow of Variables”shows the outline of our jump simulation model.

    2.2. Exterior flight

    Standard exterior ballistics does not calculate jump.Fortunately,forerunners have already formulated the jump.The three attributes of a body (mass-point, rigid-body, and continuum) take the independent actions in air stream. Projectile jump (? jump), Jp is the summation of three independent jumps. (Eq. (1)). The velocity jump, Jv is the motion of point mass which is proportional to the lateral velocity vZof rod (Eq. (2)). The rigid-body jump (? Bundy jump), JBcomes from the aerodynamic effect on rigid body under rotation around center of mass. The angular velocity of the rod at the muzzle, uZwill start with asymmetrical yawing which eventually results in the lateral shift in trajectory(Eq.(3)).This jump is formulated by Bundy[1].The elastic-body jump(?Schmidt jump),Js is also the aerodynamic effect on the continuum beam.This effect comes from the difference of air drag at forward half and the rear half of the flexure rod(Eq.(4)).This jump is formulated by Schmidt[2].

    The variables vZ,uZ;and dZof the above three formulae will be born from the collisions between tube and projectile. We will call these collisions as “In-Bore Balloting”.

    2.3. In-bore balloting of rod

    Our simulation model is,in essence,“the coupling vibration of a rod”in a tube.The sabot in which a rod is held is accelerated by gas pressure and makes contacts to and bounces off the deflecting tube many times.This balloting motion continues until exiting from the muzzle.All in-bore calculations will be done in“bore coordinates”that is defined as an orthogonal frame travelling along the vibrating center-line of the gun tube.

    Dynamic properties of a rod at the muzzle will be given by Eq.(5),Eq.(6)and Eq.(7).yc is the transverse distance of rod center to tube center,and sc is the inclination of rod relative to the rod center as seen in Fig. 1. The second terms in Eq. (5) and Eq. (6) are the lateral velocity and angular velocity of tube center line at the time of muzzle exit respectively. dZof Eq. (7) is the first maximum deflection of rod after launch.This equation was deduced from the extreme condition that the deflection velocity of the rod center reaches zero.yDc is the deflection of rod shown at Eq.(16).Dot over X means the partial derivative of X with respect to time.

    Fig.1. The 2DOF coupling vibration.

    2.3.1. Equation of motion of rod as rigid body

    The rod in bore can be described as“the two degree of freedom(2DOF) non-linear coupling vibration”. The constitution of the vibration model is shown in Fig.1.The lateral transition yc[t]and the inclination sc[t ] against tube centerline (? bore coordinates axis)can be determined by solving the equations of motion,Eq. (8) and Eq.(9),respectively.And the second terms of Eq.(8)and Eq.(9)are the translational acceleration of the bore coordinate and angular acceleration of the bore coordinate, respectively.

    Compression forces(or rebound forces),fRAof Eq.(10)and fRFof Eq.(11)are generated between rod and tube along the lines of action“A”and “F”.“A” is the position of aft-bore rider(or rear bulkhead)and “F” is the position of forward bore rider (or front bell).

    Sabot is assumed to act as compression springs with no mass.kA and kF are the spring constants that work between convex sabot and concave tube as seen in Fig. 2, the proportionality of compression was confirmed with the static load test by Lyon [3].

    dAand dFare the distances between tube center and rod center at“A” and “F” respectively.

    Cs is the compensating rate of the spring constant which varies with the orientation ? of the sabot petal (see Fig. 3). “0.7” is the ratio of minimum to maximum compression which was obtained experimentally by Lyon[3].The function Eq.(14)was formulated so as to change the compression smoothly as the orientation changes(see Fig. 3).

    Function reBND(Eq.(15))was introduced to correct the rebound force so as to evaluate the effect of the radial clearance(hoA or hoF)between tube and rod.H[x]is the Heaviside step function.Fig.4 is the graphical expression of reBND.

    Fig. 2. The compression of sabot.

    Fig. 3. Orientation of sabot at loading.

    2.3.2. Flexure of rod

    The rod, as a homogeneous cylindrical beam without any support, will vibrate making flexure yDC?x; the in accordance with the Euler-Bernoulli formula under the transverse load intensities given by Eq. (18). The symbol “x” is the independent variable of position along the rod.

    where,

    Fig. 4. Installation of clearance: hoA or hoF by way of function reBND.

    The convolution method(?Duhamel integral)was modified for use of discrete variables to the lateral load intensities on rod as shown in Eq.(18).sDC; Eq.(19),is the tangent of the flexure rod at the position x and time t.This equation has no direct relation to the jump variability though,rod end angle(as seen in Fig.14),sDC?LC;the is an attractive motion which we can measure directly with mirror and laser-beam technique.

