• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Impeller Extended Hub and Shroud on Centrifugal Compressor Stage Performance*

    2019-11-14 02:54:12YanLiuPengfeiZhaoXiaoLiuYangWangHaiShi
    風(fēng)機技術(shù) 2019年5期

    Yan LiuPeng-fei ZhaoXiao LiuYang WangHai Shi

    (1.School of Energy and Power Engineering,Dalian University of Technology,2.Qingdao Haixin Hitachi Air Conditioning Co.,Ltd,3.Shenyang Blower Works Group Corporation)

    Abstract:CFD method was employed to analyze the effect of the wall extension of hub and shroud at the impeller outlet(rotating diffuser)in a centrifugal compressor model stage with a large mass flow coefficient.The effect of clearance leakage was considered.Results show that the extended hub and shroud increases the head coefficient and ploytropic efficiency for the centrifugal compressor stage,and the extension length is longer,the head coefficient and ploytropic efficiency is higher. When extension length is under 4.44%impeller outlet diameter(R2), the increase rate of head coefficient and polytropic efficiency is rapid. When the extension length is beyond 4.44% R2, the rate is slowed down. The uniformity at the diffuser inlet is to be improved, the total pressure loss of stationary parts decreases, and then the performance of stage is improved.The total pressure loss of stationary parts starts to reduce with the increase of mass flow coefficient when the extension length exceeds 5.56% R2 and mass flow coefficientis beyond the design value of 0.1957.

    Keywords:Shrouded Centrifugal Compressor,Numerical Simulation,Clearance Leakage,Leakage Coefficient,Large Mass Flow Coefficient

    Nomenclature

    CpHeat capacity[J/kg/K]

    CptTotal pressure loss coefficient

    D2Impeller outlet diameter[m]

    kAdiabatic exponent

    nRotational speed[r/min]

    PsPressure[Pa]

    PtTotal pressure[Pa]

    QmMass flow rate[kg/s]

    RRadius[m]

    HeRadial extension length of hub and shroud at impeller outlet

    R2Impeller outlet radius[m]

    RIdeal gas constant[J/kg/K]

    Mu2Machine Mach Efficiency number

    TtTotal temperature[K]

    U2Circumferential velocity at impeller outlet[m/s]

    ηPolytropic efficiency

    ρin*Stagnation density[kg/m3]

    τHead coefficient

    ?1Flow coefficient

    Subscripts

    in Inlet

    out Outlet

    1 Introduction

    Centrifugal compressors are widely used in many fields of industries including aviation,refrigeration,oil&gas and so on.Efficiency and operating range are the most important two performance characteristics for centrifugal compressors.

    Energy losses occurred in a centrifugal compressor should be keep as low as possible to improve centrifugal compressor performance.These losses involves secondary flow loss,friction loss,leakage loss,separation loss,diffusion loss,mixing loss,incidence loss,etc.The flow at the outlet of a centrifugal impeller is non uniform both in the axi-al and circumferential directions.Consequently the mixing process of non-uniform flow causing a significant loss of total pressure and diffusion process resulting in a rise in static pressure will occur in the vaneless space downstream of the impeller.The more non-uniform the flow is,the larger the loss is.

    One method to improve the non-uniformity of impeller outlet fluid flow is the use of a rotating vaneless diffuser.There are two types of rotating vaneless diffusers:free rotating vaneless diffuser and forced rotating vaneless diffuser.The former one is only a concept and rarely used due to requirement of driving device.The latter method is often used by extending the shroud and hub walls of a shrouded impeller.Therefore the forced rotating vaneless diffuser is integral with the impeller and rotates as the same speed as the impeller.Govardhan and Seralathan[1]numerically studied this types of rotating vaneless diffuser.Their results show that the performance of a compressor with extended walls is better than that of the baseline without extended walls.Again Seralathan and Chowdhury[2]numerically investigated the performance of a centrifugal compressor with the impeller blades cutback 5%while maintaining the original shroud and hub walls.Numerical results shows that the isoentropic efficiency declines when trimming impeller blades.Sapiro[3]experimentally studied the effect of extended shroud and hub walls on performance for a small mass flow coefficient compressor and a middle mass flow coefficient compressor.The performance of the compressor with extended shroud and hub walls is worse for the small flow coefficient compressor.The result is opposite for the middle mass flow coefficient compressor.The author implied that there will be a large improvement for a larger mass flow coefficient compressor with extended impeller shroud and hub walls.

    The effect of impeller shroud and hub wall extension on performance for a large mass flow coefficient is studied by using the computational fluid dynamics(CFD)method.The seal leakage is considered in numerical simulations[4-5].The interaction of leakage vortex and the jet-wake structure is analyzed.

