• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation on the pressure wave in a 30 mm electrothermal-chemical gun with the discharge rod plasma generator

    2019-11-18 02:34:18YnjieNiYongJinGngWnBomingLiNtionlKeyLbortoryofTrnsientPhysicsNnjingUniversityofSciencendTechnologyNnjing210094JingsuChin
    Defence Technology 2019年5期

    Yn-jie Ni , Yong Jin ,*, Gng Wn , Bo-ming Li ,b Ntionl Key Lbortory of Trnsient Physics, Nnjing University of Science nd Technology, Nnjing 210094, Jingsu, Chin

    b China Academy of Ordnance,100089, Beijing, China

    Keywords:Electrothermal-chemical launch Pressure wave Plasma Solid propellant Electric energy ratio

    ABSTRACT An axisymmetric two-dimensional(2D)internal ballistic model including the transient burning rate law is used to simulate the 30 mm electrothermal-chemical (ETC) launch with the discharge rod plasma generator(DRPG). The relationship between the pressure wave and the initial parameters,such as input electric power,discharging timing sequence,loading density and propellant web thickness,is researched through the change of initial parameters in the model. In the condition of synchronous discharging, the maximum of the pressure wave can be controlled while the ratio of the input electric energy to the propellant chemical energy (electric energy ratio) is less than 0.11. If the electric energy ratio is larger than 0.11, the maximum of the pressure wave increases rapidly with the electric energy ratio. With the increasing of the electric energy ratio,the change of the first negative amplitude value can be ignored.In the condition of timing sequence discharging, the allowed input electric energy ratio to control the pressure wave is proportional to the current pulse duration. At the high electric energy ratio, the maximum of the pressure wave is inverse proportional to the current pulse duration.The pressure wave increases with the increasing of the loading density. But the allowed electric energy ratio to control the pressure wave and the variation trend of the first negative amplitude wave value doesn't change.During the discharging of the DRPG, the influence of changing propellant web thickness in ETC launch can be ignored.

    1. Introduction

    Electrothermal-chemical (ETC) launch is considered to be an effective way to control the pressure and increase the projectile muzzle velocity. Different plasma generators, such as capillary plasma generator (CPG), piccolo plasma generator (PPG) and discharge rod plasma generator (DRPG), are designed for the ETC launchers [1e3]. The enhanced gas generator rate of propellants with the plasma were verified in experiments[4],the burning rate law is improved by adding an enhanced gas generator rate(EGGR)coefficient [5e7].

    The pressure wave (the pressure of the breech-face minus the pressure of the base-initial-position) in the conventional launch increases with the loading density. The pressure wave can be decreased by changing the ignition method, the structure of the chamber and the loading structure of the propellant[8e10].In the ETC launch,the ignition time of the propellant can be reduced[11],and the combustion of the propellant can be enhanced [5]. In addition to the charging parameters,the pressure wave in the ETC launch can also be influenced by the electric parameters.

    In this paper, an axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun (2D-IB-SPETCG) is used to simulate the 30 mm ETC launch. The 2D-IB-SPETCG model includes: pulse forming network (PFN) discharge model [12,13],DRPG model[14]and 2D two-phase flow model[15,16].Depending on simulation results,the electric energy ratio and discharge timing sequences are used to analyze the influence of electric parameters(input electric power, discharging timing sequence) and charging parameters (loading density, propellant web thickness) on the pressure wave.

    2. Physical model

    Interior ballistics involves flow field components of a continuous(gas)and a discrete(solid propellant)nature.We consider that a single solid propellant is surrounded by the flow of the gas,so the solid propellant is considered to be pseudo fluid. On a sufficiently small scale of resolution in both space and time,the components of the flow are represented by the balance equations for a multicomponent mixture describing the conservation of mass, momentum and energy. These equations require a number of constitutive laws for closure, including interphase drag, state equation, intergranular stresses, interphase transfer of energy and so on. All parameters are the function of time, axial and radial distance.

    2.1. Multiphase governing equations

    where p is the pressure, Dzis the axial interphase drag, uigis the axial velocity of the ignition powder,uplis the axial velocity of the plasma,Dris the radial interphase drag, vigis the radial velocity of the ignition powder,vplis the radial velocity of the plasma,and Rsis the intergranular stress.

    The energy equation for the gas takes the form,

    The balance equations for mass (gas or solid propellant) are given by,

    where rgis the density of the gas,f is the porosity, ugis the axial velocity of the gas,vgis the radial velocity of the gas,mpis the gas generation rate of the solid propellant per volume, migis the gas generation rate of the ignition powder per volume,mplis the mass rate of the plasma per volume, rpis the density of the solid propellant,upis the axial velocity of the solid propellant,and vpis the radial velocity of the solid propellant.