    2.4. Gun tube deflection

    The gun tube is supported by a tube carriage of tank to be a sliding cantilever. The vibration of the gun tube changes the boundary of the sabot motion and generates lateral acceleration of the bore coordinates.In order to simulate typical droop curve,tube was supposed as a hollow cylinder with four step-wise outer diameters as illustrated in Fig. 5.

    Two imaginary tubes were formulated in order to see the effect of their asymmetry on projectile jump.Using these equations is not mandatory (see Eq. (20) and Eq. (21)), experimentally taken data are also useable. Two types of tube, droop type (Fig. 6) and warp type(Fig.7),were taken into consideration.The initial curvature of the center line of the imaginary gun tubes are shown in the illustrations below.Vertical scales are written in mm.Horizontal scales are the distance from RFT (rear face of tube) in mm.

    The tube vibrates in accordance with Euler-Bernoulli theory as a sliding cantilever supported by a carriage. A mass eccentricity of tube against breech centerline produces a sudden inertial moment upon recoil at every position.The total induced moment of force is converted to transverse load intensity on the tube that was formulated as Eq.(24)by Simkins[4].Lateral motion of the carriage is supposed to be zero until the exit of projectile from the muzzle.One more load on the tube is the projectile load due to the rebound of projectile against tube, which is formulated as Eq. (25).

    For the “droop” type tube with uneven outer diameter.

    Fig. 5. Cantilever gun tube.

    Fig. 6. Center line of the Droop type tube - Eq. (20)

    Fig. 7. Center line of the warp type tube - Eq. (21).

    Fig. 8. Deflection of droop-type tube.

    Fig. 9. Deflection of warp-type tube.

    For the “warp” type tube; (bbw is the half width of the warp).This proposed function-Eq.(21)has the benefits;1)zero shear force at the top and the slope-ends which represent natural deformation,2) the property of addition which can simulate any shape of deformation.

    where,

    Fig.10. dA and dF at “A” and “F” respectively.

    Fig.11. Rebound forces fRA and fRF. Vertical line designates the muzzle position. During rebound, sabot is sliding on the tube-inside surface.

    Fig.12. Deviation (left, in mm) and lateral velocity (right, in mm/ms) of rod center.

    Recoil acceleration aR?[t]is determined from the conservation of momentum which is held among the axially moving parts of the system.“0.5” is the usually used rough value.

    The axial acceleration of projectile aP?[t]is given by Eq.(27)as a hypothetical interior ballistics data for the convenience of parametric change of data.

    where,pss0 is the shot-start pressure,and other three constants,a1,a2, and a3are fixed by giving maximum travel LZ, time to exit tZ,maximum pressure pmax, and muzzle velocity v0.

    Eq. (28) is the tangent of the deflecting tube at position z and time t.Then sDT?[LT;tZ]will be the centerline angle of the muzzle at the time of projectile exit.

    3. Results

    In this section, some numerical results are shown to demonstrate the various aspects of in-bore balloting. Mathematical equations are coded on a computer algebra system (CAS).

    3.1. Deflection of gun tube

    Figs. 8 and 9 below demonstrate the deflection of the tube in mm. The moving curves are overlaid as the projectile travels by 60 mm each increment.

    Fig.13. Inclination (left in radian) and angular velocity (right in rad/ms) around rod center of mass.

    Fig.14. Effects of the damping coefficient ehCT on rod flexure.

    Fig.15. Jump curves (Jp[hcF] and Jp[kF]).

    Fig.16. Progressive shift of rebound position by clearance (hcF).

    3.2. Output from single shot

    The following graphs are the typical outputs from a single shot taken for the purpose of demonstrating the in-bore balloting.

    Oscillatory motions of dAand dF, are the distances between the tube center and rod center at “A” and “F” respectively. The two symmetrically drawn horizontal-lines in Fig.10 indicate the range where rod can move freely.For the left graph,horizontal lines at“A”is, and for the right hand graph, horizontal lines at “F” is. Areas beyond these lines are proportional to the “rebound force”.

    Fig.17. Degressive shift of rebound by sabot-stiffness (kF).

    Fig.18. Three-D Display of JP [hcF, hcA].

    Fig.19. (a) 3D display of JV [hcF, hcA]. (b) JV-Chart of JV [hcF, hcA].

    Fig. 11 shows the calculated rebound forces. The right side vertical line in both figures indicates the position of the muzzle.During rebound,sabot is sliding on the tube inside-surface.Figs.12 and 13 show the motions of rod in the moving bore coordinate system.

    The inclinations of rod end angle (Fig.14) are calculated by Eq.(19).It was found that the end angles are sensitive to the damping coefficient hCof rod vibration.This damping coefficient comes from the internal friction of rod material.“hC”appears at the last formula of Equation (16).