    2 Configurations Investigated

    A datum centrifugal compressor stage with design mass flow coefficient of 0.1957 and Mach number(Mu2)0.8 and its variants are studied.Fig.1(a)and(b)schematically show the datum impeller and the impeller with extended shroud and hub respectively.Different ratios ofHe/R2are considered.Table 1 summarizes the configurations investigated in this study.The labyrinth seal with five teeth for shroud(as shown in Fig.1)and ten teeth for hub(as shown in Fig.2)are employed.When extending the hub and shroud walls,the clearance(0.2mm)between seal tooth and case and the gap(2mm)between the impeller and the diffuser are kept the same for all cases.On account of the strength of the impeller,the maximum extension length is taken to be 10%R2(Case 5).It should be mentioned that stage performance measurements are only available for Case 0.

    3 Numerical Methods

    A single flow passage domain with periodic boundary conditions was employed to simulate the flow field of each configuration given in Table 1.The computational domain of Case 0 is shown in Fig.2.An unstructured tetrahedral grid generated by ICEM software was applied to the seal passage and the impeller passage.The tri-prism grid was used at the near wall regions with ten prismatic layers(as shown in Fig.2)for unstructured grids.A structure grid was employed for the diffuser,bend and return channel.Anish et al.[6]and Hazby et al.[7]employed the similar mesh strategy and numerical results are in reasonable agreement with experiment data.After a grid independence study,the unstructured mesh with about 3.4 millions of elements and structured mesh with about 1.5 million of nodes are used for all cases.The averageY+value is almost 2 for the first nodes away from walls in simulations.

    Fig.1 Two types of impellers

    Total pressure,total temperature and inlet flow angles were specified at the inlet.Different mass flow rates were imposed at the outlet.The periodic condition was imposed for the pitch-wise boundaries.The steady-state“Stage Inter-face”method was employed for interfaces between blade rows,which uses a mixing-plane interface approach.The mixing-plane interface was located atR/R2=1.156 for all cases.The Shear Stress Transport turbulence model of Menter[8]was employed due to its success in modeling flows in an adverse pressure gradient.Tan et al.[9],Jason et al.[10],and Mangani et al.[11]proved that this turbulence model is suitable for centrifugal compressor simulations.A“High Resolution”advection scheme(ANSYS Inc.,[12])was employed for all equations except for turbulence equations,which used a first order upwind scheme.

    Tab.1 Configurations investigated

    Tab.2 Primary geometric parameters for Cases 0-5

    Fig.2 Computational domain and mesh of case 0

    4 Results and Discussion

    4.1 Verification of numerical results

    Fig.3 compares the normalized predicted polytropic efficiency and normalized total pressure ratio(which are normalized by the experimental maximum value)with the experimental data for Case 0.Due to large pipeline net resistance,the maximum mass flow coefficient is limited and was not realized in the experiment.It can be seen that the predicted stage performance curves agree reasonably well with the experimental data.This demonstrates that simulation results are reliable and can be used for analysis.

    Fig.3 Comparison of polytropic efficiency and total pressure ratio

    4.2 Effect of hub and shroud extensions on stage performance

    Fig.4 contrasts the normalized polytropic efficiency for five extension cases with Case 0.It is can be seen that the polytropic efficiency increases with the increase in extension length,especially for off-design conditions.Also the range of high efficiency gets larger with the increase in extension length.Fig.5 shows changes of polytropic efficiency and head coefficient with shroud extension ratio(He/R2)for the six cases studied at the design condition of?1=0.195 7.It can be found that the increase rate of polytropic efficiency and head coefficient is fasterwithHe/R2below 4.44%than that of beyond 4.44%.The reason why the head coefficient increases with the increase of shroud extension length is because the impeller area increases and the work increases.Reasons for the increase in polytropic efficiency will be explained in the next section.Saoiro[3]indicated when the extension length reaches beyond 25%R2,there is no improvement,even deterioation of the stage performance.In consideration of strength of the impeller,the maximum extension length i.e.10%R2is taken here.

    4.3 Flow field analysis

    The effects of extended hub and shroud walls on flow fields in the compressors is discussed.Table 3 shows leakage coefficients(βL,which is the leakage mass flow divided by the main mass flow)for the shroud and hub seals for the six cases at design condition(?1=0.195 7).It can be found that the leakage coefficient increases with the increase of extension length.The longer the extension length is,the larger the pressure at the impeller outlet is,and hence the larger the leakage mass flow is.This is a negative influence on the leakage loss for extension of hub and shroud walls.In addition,it can be noted that the leakage coefficient of shroud seal side is larger than that of hub seal.Hence the leakage effect at hub seal side can be ignored.