    The balances of momentum for the gas and solid propellant take the form,where e is the energy of the gas,e?egt(t)/2,egis the internal energy of the gas,Apis the surface area of the solid propellant per volume, qcvis the convention heat transfer(qcv?hcv(Tg-Tp), hcvis the convention heat transfer coefficient, Tgis the gas temperature,Tpis the surface temperature of the propellant),qradis the radiation heat transfer (qrad?εps(-), εpis the radiation absorption coefficient,s is the Stefan-Boltzmann constant),epis the enthalpy of the solid propellant,Eigis the enthalpy of the ignition powder,Eplis the enthalpy of the plasma.

    The gas generation rate of the solid propellant per volume,mp,is given in the following form,

    where j is the relative burned volume of the solid propellant.

    2.2. Model of discharge rode plasma generator

    The structure diagram of the DRPG is shown in Fig.1.The DRPG is consisted of a periodic array of solid (copper) and plasma(polyethylene)conductors.The DRPG can be considered as a couple of series plasma generators.The DRPG inserted into the chamber is surrounded by the solid propellant. While the radial exits for the plasma are free for the flow of the gas and propellant in the chamber.The exit area decreases with the increasing of the porosity of the propellant. The plasma in the DRPG is deeply influenced by the environment in the chamber. It is considered that “flowback”high pressure gas may lead to the current interruption of the DRPG.

    Fig.1. The structure diagram of the DRPG.

    In order to simulate the parameters in the DRPG, the working process can be simplified into two stages. At the beginning of the ignition,the pressure of the plasma is much higher than that in the chamber. Then the plasma diffuses in the chamber and the solid propellant is ignited. The influence of the environment in the chamber can be neglected. It is regarded as the “flowout” stage which is quite similar to the CPG working process. With the combustion of the solid propellant, the gas pressure increases and the diffusion of the plasma is hindered.When the gas pressure is high enough,the gas in the chamber begins to flow back into the DRPG.It is regarded as the “flowback” stage. It makes the equivalent resistance of the DRPG increase rapidly. Finally, the current interruption occurs.

    The DRPG is considered to be connected in series by small plasma generators with a couple of solid and plasma conductor.Depending on the model of CPG,the zero-dimensional(0D)model of the small plasma generator is built. The conservations of mass,momentum and energy during the “flowout” stage are given by

    where rplis the average density of the plasma, Seis the exit area,Vcapis the volume of the small plasma generator, rais the mass ablation density rate,pplis the average pressure of the plasma,peis the gas pressure at the exit,eplis the specific internal energy of the plasma, J is the current density,splis the electrical conductivity of the plasma.

    During the “flowback” stage, the influence of the solid propellant is neglected. Only the gas in the chamber flows back into the DRPG and the“flowback”gas mixes with the plasma which makes the equivalent resistance increase. The conservations of mass,momentum and energy are now changed to

    where vpl<0, during the “flowback” stage.

    3. Simulation of the conventional and ETC launch

    Fig. 2 is the structure diagram of the 30 mm ETC gun with the DRPG and PFN.The PFN contains four modules which can be used independently as a system circuit.Each module contains a 1220 mF capacitor, a 40 mH inductance, a high power switch, a crowbar circuit and a surge protection resistor.The chamber volume is 356 cm3and the length of the barrel is 2.75 m. The standard projectile of 72 g was fired with 4/7 high-nitrogen propellant in the experiment.The 4/7 high-nitrogen propellant is a homogeneous single-base propellant mainly containing nitrocellulose.

    The 30 mm ETC launch with 220 g 4/7 high-nitrogen propellant is simulated.The four modules are charged at 5 kV in the condition of synchronous discharging. The simulated pressure wave curve is shown in Fig.3.There are three characteristic values in the pressure wave: the first positive amplitude value, the first negative amplitude value and the second positive amplitude value.In Fig.3,point 1 represents the first positive amplitude value of the pressure wave,point 2 represents the first negative amplitude value of the pressure wave and point 3 represents the second positive amplitude value of the pressure wave.

    In the ETC launch, the internal ballistic process can be influenced by both the input electric energy of the DRPG and the propellant chemical energy.The electric energy ratio,he,is the ratio of the input electric energy to the propellant chemical energy.

    Fig. 2. Structure diagram of the 30 mm ETC gun with DRPG.

    Fig. 3. The simulated pressure wave curve of the ETC launch.

    where Eplis the input electric energy of the DRPG,U(t)is the voltage of the DRPG, I(t) is the current of the DRPG, f is the propellant impetus,u is the propellant charge in the chamber,k is the specific heat ratio.