    3.3. Parametric change of jump

    Fig. 15 displays the calculated jumps. Shot numbers are given from left to right as one increment of input.Connected 21 points in each graph designate the magnitude of jumps in milli-radian. It takes 4 min to calculate one shot with a customary personal computer.At the steep portion of each curve,a small change of variable makes a big change in jump.It is obvious that 0.02 mm of change in the radial play makes 1.0 mrad of difference in jump when the average (or designed) clearance is around 0.1 mm. From the practical point of view, this change of jump is tremendously large and cannot be accepted. There are many variety of pattern of jumpcurves depending on the type of input-variable.

    Fig.16.(2)is a good example where the steep slope of the curve of Fig.15 corresponds to the halfway cut-off of the last rebound.The similar correspondence is seen also in Fig.17.(2).On the other hand,

    Table 1 Input variables.

    the flat portions of jump curve which are designated by four black arrows in Fig. 15 correspond to the full form (no cut-off) of the rebound force.

    3.4. From JP function to JV-Chart

    3.4.1. JP solid figure (jump surface)

    When the two input-varaibles (hcA, hcF) are changed parametrically at the same time, the calculated jump function JP[hcA,hcF] will make 3-D surface (Fig.18).

    3.4.2. JV chart (jump variability chart)

    We have defined a generalized slope Eq. (29) for 3-D curved surface. The jump function JP (Fig. 18) can be converted to jump variability JV (Fig.19a) through this formula.to show high variability zone(s).The coordinates scales of this chart are not the actual value of input,but are indices(e.g.shot number;j or k) used for the calculation of JP.

    3.4.3. The effect of the third variable

    The JV-Chart of JV [hcF, hcA] of Fig. 19b is a function of two variables. When the input-variable kF (spring constant along “F”line)was joined as the third variable,JV[hcF,hcA,kF]changes as kF increases as seen in Fig. 20.

    3.5. JV-charts from a pair of input-variables

    The combinations of two input-variables are calculated to make JV-Charts. Each calculation range is divided into ten points. The parametric points are tabulated in Table 1, (k?1,2, …,11).

    Case 1: Combinations of two input-variables at a time selected from projectile properties (see Fig. 21).

    Note that JV has the dimension of “radian/increment”, that means, the addition of the different type of JP has no physical meaning but has the practical merrit to normalize the jumpvariability at the input coordinates(y1, y2).

    Fig.19b is the top view of Fig.19a.The greenish blue transparent mesh plane was set at 0.3 mrad as a temporary acceptance level for convenient viewing.JV values above the flat mesh looks like islands in an ocean or hills in a plain;then we call this picture a“JV-Chart”

    Fig.21 will give us the advices about design of the span between two riders and of the position of rod relative to the aft rider position.

    Case 2: Combinations of two input-variables at a time selected from each of projectile and tube.The caption Y-X means vertical Y and horizontal X like the same way as Case 1.

    On the Charts of the Y-aaw group (latter six charts in Fig. 22),there seems a tendency that more than 0.25 mm of “warp height:aaw” will be the cause of high variability in the system of the current default values.On the Y-ccw case(peceding six in Fig.22),it shall not be construed as being no general tendency, because the coordinates for “ccw” are taken far wider range(1700 mme3700 mm)compared to the narrow range of variables of projectiles.Such big change of ccw is nothing to do with“Shot-toshot dispersion”, but will make “Occasion-to-Occasion Variation”.

    Fig. 21. JV-charts of 6C2 (?15) combinations from six factors.

    Fig. 22. Jump variability by warp of tube: [Twelve JV-Charts].

    Fig. 23. Jumps of serial aaw.

    Fig. 24. Jumps of serial ccw.

    Fig. 25. JP solid figure ofcombined aaw and ccw. Green flat plane is the zero level of jump.This graph represents the jumps of 441(?21×21)shots which include the data of Figs. 23 and 24.

    Fig.26. JV-Chart of gun tube. Data of Fig.25 are converted by the conversion formula Eq. (29). The horizontal red line corresponds to the input-varaible aaw of Fig. 23,whereas the vertical red line corresponds to the input-varaible ccw of Fig. 24.Threshold plane was set at 0.3 mrad level. Regions which stand out above the green plane indicate higher jump variability resion.

    Designers both of gun and projectile must have, before their start of design,some arrangements on the principal input-variables of the system based on the common understandings of the jumpvariability.

    Case 3: Jump Variabilities from tube.

    The input-variables aaw and ccw which are attributed to tube only can generate high variability of jump. From Fig. 26, it can be seen that the warp-center near the muzzle will make high variability.