    In order to analyze the interaction mechanism between the leakage vortex and the jet-wake structure at the impeller outlet,vortex cores and 3D streamlines of relative velocity shown in Fig.6 at the design condition are used.It can be seen that there are four main vortices in Fig.6.They are trailing vortex at the impeller blade trailing edge,the wake vortex,leakage vortex near the blade suction side and the another leakage vortex near the blade pressure side.These vortices are denoted byA,B,C1andC2respectively.Ais caused by the thickness of the impeller blade trailing edge.Bis part of the jet-wake structure and is due to the secondary flow in the impeller passage.C1is leakage vortex near the blade suction side.The entrainment of vortex B makes some of the vortex in the leakage clearance leave the clearance,and flow into the diffuser passage.C2is the another leakage vortex near the blade pressure side,which is due to the interaction of the pressure side boundary layer and the shroud wall boundary layer at the corner.

    Fig.4 Contrast of polytropic efficiency of model stage for different cases

    Fig.5 Polytropic efficiency and head coefficient changes with He/R2for 6 cases

    Tab.3 Leakage coefficient for different cases

    Fig.7 shows entropy contours at a plane near the shroud side for the six cases at design condition(?1=0.195 7).With comparison to Fig.6,it can be found that the four high entropy value regions,which means the high loss regions,corresponding to the four vorticesA,B,C1andC2.As the extension length increases,C1andC2become weaker and small.When the extension length is beyond 10%R2,C1is not clear to be distinguished.

    Fig.8 displays the static pressure ratio contour and surface streamline at a plane near the shroud side for the seven cases at design condition?1=0.1957.The four vortexes are obvious for Case 0.Due to the effect of the viscous resistance at the diffuser wall and the expansion of radial channel,the fluid which flows out from the impeller passages is slowed down rapidly.The radial velocity is slower and the flow angle,which is the angle between the flow direction and the circumferential direction,is smaller.For Case 1,the strength ofC1andC2is smaller than that for Case 0,but the flow angle near the shroud side is still small.For Case 3,the flow angle increases,and this phenomenon is more obvious for Case 4 and Case 5.This is to say that the hub and shroud extensions of impeller outlet will reduce the strength ofC1andC2,and increase the flow angle near the shroud side.

    Fig.9 shows the radial velocity contour at the cylindrical surface ofR/R2=1.006 for Case 0 and Case 5 for?1=0.1957.There are two low radial velocity zones,one is due to the wake of trailing edge and another is related to the wake region of the jet-wake construction.The radial velocity of wake structure for Case 5 is higher than that of Case 0.This means that the wall extension increases the radial velocity at the wake region,reduces the difference between jet and wake at impeller outlet and improves the flow uniformity.

    Fig.6 Isosurfaces of swirling strength and streamlines of relative velocity at the impeller outlet for Case 0 at design condition

    Fig.7 Contours of entropy at a plane near the shroud side

    Fig.8 Pressure ratio contours and surface streamlines at a plane near the shroud side

    Fig.9 Contours of radial velocity at the cylindrical surface of R/R2=1.006

    Fig.10 and Fig.11 display mass-averaged flow angle and mass-averaged total pressure ratio distributions along the height of diffuser inlet atR/R2=1.158 for?1=0.195 7 respectively.Flow angle distributions are almost the same for Case 0,Case 1 and Case 2.When the extension length reaches 5.56%R2(Case 3),the flow angle near the shroud side becomes large and the flow uniformity improves.Because the extension wall does the work to the fluid,the total pressure is higher than that without extension wall as can be seen in Fig.11.With the increase of extension length,the value of total pressure increases too.

    With regard to the performance of stationary parts,the inflow condition has a great influence on it.Because the inflow condition at the diffuser inlet is improved with the increase of extension length,the total pressure loss coefficient(Cpt)of stationary parts decreases.Fig.12 shows the total pressure loss coefficient distributions for six cases.Predicted results are in accordance with the theory analysis.TheCptof stationary parts decreases with the increase of extension length,especially for off-design conditions.Therefore the hub and shroud extensions at impeller outlet have benefits to decrease diffuser loss due to relatively good uniformity near the shroud side.Consequently the stage performance is improved as shown in Fig.4.

    Fig.13 shows predicted mass-averaged flow angles along the width of channel atR/R2=1.158 for three cases and for different mass flow coefficients.It can be seen that generally flow angles increase from shroud to hub.Also with the increase in?1,flow angles at diffuser inlet increase especially near the shroud side.

    Fig.10 Distribution of mass-averaged flow angles along the width of the diffuser inlet

    Fig.11 Distribution of total pressure ratio along the width of diffuser inlet

    Fig.12 Total pressure loss coefficient of stationary parts

    Fig.13 Distribution of mass-averaged flow angles at R/R2=1.158 for different ?1

    5 Conclusions

    The CFD method has been employed to analyze the flow field and performance of a centrifugal compressor stage with extended shroud and hub walls at the impeller outlet.Different extension lengths have been considered.Effects of extended walls on flow fields including leakage vortices and jet-wake structure and on the stationary component performance have been investigated.Main findings are given below:

    1)Extension of hub and shroud walls not only increases head coefficient,ploytropic efficiency but also increases leakage flow.The increase rates of polytropic efficiency and head coefficient are faster when extension length is under 4.44%R2.The increase rates are slowing down when the length is beyond 4.44%R2.