    4. Analysis of the simulation results

    The initial parameters,such as input electric power,discharging timing sequence,loading density and propellant web thickness,are changed in the 2D-IB-SPETCG. The influence of the electric parameters and charging parameters on the pressure wave are analyzed.

    4.1. The influence of the electric parameters

    In order to analyze the influence of the electric parameters,the charging parameters are not changed (the loading density is 0.618 g/cm3), only the discharge voltage changes from 3 kV to 10 kV. The discharge timing sequences of the four modules are shown in Table 1. Timing #1 is the synchronous discharge timing,and timing #2 and #3 are the timing sequence discharge timings.

    The simulated current curves of the DRPG at the voltage of 10 kV in the condition of different discharge timing sequences are shown in Fig. 4. The discharge time of the DRPG in the condition of different discharge timing sequences is 0.83 ms,1.08 ms and 1.6 ms.The maximum of the current decreases from 147 kA(timing#1)to 109 kA (timing #3) with the increasing of the discharge time.

    Fig. 5 shows the pressure wave curves of different discharging voltage in the condition of synchronous discharge (timing #1).With the increasing of the discharging voltage, the first positive amplitude value increases,while the first negative amplitude value stays.

    Table 1 The discharge timing sequences.

    Fig. 4. The simulated current curves of the DRPG at the voltage of 10 kV in the condition of different discharge timing sequences.

    Fig. 5. The pressure wave curves of different discharging voltage in the condition of synchronous discharge.

    The pressure of the breech-face,the pressure of the base-initialposition and the projectile position at the discharge voltage of 5 kV and 10 kV are shown in Fig. 6. Before the moving of the projectile,the projectile is at the position where L?0. At the moment the projectile leaving the barrel,the projectile is at the position where L?2.75 m.At the beginning of the ignition,the plasma exists near the area of the DRPG,and flows from the center axis to the wall.The gas generator rate of the propellant in this area increases with the electric power. When the discharge voltage increases from 5 kV to 10 kV, the maximum of the breech-face pressure increases from 331 MPa to 433 MPa, the maximum of the base-initial-position pressure increases from 306 MPa to 408 MPa. The first positive amplitude value of the pressure wave increases with the discharging voltage. At the discharge voltage of 5 kV, the projectile starts to move at 0.34 ms.When the discharge voltage increases to 10 kV,the projectile starts to move at 0.25 ms.And the time of the projectile moving in the barrel decreases from 2.36 ms to 2.09 ms.

    In the condition of synchronous discharge, the first negative amplitude value appears at about 0.5 ms,when the DRPG is at the end of the “steady flow-out” stage or during the “oscillation flowout” stage [14]. The influence of the changing of the discharging voltage on the first negative amplitude value can be ignored.Depending on the pressure wave curves in Fig.5,the maximum of the pressure wave is equal to the first positive amplitude value or the second positive amplitude value.

    Fig. 6. The pressure and the projectile position at the discharge voltage of 5 kV and 10 kV.

    Different discharge timing sequences are used, and the discharge voltage changes from 3 kV to 10 kV. The first negative amplitude value and maximum of the pressure wave are shown in Fig. 7. In the condition of the timing sequence discharge, the first negative amplitude value decreases with the increasing of the electric energy ratio. When the first negative amplitude value appears,the DRPG is still during the“steady flow-out”stage[14].The gas generator rate of the propellant near the breech increases with the electric power. It makes the first negative amplitude value decrease with the increasing of the electric energy ratio.

    In the ETC launch,the maximum of the pressure wave is decided by the positive amplitude value of the pressure wave. With the change of the electric energy ratio, the maximum of the pressure wave at the loading density of is 0.618 g/cm3is greater than 37 MPa.If the maximum increases within 18% (the maximum is less than 45 MPa),the pressure wave is thought to be controlled.In order to control the pressure wave,the allowed electric energy ratio in the condition of timing#1 is less than 0.11,the allowed electric energy ratio in the condition of timing#2 is less than 0.25,and the allowed electric energy ratio in the condition of timing#3 is less than 0.27.

    Fig. 7. The peak values of the pressure wave in the condition of different discharge timing sequences.

    4.2. The influence of the charging parameters

    In order to analyze the influence of the charging parameters,the discharge voltage changes from 3 kV to 10 kV in the condition of synchronous discharge.The loading density of the propellant or the propellant web thickness is changed.