    4. Discussions

    4.1. Causes of jump variability

    Fig. 27. RML-state.

    The width of rebound is the sliding distance of sabot under compression. High variability of jump will take place at the state where the last rebound occupies the muzzle position. We call this state “RML-state” (Fig. 27) in this paper. The RML-state has the following significant features

    a. RML-state works as an amplifier of jump

    b. RML-state is attained by particular combinations of inputvaraibles

    c. RML-states agglomerate themselves because of their inter

    mittant nature.

    There are two methods to identify the input-variables which direct to the RML-state.

    One approach is to make JV-Chart as was described in Section 3.4.Another approach is to solve the RML-state functional-equations with respect to input-variables.This method is not yet in our hands but is the challenging, attractive issue.

    4.2. Explanations on unique phenomena

    Now we have possible explanations for the unique phenomena of jump. We had ignored the amplification characteristics of inbore balloting. And this amplification works only when the system is under a specific condition called RML-state. This is the reason why we could not identify the causes of shot-to-shot dispersion for a long time.

    The followings are the possible causes of high variability of jump. The magnitude of them is dependent on the engineering of manufacturer of the individual system,though.

    a. Clearances between parts especially in radial direction;

    b. Natural deflection (as warp) of tube;

    c. Insufficient air purge in working oil;

    d. Degree of wear at the forcing cone or unstable shot-start pressure;

    e. Transformation of material induced by the shock of live firing.

    4.3. JV-chart and its usage

    JV-Chart is a simplest tool to know the conditions where the high variability of jump will be.However,it is not practical to try all combinations of input-variables. Then the second best is to make JV-Chart ofNC2combinations. N types of input shall be chosen by engineering judgement. The acceptable combinations of input values must be in the area where the green part is common to all charts. If we cannot find a common green area, then we have to change the default value(s)of input or shall make trade-off among input-variables.The last option we have to choose is the downgrade of the acceptance level of variability.

    Understanding the Jump-variability must be the basis for the overall design of a gun-projectile system that includes planning of experiment, quality control, design and logistics.

    4.4. Further development

    We have brought up the present Jump-Variability model by the name of“EUBON2D”.We expect the following developments of the present model together with the experimental tests.

    1) Taking into the bobbing motion of MBT as an “elastic foundation” of cantilevered tube.

    2) Algebraic research to formulate and solve the“RML-state”with respect to all inputs.

    5. Conclusions

    a. The coupling vibration model can explain many unique phenomena in live firing.

    b. High jump-variability arises with the particular combinations of inputs.

    c. The JV-Chart was proposed as a tool for finding the conditions of the high variability of jump.

    d. The model fabrication from outputs to inputs was found effective to look into the nature.

    Appendix A. Symbols and data

    Fig. A.1. System Configurations.