    In order to analyze the influence of the loading density,different loading densities of the propellant is chosen:0.562 g/cm3,0.618 g/cm3and 0.674 g/cm3. The first negative amplitude value and maximum of the pressure wave are shown in Fig.8.The maximum of the pressure wave at the loading density of 0.562 g/cm3is greater than 27 MPa. The maximum of the pressure wave at the loading density of 0.672 g/cm3is greater than 50 MPa. In order to control the pressure wave (the maximum increases within 18%), the allowed electric energy ratio is less than 0.11. The influence of the loading density on the allowed electric energy ratio can be ignored.

    In order to analyze the influence of the propellant web thickness, the propellant web thickness is changed from 0.46 mm to 0.54 mm.The loading density of the propellant is 0.618 g/cm3,and the discharge voltage is 4 kV and 6 kV.The pressure wave curves of the different propellant web thickness at the discharge voltage of 4 kV and 6 kV are shown in Fig. 9 and Fig.10.

    The first positive amplitude value at the discharge voltage of 4 kV is 32 MPa, the first positive amplitude value at the discharge voltage of 6 kV is 40 MPa. The first positive amplitude value decreases 10 MPa, when the propellant web thickness changes from 0.46 mm to 0.54 mm.

    From Fig.9 and Fig.10,we know that the influence of the electric parameters on the pressure wave is much larger than the influence of the propellant web thickness before 0.75 ms. After the working period of the DRPG, the influence of the propellant web thickness increases,but the change of the maximum of the pressure wave can be ignored.

    5. Conclusion

    An axisymmetric two-dimensional(2D)internal ballistic model is built to simulate the pressure wave of the 30 mm electrothermalchemical (ETC) launch with the discharge rod plasma generator(DRPG).The relationship between the pressure wave and the initial parameters, such as input electric power, discharging timing sequence, loading density and propellant web thickness, is researched through the change of initial parameters in the model.

    Fig. 8. The peak values of the pressure wave with the different loading density.

    Fig. 9. The pressure wave curves of the different propellant web thickness at the discharge voltage of 4 kV.

    Fig. 10. The pressure wave curves of the different propellant web thickness at the discharge voltage of 6 kV.

    In the condition of synchronous discharge,the maximum of the pressure wave can be controlled while the electric energy ratio is less than 0.11. If the electric energy ratio is larger than 0.11, the maximum of the pressure wave increases rapidly with the electric energy ratio. With the increasing of the electric energy ratio, the change of the first negative amplitude wave value can be ignored.In the condition of timing sequence discharge, the allowed input electric energy ratio to control the pressure wave is proportional to the current pulse duration. At the high electric energy ratio, the maximum of the pressure wave is inverse proportional to the current pulse duration.

    The pressure wave increases with the loading density. But the allowed electric energy ratio to control the pressure wave stays,and the variation trend of the first negative amplitude wave value doesn't change.During the discharge of the DRPG,the influence of changing propellant web thickness in 30 mm ETC launch can be ignored.