    Appendix B. Flow of variables

    午夜激情av网站| 露出奶头的视频| 亚洲aⅴ乱码一区二区在线播放 | 可以免费在线观看a视频的电影网站| 男女那种视频在线观看| 欧美国产精品va在线观看不卡| 国产精品久久久久久亚洲av鲁大| 国产av不卡久久| 久久久久九九精品影院| 天堂影院成人在线观看| 亚洲中文字幕日韩| 岛国视频午夜一区免费看| 国产精品久久久久久人妻精品电影| 麻豆国产av国片精品| 美女扒开内裤让男人捅视频| 国产乱人伦免费视频| 18禁黄网站禁片免费观看直播| 亚洲人成77777在线视频| 久久久国产成人免费| 50天的宝宝边吃奶边哭怎么回事| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品粉嫩美女一区| 99热6这里只有精品| 日日爽夜夜爽网站| 18禁观看日本| 天天添夜夜摸| 国产精品亚洲av一区麻豆| 国产亚洲精品综合一区在线观看 | 亚洲熟妇熟女久久| 亚洲成人久久爱视频| 亚洲欧美日韩高清在线视频| 日本黄色视频三级网站网址| 岛国视频午夜一区免费看| 老鸭窝网址在线观看| 欧美日韩一级在线毛片| 法律面前人人平等表现在哪些方面| 色综合婷婷激情| 好看av亚洲va欧美ⅴa在| 日韩欧美国产一区二区入口| 丝袜美腿诱惑在线| 国产视频内射| 中文字幕精品免费在线观看视频| 97人妻精品一区二区三区麻豆 | 国产精品电影一区二区三区| 国产精品久久久久久亚洲av鲁大| 欧美激情高清一区二区三区| 国产激情久久老熟女| 美女国产高潮福利片在线看| 久久99热这里只有精品18| 国产精品久久久久久人妻精品电影| 制服丝袜大香蕉在线| x7x7x7水蜜桃| 超碰成人久久| 两个人免费观看高清视频| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 久久久久免费精品人妻一区二区 | 后天国语完整版免费观看| xxx96com| 亚洲 国产 在线| 色综合站精品国产| 国产成人欧美在线观看| 国产精品99久久99久久久不卡| 中文字幕人成人乱码亚洲影| 亚洲aⅴ乱码一区二区在线播放 | 国语自产精品视频在线第100页| 亚洲国产精品sss在线观看| 欧美激情高清一区二区三区| 日本在线视频免费播放| 757午夜福利合集在线观看| 18禁黄网站禁片免费观看直播| 亚洲七黄色美女视频| 色av中文字幕| 又紧又爽又黄一区二区| 亚洲av美国av| 国产成人av教育| 成人精品一区二区免费| 国产又爽黄色视频| 日韩大码丰满熟妇| 久久 成人 亚洲| 自线自在国产av| 国产精品爽爽va在线观看网站 | 亚洲精品国产区一区二| 精品久久久久久久毛片微露脸| 美女 人体艺术 gogo| 色播在线永久视频| 久久狼人影院| 青草久久国产| 99国产精品99久久久久| 美女免费视频网站| 中亚洲国语对白在线视频| 在线播放国产精品三级| 成人av一区二区三区在线看| 国产精品精品国产色婷婷| 两人在一起打扑克的视频| 成人永久免费在线观看视频| 精品国产一区二区三区四区第35| 亚洲精华国产精华精| 国产av一区在线观看免费| 一级黄色大片毛片| 女性生殖器流出的白浆| 最新在线观看一区二区三区| 老司机在亚洲福利影院| 中文字幕人妻丝袜一区二区| 免费在线观看亚洲国产| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 在线观看免费日韩欧美大片| 国产成人精品久久二区二区免费| 日韩 欧美 亚洲 中文字幕| 母亲3免费完整高清在线观看| 日本在线视频免费播放| 亚洲成人免费电影在线观看| av有码第一页| 99久久综合精品五月天人人| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 99久久综合精品五月天人人| 国产一级毛片七仙女欲春2 | 亚洲精品一卡2卡三卡4卡5卡| 国产精品免费一区二区三区在线| 三级毛片av免费| 搞女人的毛片| 亚洲,欧美精品.