    99久久精品国产国产毛片| 欧美+日韩+精品| 国产精品一区二区在线观看99| 91国产中文字幕| 2018国产大陆天天弄谢| 亚洲,一卡二卡三卡| 麻豆精品久久久久久蜜桃| 巨乳人妻的诱惑在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品国产三级专区第一集| 成年女人毛片免费观看观看9 | 亚洲欧洲国产日韩| 黑人欧美特级aaaaaa片| 亚洲欧美中文字幕日韩二区| 波多野结衣av一区二区av| 精品人妻熟女毛片av久久网站| 国产福利在线免费观看视频| 国产亚洲欧美精品永久| 午夜福利影视在线免费观看| 精品人妻一区二区三区麻豆| 精品国产乱码久久久久久男人| 亚洲美女视频黄频| 日本av手机在线免费观看| 免费黄色在线免费观看| 精品一区二区三卡| 丝袜美腿诱惑在线| 国产麻豆69| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区 | 日本91视频免费播放| 国产白丝娇喘喷水9色精品| 街头女战士在线观看网站| 激情五月婷婷亚洲| 亚洲国产精品成人久久小说| 国产精品麻豆人妻色哟哟久久| 夫妻性生交免费视频一级片| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 婷婷色av中文字幕| 尾随美女入室| 美女主播在线视频| 黄片播放在线免费| 国产亚洲一区二区精品| 免费看不卡的av| 国产精品 国内视频| 大片电影免费在线观看免费| 欧美日韩精品网址| h视频一区二区三区| 亚洲av日韩在线播放| 99久久中文字幕三级久久日本| 国产成人a∨麻豆精品| 男人舔女人的私密视频| 欧美激情极品国产一区二区三区| 日韩中字成人| 中文字幕av电影在线播放| 蜜桃国产av成人99| 亚洲第一青青草原| 亚洲一区二区三区欧美精品| 最近中文字幕高清免费大全6| 另类精品久久| 国产白丝娇喘喷水9色精品| 又大又黄又爽视频免费| 日日摸夜夜添夜夜爱| 欧美成人精品欧美一级黄| 十八禁网站网址无遮挡| 亚洲色图 男人天堂 中文字幕| 两个人看的免费小视频| 韩国av在线不卡| 黄片小视频在线播放| 国产精品无大码| 天堂8中文在线网| 日韩一区二区三区影片| 亚洲视频免费观看视频| 亚洲av国产av综合av卡| 久久久久精品久久久久真实原创| 精品卡一卡二卡四卡免费| 黑人巨大精品欧美一区二区蜜桃| 老司机影院毛片| 亚洲伊人久久精品综合| 亚洲国产最新在线播放| 精品人妻一区二区三区麻豆| 男的添女的下面高潮视频| 午夜久久久在线观看| 欧美精品亚洲一区二区| 午夜福利乱码中文字幕| 亚洲av中文av极速乱| 国产片内射在线| 亚洲精品第二区| 久久毛片免费看一区二区三区| 男女啪啪激烈高潮av片| 男女国产视频网站| 秋霞在线观看毛片| 亚洲国产精品999| 如日韩欧美国产精品一区二区三区| 综合色丁香网| videos熟女内射| 免费女性裸体啪啪无遮挡网站| 精品久久蜜臀av无| 日韩免费高清中文字幕av| av在线老鸭窝| 一区二区三区精品91| 亚洲情色 制服丝袜| 另类精品久久| 精品国产乱码久久久久久男人| 久久久久国产一级毛片高清牌| 在现免费观看毛片| 精品一区二区三卡| 日韩一本色道免费dvd| 中文字幕最新亚洲高清| 黄网站色视频无遮挡免费观看| 99re6热这里在线精品视频| av免费观看日本| 卡戴珊不雅视频在线播放| 国产深夜福利视频在线观看| 国产女主播在线喷水免费视频网站| 一边亲一边摸免费视频| 最近2019中文字幕mv第一页| 黄色一级大片看看| 亚洲国产av影院在线观看| 又黄又粗又硬又大视频| 亚洲三级黄色毛片| 日韩人妻精品一区2区三区| 国产精品一区二区在线不卡| 婷婷成人精品国产| 精品酒店卫生间| 极品人妻少妇av视频| 亚洲欧美清纯卡通| 亚洲三级黄色毛片| 免费高清在线观看视频在线观看| 国产成人免费无遮挡视频| 亚洲伊人色综图| 久久人妻熟女aⅴ| 久久久久视频综合| 在线观看免费高清a一片| 人妻系列 视频| 91精品三级在线观看| 久久久精品国产亚洲av高清涩受| 丝袜脚勾引网站| 18禁国产床啪视频网站| 男人操女人黄网站| 精品少妇内射三级| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁夜夜躁狠狠久久av| 久久人人爽av亚洲精品天堂| 久久久久久人妻| 日本免费在线观看一区| √禁漫天堂资源中文www| 三级国产精品片| 欧美激情极品国产一区二区三区| 成年女人毛片免费观看观看9 | 久久影院123| 亚洲国产欧美日韩在线播放| 成年美女黄网站色视频大全免费| 亚洲欧洲日产国产| 免费看av在线观看网站| 久久久国产精品麻豆| 日韩三级伦理在线观看| 国产黄色视频一区二区在线观看| 国产成人一区二区在线| 精品一区二区三区四区五区乱码 | 熟女少妇亚洲综合色aaa.