| 国产欧美日韩一区二区精品| 国产免费男女视频| 他把我摸到了高潮在线观看| 国产成人一区二区三区免费视频网站| 色老头精品视频在线观看| 91麻豆精品激情在线观看国产| 后天国语完整版免费观看| 色综合婷婷激情| 美女大奶头视频| 夜夜爽天天搞| 看片在线看免费视频| 女人高潮潮喷娇喘18禁视频| 69av精品久久久久久| 精品久久久久久久久久久久久 | a级毛片在线看网站| 男女那种视频在线观看| 久久国产乱子伦精品免费另类| 免费人成视频x8x8入口观看| 两个人看的免费小视频| 天天躁狠狠躁夜夜躁狠狠躁| 免费搜索国产男女视频| 久久 成人 亚洲| 在线视频色国产色| 两性夫妻黄色片| 真人做人爱边吃奶动态| 亚洲精品久久成人aⅴ小说| 成人手机av| 麻豆一二三区av精品| 97人妻精品一区二区三区麻豆 | 色婷婷久久久亚洲欧美| 一二三四社区在线视频社区8| 免费在线观看成人毛片| 在线观看66精品国产| 十八禁网站免费在线| aaaaa片日本免费| www日本在线高清视频| 男女做爰动态图高潮gif福利片| 香蕉国产在线看| 黑人操中国人逼视频| 中文字幕人成人乱码亚洲影| 日本一区二区免费在线视频| 国产免费男女视频| 久久久水蜜桃国产精品网| xxxwww97欧美| 亚洲电影在线观看av| or卡值多少钱| 在线播放国产精品三级| 91成人精品电影| 母亲3免费完整高清在线观看| 我的亚洲天堂| 亚洲精品久久成人aⅴ小说| 欧美色视频一区免费| 久久精品亚洲精品国产色婷小说| 亚洲激情在线av| 国产麻豆成人av免费视频| 搞女人的毛片| 男女床上黄色一级片免费看| 欧美一级毛片孕妇| 91字幕亚洲| 99国产精品一区二区蜜桃av| 高潮久久久久久久久久久不卡| 日本五十路高清| av超薄肉色丝袜交足视频| 啦啦啦韩国在线观看视频| 亚洲美女黄片视频| 99精品久久久久人妻精品| 国产精品亚洲美女久久久| 国产蜜桃级精品一区二区三区| 国产真人三级小视频在线观看| 丝袜人妻中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 成人18禁在线播放| 亚洲真实伦在线观看| 最近最新免费中文字幕在线| 中文字幕精品免费在线观看视频| 变态另类丝袜制服| www.精华液| 久久久久久九九精品二区国产 | 在线观看免费午夜福利视频| 男男h啪啪无遮挡| 国产野战对白在线观看| 国产精品av久久久久免费| 少妇的丰满在线观看| 91九色精品人成在线观看| 自线自在国产av| 亚洲欧美日韩无卡精品| 久久性视频一级片| 成人18禁在线播放| 久久精品91蜜桃| 少妇被粗大的猛进出69影院| 久久久久九九精品影院| 99国产精品99久久久久| 搡老岳熟女国产| 99riav亚洲国产免费| 久久热在线av| 丝袜在线中文字幕| 日韩精品青青久久久久久| 日韩欧美一区二区三区在线观看| 制服丝袜大香蕉在线| 欧美成人免费av一区二区三区| 久久久久国产精品人妻aⅴ院| 国产不卡一卡二| 99在线人妻在线中文字幕| 可以在线观看的亚洲视频| 欧美绝顶高潮抽搐喷水| 亚洲美女黄片视频| 欧美zozozo另类| 日韩欧美国产在线观看| 老司机靠b影院| 露出奶头的视频| 美女扒开内裤让男人捅视频| 亚洲精品一卡2卡三卡4卡5卡| 一a级毛片在线观看| 老鸭窝网址在线观看| 午夜免费激情av| 一卡2卡三卡四卡精品乱码亚洲| 变态另类成人亚洲欧美熟女| 久久精品夜夜夜夜夜久久蜜豆 | 欧美成人免费av一区二区三区| 成人18禁高潮啪啪吃奶动态图| av免费在线观看网站| 国产私拍福利视频在线观看| 黄色视频不卡| 1024手机看黄色片| 国产久久久一区二区三区| 久久久久久久久中文| www.自偷自拍.com| 听说在线观看完整版免费高清| 可以免费在线观看a视频的电影网站| 欧美绝顶高潮抽搐喷水| 99re在线观看精品视频| 母亲3免费完整高清在线观看| 在线播放国产精品三级| 久久久久久免费高清国产稀缺| 国产欧美日韩精品亚洲av| 亚洲一卡2卡3卡4卡5卡精品中文| 久久青草综合色| 午夜福利18| 免费人成视频x8x8入口观看| 男女那种视频在线观看| 日韩欧美国产一区二区入口| av超薄肉色丝袜交足视频| 99久久99久久久精品蜜桃| 国产成年人精品一区二区| 熟女少妇亚洲综合色aaa.| 精品人妻1区二区| 成人手机av| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 色综合婷婷激情| 亚洲成av片中文字幕在线观看| 国产激情久久老熟女| 国产亚洲精品第一综合不卡| aaaaa片日本免费| 老汉色∧v一级毛片| 一个人观看的视频www高清免费观看 | 精品久久久久久久毛片微露脸| 夜夜躁狠狠躁天天躁| 男人舔女人下体高潮全视频| 精品午夜福利视频在线观看一区| 最好的美女福利视频网| 午夜老司机福利片| ponron亚洲| 禁无遮挡网站| 久久精品91蜜桃| 日本 欧美在线| 老司机深夜福利视频在线观看| videosex国产| 看黄色毛片网站| 久久精品影院6| 天堂影院成人在线观看| 他把我摸到了高潮在线观看| www.