| 亚洲精品第二区| 国产在线免费精品| 亚洲精品乱久久久久久| 亚洲精品第二区| 国产欧美亚洲国产| 久久久久视频综合| 99热全是精品| 熟女电影av网| 黄色怎么调成土黄色| 国产在线一区二区三区精| 亚洲一码二码三码区别大吗| 亚洲情色 制服丝袜| 久久精品国产a三级三级三级| 男女下面插进去视频免费观看| 久久人人爽av亚洲精品天堂| 欧美在线黄色| 免费在线观看黄色视频的| 欧美人与性动交α欧美软件| 在线精品无人区一区二区三| xxx大片免费视频| 一级黄片播放器| 五月开心婷婷网| 色吧在线观看| 国产精品蜜桃在线观看| 肉色欧美久久久久久久蜜桃| 最近中文字幕高清免费大全6| tube8黄色片| 超色免费av| 热re99久久国产66热| 久久婷婷青草| 久久久精品国产亚洲av高清涩受| 狂野欧美激情性bbbbbb| 黄色一级大片看看| 高清av免费在线| 妹子高潮喷水视频| 最近中文字幕2019免费版| 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 交换朋友夫妻互换小说| 日本av手机在线免费观看| 波多野结衣av一区二区av| 汤姆久久久久久久影院中文字幕| 国产精品久久久久成人av| 亚洲精华国产精华液的使用体验| 各种免费的搞黄视频| 99热全是精品| 国产成人精品无人区| 人人澡人人妻人| 国产亚洲精品第一综合不卡| 婷婷色综合大香蕉| 免费日韩欧美在线观看| 中文字幕人妻丝袜一区二区 | 免费在线观看视频国产中文字幕亚洲 | 国产高清不卡午夜福利| 夫妻午夜视频| 久久久国产欧美日韩av| 老鸭窝网址在线观看| 一区二区三区四区激情视频| 赤兔流量卡办理| 精品久久久久久电影网| 一边摸一边做爽爽视频免费| 永久网站在线| 亚洲,一卡二卡三卡| 久久狼人影院| 亚洲av男天堂| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 卡戴珊不雅视频在线播放| 精品人妻在线不人妻| 视频区图区小说| 久久精品夜色国产| 波野结衣二区三区在线| 精品一区在线观看国产| 亚洲精品一区蜜桃| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 赤兔流量卡办理| 99热网站在线观看| 啦啦啦啦在线视频资源| 黄频高清免费视频| av国产精品久久久久影院| 波多野结衣av一区二区av| 男人操女人黄网站| 人妻少妇偷人精品九色| 色94色欧美一区二区| 中文字幕最新亚洲高清| 午夜福利视频在线观看免费| 日韩精品有码人妻一区| 麻豆乱淫一区二区| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 巨乳人妻的诱惑在线观看| 26uuu在线亚洲综合色| 亚洲欧美精品综合一区二区三区 | 最近中文字幕高清免费大全6| 成年女人在线观看亚洲视频| 日韩三级伦理在线观看| 中文字幕制服av| 日韩av不卡免费在线播放| av国产久精品久网站免费入址| 久久av网站| 欧美精品国产亚洲| 亚洲美女搞黄在线观看| 超色免费av| 在现免费观看毛片| 国产精品一区二区在线观看99| 国产一区二区 视频在线| 国产色婷婷99| 国产97色在线日韩免费| 久久久久久人人人人人| 永久免费av网站大全| 久久午夜福利片| 99国产精品免费福利视频| 欧美日韩亚洲国产一区二区在线观看 | 可以免费在线观看a视频的电影网站 | 国产亚洲精品第一综合不卡| 男人操女人黄网站| 狂野欧美激情性bbbbbb| 成年美女黄网站色视频大全免费| 性色avwww在线观看| 欧美日本中文国产一区发布| 国产成人av激情在线播放| 日韩精品免费视频一区二区三区| 国产麻豆69| 欧美亚洲日本最大视频资源| 亚洲精品视频女| 国产精品熟女久久久久浪| 久久女婷五月综合色啪小说| 国产av国产精品国产| 考比视频在线观看| 精品久久蜜臀av无| 亚洲av在线观看美女高潮| 黄片无遮挡物在线观看| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 国产av国产精品国产| 熟女av电影| 