熟女人妻精品国产| 国产蜜桃级精品一区二区三区| www国产在线视频色| 久久精品人妻少妇| 一进一出抽搐动态| 久久久久久九九精品二区国产 | 高潮久久久久久久久久久不卡| 久久99热这里只有精品18| 国产v大片淫在线免费观看| 99国产极品粉嫩在线观看| 最近在线观看免费完整版| 一级黄色大片毛片| 欧美成人一区二区免费高清观看 | 国产成+人综合+亚洲专区| 黄色视频不卡| 免费在线观看日本一区| 亚洲熟妇熟女久久| 中文字幕av电影在线播放| 99精品欧美一区二区三区四区| 国产精品 欧美亚洲| 国产成人系列免费观看| 99久久综合精品五月天人人| 美女午夜性视频免费| 亚洲成a人片在线一区二区| 男人舔女人的私密视频| 麻豆国产av国片精品| 久久精品91蜜桃| 这个男人来自地球电影免费观看| 国产视频一区二区在线看| 免费搜索国产男女视频| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品久久二区二区91| 搡老熟女国产l中国老女人| 视频区欧美日本亚洲| 可以在线观看毛片的网站| 免费在线观看完整版高清| 亚洲第一电影网av| 亚洲成人国产一区在线观看| 国产又黄又爽又无遮挡在线| 美女午夜性视频免费| 亚洲成a人片在线一区二区| 欧美+亚洲+日韩+国产| 免费在线观看黄色视频的| 午夜视频精品福利| 热99re8久久精品国产| 午夜视频精品福利| 国产成人av教育| 日本免费一区二区三区高清不卡| 香蕉国产在线看| 999久久久精品免费观看国产| 俺也久久电影网| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频 | 宅男免费午夜| 黄色a级毛片大全视频| 精品乱码久久久久久99久播| 91老司机精品| 久久久水蜜桃国产精品网| 中文字幕久久专区| 女生性感内裤真人,穿戴方法视频| 中文字幕久久专区| 欧美日韩中文字幕国产精品一区二区三区| 人人妻人人看人人澡| 成人免费观看视频高清| 午夜日韩欧美国产| 久久中文字幕一级| 超碰成人久久| 母亲3免费完整高清在线观看| 白带黄色成豆腐渣| 亚洲五月天丁香| 又紧又爽又黄一区二区| 丝袜人妻中文字幕| 色哟哟哟哟哟哟| 午夜精品在线福利| 老熟妇仑乱视频hdxx| 午夜精品久久久久久毛片777| 老司机靠b影院| 很黄的视频免费| 变态另类成人亚洲欧美熟女| 在线观看免费日韩欧美大片| 身体一侧抽搐| 久99久视频精品免费| 久久久久久九九精品二区国产 | 看片在线看免费视频| 亚洲中文av在线| 精品高清国产在线一区| 久久中文字幕一级| 国产精品国产高清国产av| 亚洲av熟女| 国产精品国产高清国产av| 一个人观看的视频www高清免费观看 | 一级作爱视频免费观看| 久久欧美精品欧美久久欧美| 日韩一卡2卡3卡4卡2021年| 亚洲专区中文字幕在线| 最新在线观看一区二区三区| 国产不卡一卡二| 午夜成年电影在线免费观看| 久久天堂一区二区三区四区| 国产成人av激情在线播放| 亚洲熟妇熟女久久| 欧美日本视频| а√天堂www在线а√下载| 亚洲国产精品合色在线| 又大又爽又粗| 老司机靠b影院| 免费在线观看黄色视频的| 国产精品久久久久久亚洲av鲁大| 十分钟在线观看高清视频www| 国产三级在线视频| 精品久久久久久成人av| 亚洲,欧美精品.| 人妻丰满熟妇av一区二区三区| 免费高清视频大片| 中文字幕高清在线视频| 一夜夜www| 日韩精品中文字幕看吧| 这个男人来自地球电影免费观看| 丝袜在线中文字幕| 亚洲欧美激情综合另类| 精品国产一区二区三区四区第35| 成人18禁在线播放| 免费在线观看完整版高清| 脱女人内裤的视频| 极品教师在线免费播放| 国产精品国产高清国产av| 午夜福利在线观看吧| 亚洲 欧美 日韩 在线 免费| 国产精品美女特级片免费视频播放器 | 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 色婷婷久久久亚洲欧美| 国产成人影院久久av| 欧美亚洲日本最大视频资源| 热99re8久久精品国产| 村上凉子中文字幕在线| 亚洲男人的天堂狠狠| 欧美激情 高清一区二区三区| 我的亚洲天堂| 听说在线观看完整版免费高清| 欧美性长视频在线观看| 在线观看午夜福利视频| 亚洲国产欧美日韩在线播放| 两人在一起打扑克的视频| 欧美在线黄色| 中文字幕最新亚洲高清| 变态另类丝袜制服| 熟妇人妻久久中文字幕3abv| 欧美成人一区二区免费高清观看 | 精品不卡国产一区二区三区| 久久久国产成人免费| 亚洲色图av天堂| 这个男人来自地球电影免费观看| 久久久久久人人人人人| 亚洲免费av在线视频| 中文字幕人成人乱码亚洲影| 两个人看的免费小视频| 一个人免费在线观看的高清视频| 日本熟妇午夜| 在线观看免费日韩欧美大片| 欧美又色又爽又黄视频| 