国产亚洲午夜精品一区二区久久| 天天影视国产精品| av片东京热男人的天堂| 纯流量卡能插随身wifi吗| 日产精品乱码卡一卡2卡三| 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| av在线播放精品| 熟女av电影| 多毛熟女@视频| 国产日韩欧美在线精品| 日本vs欧美在线观看视频| 999精品在线视频| 男女边摸边吃奶| 亚洲av免费高清在线观看| 亚洲av电影在线进入| 综合色丁香网| 不卡视频在线观看欧美| 搡老乐熟女国产| 男女无遮挡免费网站观看| 亚洲伊人久久精品综合| 熟妇人妻不卡中文字幕| 精品福利永久在线观看| 国产一区二区 视频在线| 亚洲精品久久成人aⅴ小说| 波多野结衣一区麻豆| 亚洲一码二码三码区别大吗| 久久热在线av| 高清视频免费观看一区二区| 制服人妻中文乱码| 久久久精品免费免费高清| 少妇的丰满在线观看| 高清在线视频一区二区三区| 精品一区二区三区四区五区乱码 | 国产成人a∨麻豆精品| 老汉色av国产亚洲站长工具| 日本av手机在线免费观看| 亚洲第一青青草原| 欧美精品av麻豆av| 欧美变态另类bdsm刘玥| 国产男女内射视频| 亚洲三级黄色毛片| 欧美精品国产亚洲| 日本欧美视频一区| 爱豆传媒免费全集在线观看| 亚洲第一av免费看| 爱豆传媒免费全集在线观看| 在线观看一区二区三区激情| 久久久久国产一级毛片高清牌| 国产野战对白在线观看| 亚洲av男天堂| 亚洲国产毛片av蜜桃av| 一本色道久久久久久精品综合| 亚洲伊人色综图| 搡女人真爽免费视频火全软件| 飞空精品影院首页| 69精品国产乱码久久久| 成人二区视频| 美女主播在线视频| 飞空精品影院首页| 五月伊人婷婷丁香| 女的被弄到高潮叫床怎么办| 少妇人妻 视频| 最近2019中文字幕mv第一页| 大陆偷拍与自拍| 国产人伦9x9x在线观看 | 亚洲精品国产一区二区精华液| 在线观看一区二区三区激情| 国产亚洲欧美精品永久| 日韩电影二区| www.熟女人妻精品国产| av视频免费观看在线观看| 国产亚洲午夜精品一区二区久久| 午夜免费男女啪啪视频观看| 亚洲国产精品一区三区| 尾随美女入室| 亚洲 欧美一区二区三区| 亚洲精品美女久久av网站| 日本爱情动作片www.在线观看| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 国产精品.久久久| 综合色丁香网| 伦理电影大哥的女人| 在线观看免费高清a一片| 国产精品.久久久| 精品少妇内射三级| 亚洲成人av在线免费| 性色avwww在线观看| 国产熟女欧美一区二区| 国产在视频线精品| 亚洲欧美一区二区三区黑人 | 91国产中文字幕| 激情视频va一区二区三区| 青草久久国产| 欧美成人精品欧美一级黄| 看非洲黑人一级黄片| 久久人人97超碰香蕉20202| 日本wwww免费看| 18禁观看日本| 性少妇av在线| 精品一区二区三卡| 欧美少妇被猛烈插入视频| 少妇的逼水好多| 久久ye,这里只有精品| 亚洲,欧美精品.| 久久热在线av| 精品酒店卫生间| 大片免费播放器 马上看| 国产男女超爽视频在线观看| 99久国产av精品国产电影| 亚洲国产精品一区二区三区在线| 一级a爱视频在线免费观看| 日韩av在线免费看完整版不卡| 侵犯人妻中文字幕一二三四区| 1024视频免费在线观看| 一边摸一边做爽爽视频免费| 五月伊人婷婷丁香| 亚洲图色成人| 一本—道久久a久久精品蜜桃钙片| 日本欧美视频一区| 97在线视频观看| 欧美老熟妇乱子伦牲交| 免费观看性生交大片5| 久久久久久久久久久免费av| 欧美人与性动交α欧美软件| 日韩人妻精品一区2区三区| 欧美成人午夜精品| 国产精品一国产av| 狠狠精品人妻久久久久久综合| 精品久久久久久电影网| 亚洲第一av免费看| 男女国产视频网站| 亚洲在久久综合| 久久韩国三级中文字幕| 中文字幕人妻丝袜制服| 人妻少妇偷人精品九色| 国产黄频视频在线观看| 精品99又大又爽又粗少妇毛片| 少妇人妻久久综合中文| 精品一区二区三卡| 在线观看国产h片| 99re6热这里在线精品视频| 少妇猛男粗大的猛烈进出视频| 国产av精品麻豆| 在线 av 中文字幕| 汤姆久久久久久久影院中文字幕| 在线亚洲精品国产二区图片欧美| 女人精品久久久久毛片| 久久精品熟女亚洲av麻豆精品| 欧美国产精品一级二级三级| 久久精品国产亚洲av涩爱| 99久久综合免费| 免费观看在线日韩| 国产 精品1| 久久精品亚洲av国产电影网| av线在线观看网站| 