午夜久久久在线观看| 黄片小视频在线播放| 国产av一区在线观看免费| 在线观看一区二区三区| 亚洲国产精品久久男人天堂| АⅤ资源中文在线天堂| 欧美最黄视频在线播放免费| 天堂√8在线中文| 成人一区二区视频在线观看| 久久中文字幕人妻熟女| 一级黄色大片毛片| 18禁黄网站禁片午夜丰满| 亚洲自拍偷在线| 午夜久久久在线观看| 亚洲久久久国产精品| 亚洲午夜理论影院| 免费搜索国产男女视频| 丝袜在线中文字幕| www国产在线视频色| 欧美午夜高清在线| 亚洲中文日韩欧美视频| 母亲3免费完整高清在线观看| 欧美日韩黄片免| e午夜精品久久久久久久| av欧美777| 国产人伦9x9x在线观看| av有码第一页| 美女国产高潮福利片在线看| 国产欧美日韩一区二区精品| 午夜影院日韩av| 色尼玛亚洲综合影院| 日韩三级视频一区二区三区| 色婷婷久久久亚洲欧美| 精品欧美国产一区二区三| 国产三级在线视频| 国产人伦9x9x在线观看| 午夜福利免费观看在线| 激情在线观看视频在线高清| 一本一本综合久久| 亚洲国产毛片av蜜桃av| 亚洲精品国产一区二区精华液| 中文字幕人妻丝袜一区二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲精华国产精华精| 一区二区三区高清视频在线| 成人三级做爰电影| 亚洲熟妇熟女久久| 亚洲最大成人中文| 99riav亚洲国产免费| 亚洲专区中文字幕在线| 欧美中文综合在线视频| 国产亚洲欧美在线一区二区| 亚洲av五月六月丁香网| 亚洲成av人片免费观看| 免费在线观看亚洲国产| 久久99热这里只有精品18| 免费一级毛片在线播放高清视频| 日日干狠狠操夜夜爽| 一区二区三区激情视频| 国产亚洲欧美98| 1024香蕉在线观看| 国产熟女xx| 十八禁人妻一区二区| www.自偷自拍.com| 在线播放国产精品三级| 亚洲狠狠婷婷综合久久图片| 黑人巨大精品欧美一区二区mp4| 女警被强在线播放| 久久99热这里只有精品18| 精品高清国产在线一区| 1024视频免费在线观看| av天堂在线播放| 国产精品 欧美亚洲| 视频区欧美日本亚洲| 欧美精品亚洲一区二区| 午夜激情福利司机影院| 两个人免费观看高清视频| 男男h啪啪无遮挡| 亚洲精华国产精华精| 日韩精品青青久久久久久| 高清在线国产一区| 黄色视频,在线免费观看| 变态另类成人亚洲欧美熟女| aaaaa片日本免费| 久久精品国产清高在天天线| 在线观看舔阴道视频| 俺也久久电影网| 村上凉子中文字幕在线| 黄色a级毛片大全视频| 亚洲av第一区精品v没综合| 久久婷婷成人综合色麻豆| 可以免费在线观看a视频的电影网站| 午夜福利一区二区在线看| 亚洲中文日韩欧美视频| 又大又爽又粗| 久久久国产欧美日韩av| xxx96com| 最近最新中文字幕大全免费视频| ponron亚洲| 国产精品 欧美亚洲| 精品久久久久久久毛片微露脸| 国产亚洲av高清不卡| 欧美黄色淫秽网站| 日本精品一区二区三区蜜桃| 日韩精品中文字幕看吧| 热99re8久久精品国产| 香蕉av资源在线| 国产精品亚洲美女久久久| 制服诱惑二区| av欧美777| 在线国产一区二区在线| 亚洲五月婷婷丁香| 亚洲欧美日韩无卡精品| 99精品在免费线老司机午夜| 亚洲国产精品成人综合色| 18禁观看日本| 亚洲第一电影网av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区二区三区色噜噜| 91麻豆av在线| 久久香蕉国产精品| 久久国产精品影院| 桃色一区二区三区在线观看| 亚洲久久久国产精品| 亚洲av五月六月丁香网| aaaaa片日本免费| 日本精品一区二区三区蜜桃| 亚洲一区中文字幕在线| 午夜激情福利司机影院| 99热只有精品国产| 少妇熟女aⅴ在线视频| 国产国语露脸激情在线看| 国产私拍福利视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 在线观看日韩欧美| 国产欧美日韩一区二区三| 搞女人的毛片| 国产精品美女特级片免费视频播放器 | 亚洲av五月六月丁香网| 免费在线观看成人毛片| 99热只有精品国产| 亚洲av五月六月丁香网| 两人在一起打扑克的视频| 一二三四社区在线视频社区8| 欧美精品亚洲一区二区| 久久久久久亚洲精品国产蜜桃av| 国产av不卡久久| 麻豆成人av在线观看| 欧美黄色淫秽网站| 亚洲,欧美精品.| 久久久久免费精品人妻一区二区 | 国内精品久久久久精免费| 香蕉av资源在线| 最近在线观看免费完整版| 欧美又色又爽又黄视频| 亚洲一区高清亚洲精品| 欧美黑人欧美精品刺激| 制服人妻中文乱码|