精品久久蜜臀av无| 亚洲精品一二三| 最近中文字幕高清免费大全6| 国产成人精品在线电影| 高清欧美精品videossex| 久久免费观看电影| 如何舔出高潮| av免费在线看不卡| 午夜福利乱码中文字幕| 色视频在线一区二区三区| 性高湖久久久久久久久免费观看| 中文字幕精品免费在线观看视频| 久久精品夜色国产| 制服诱惑二区| 亚洲av在线观看美女高潮| 亚洲精品乱久久久久久| 日韩在线高清观看一区二区三区| 久久国产亚洲av麻豆专区| 熟女电影av网| 99热全是精品| 久久这里只有精品19| 欧美97在线视频| 亚洲欧洲精品一区二区精品久久久 | 国产又爽黄色视频| 久久热在线av| 最近中文字幕2019免费版| a 毛片基地| 两性夫妻黄色片| 精品亚洲乱码少妇综合久久| 免费av中文字幕在线| 国产一区二区三区综合在线观看| 婷婷色综合www| 这个男人来自地球电影免费观看 | 国产白丝娇喘喷水9色精品| 日本欧美国产在线视频| 街头女战士在线观看网站| 亚洲国产精品国产精品| 欧美另类一区| videosex国产| 777久久人妻少妇嫩草av网站| 制服诱惑二区| 少妇精品久久久久久久| 两个人看的免费小视频| 人体艺术视频欧美日本| 99热全是精品| 色婷婷av一区二区三区视频| 国产av一区二区精品久久| 国产av国产精品国产| 黄频高清免费视频| 久久精品久久久久久久性| 国产成人91sexporn| 久久这里有精品视频免费| 一区二区三区四区激情视频| 午夜福利在线观看免费完整高清在| 少妇人妻精品综合一区二区| 搡女人真爽免费视频火全软件| 久久精品熟女亚洲av麻豆精品| 午夜免费鲁丝| 久久精品国产亚洲av高清一级| 性色av一级| 国产97色在线日韩免费| 黄片小视频在线播放| 99九九在线精品视频| 一级,二级,三级黄色视频| 国产爽快片一区二区三区| 啦啦啦在线观看免费高清www| 国产伦理片在线播放av一区| 天天躁日日躁夜夜躁夜夜| 这个男人来自地球电影免费观看 | 精品国产一区二区三区久久久樱花| 午夜激情av网站| 国产欧美日韩综合在线一区二区| 久久婷婷青草| 午夜福利视频精品| 男的添女的下面高潮视频| 日韩 亚洲 欧美在线| 国产黄色免费在线视频| 国产欧美日韩一区二区三区在线| 亚洲国产欧美在线一区| 久久精品国产亚洲av涩爱| av不卡在线播放| 国产 一区精品| av在线老鸭窝| 有码 亚洲区| av视频免费观看在线观看| 黄片播放在线免费| 久久人妻熟女aⅴ| 亚洲一级一片aⅴ在线观看| av视频免费观看在线观看| 国产成人a∨麻豆精品| 国产精品 国内视频| 伊人久久大香线蕉亚洲五| 亚洲精品国产一区二区精华液| 在线天堂中文资源库| a级毛片黄视频| 欧美日韩精品成人综合77777| 久久国产精品男人的天堂亚洲| 日本av手机在线免费观看| 寂寞人妻少妇视频99o| 国产一级毛片在线| 2018国产大陆天天弄谢| 国产精品.久久久| 国产精品免费视频内射| 亚洲伊人久久精品综合| 亚洲第一青青草原| 超碰成人久久| 成人黄色视频免费在线看| 男人添女人高潮全过程视频| 啦啦啦在线免费观看视频4| 成人毛片a级毛片在线播放| 久久久久久人妻| 国产片内射在线| 人体艺术视频欧美日本| 国产无遮挡羞羞视频在线观看| 久久久久国产一级毛片高清牌| 亚洲国产日韩一区二区| 欧美精品亚洲一区二区| 亚洲综合色惰| 欧美+日韩+精品| 国产老妇伦熟女老妇高清| 免费在线观看黄色视频的| 少妇被粗大的猛进出69影院| 亚洲欧美一区二区三区久久| 91国产中文字幕| 国产色婷婷99| 毛片一级片免费看久久久久| 2022亚洲国产成人精品| 国产精品麻豆人妻色哟哟久久| 久久99热这里只频精品6学生| 永久免费av网站大全| 日韩制服丝袜自拍偷拍| 亚洲精品国产色婷婷电影| 国产av码专区亚洲av| 国产成人欧美| 国产精品欧美亚洲77777| 国产av精品麻豆| 亚洲精品中文字幕在线视频| 久久久久国产一级毛片高清牌| 国产在线免费精品| 一级黄片播放器| 日韩三级伦理在线观看| 国产成人精品福利久久| 少妇 在线观看| 女人精品久久久久毛片| 亚洲情色 制服丝袜| 成年美女黄网站色视频大全免费| 中文字幕亚洲精品专区| 激情五月婷婷亚洲| av.在线天堂| 久久久久久久国产电影| av一本久久久久| 美女脱内裤让男人舔精品视频| 国产一级毛片在线| 欧美少妇被猛烈插入视频| 香蕉丝袜av| 三上悠亚av全集在线观看| 成人影院久久| 黄频高清免费视频| 超碰97精品在线观看| 国产精品欧美亚洲77777|