    2)The wall extension makes the leakage vortices decrease.When the extension length is beyond 4.44%R2,the flow angles at the shroud side of diffuser inlet begin to increase.

    3)The extended walls improve the flow uniformity at the diffuser inlet.This helps reduce the total pressure loss of the stationary parts,and then improves the performance of the stage.

    Acknowledgements

    The authors gratefully acknowledge the support of Shenyang blower Works Group Corporation for providing the geometric parameters and experimental results of this centrifugal compressor stage.

    乱人伦中国视频| 岛国视频午夜一区免费看| 国产亚洲av高清不卡| 亚洲专区字幕在线| 国产精品免费视频内射| av视频免费观看在线观看| 欧美成人性av电影在线观看| 欧美另类亚洲清纯唯美| 丰满人妻熟妇乱又伦精品不卡| 日日摸夜夜添夜夜添小说| 黑人操中国人逼视频| 欧美 亚洲 国产 日韩一| 超碰成人久久| 一a级毛片在线观看| 91av网站免费观看| 亚洲色图 男人天堂 中文字幕| 丰满人妻熟妇乱又伦精品不卡| 手机成人av网站| 亚洲国产精品sss在线观看| 国产精品爽爽va在线观看网站 | 两性夫妻黄色片| 国产片内射在线| 老司机在亚洲福利影院| 国产精品久久久久久精品电影 | 欧美另类亚洲清纯唯美| 一二三四在线观看免费中文在| 巨乳人妻的诱惑在线观看| 国产精品av久久久久免费| 黄色片一级片一级黄色片| 91老司机精品| 天天躁夜夜躁狠狠躁躁| 国产三级黄色录像| 大型av网站在线播放| 亚洲国产欧美日韩在线播放| 国产色视频综合| 久久精品国产清高在天天线| 美国免费a级毛片| 亚洲天堂国产精品一区在线| 黄色a级毛片大全视频| av视频在线观看入口| 久久久久久国产a免费观看| 88av欧美| 91成年电影在线观看| 少妇裸体淫交视频免费看高清 | 最新在线观看一区二区三区| 亚洲欧美精品综合久久99| 中出人妻视频一区二区| 久久久久久久久免费视频了| 啦啦啦韩国在线观看视频| 韩国av一区二区三区四区| 色婷婷久久久亚洲欧美| 国产一级毛片七仙女欲春2 | 日韩欧美一区视频在线观看| 日韩 欧美 亚洲 中文字幕| 欧美另类亚洲清纯唯美| 高清在线国产一区| 真人做人爱边吃奶动态| 91精品国产国语对白视频| 久久精品影院6| 啦啦啦 在线观看视频| 亚洲人成77777在线视频| 丝袜美腿诱惑在线| 中国美女看黄片| 无人区码免费观看不卡| svipshipincom国产片| 看片在线看免费视频| 国产精品综合久久久久久久免费 | 欧美成人一区二区免费高清观看 | 久久久久久国产a免费观看| 免费在线观看黄色视频的| 国产精品野战在线观看| 男女午夜视频在线观看| 国产精品久久久久久人妻精品电影| 成人亚洲精品av一区二区| 激情在线观看视频在线高清| 一进一出好大好爽视频| 国产熟女午夜一区二区三区| 国产亚洲精品一区二区www| 无遮挡黄片免费观看| 极品教师在线免费播放| 日本三级黄在线观看| av免费在线观看网站| 精品国产美女av久久久久小说| 日韩高清综合在线| 国产成人免费无遮挡视频| 91字幕亚洲| 一个人免费在线观看的高清视频| 国产成人欧美在线观看| 又黄又爽又免费观看的视频| 一进一出好大好爽视频| 国产麻豆成人av免费视频| 一级毛片高清免费大全| 久久国产精品男人的天堂亚洲| 大型av网站在线播放| 色尼玛亚洲综合影院| 亚洲五月色婷婷综合| 久久精品国产清高在天天线| 午夜老司机福利片| 757午夜福利合集在线观看| 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 日日夜夜操网爽| 97碰自拍视频| 久久人妻熟女aⅴ| 成人三级做爰电影| 夜夜看夜夜爽夜夜摸| 一二三四社区在线视频社区8| 久99久视频精品免费| 国产亚洲精品综合一区在线观看 | 嫩草影视91久久| 国产精品精品国产色婷婷| 亚洲成国产人片在线观看| 日韩精品中文字幕看吧| 午夜福利,免费看| 99香蕉大伊视频| 亚洲国产日韩欧美精品在线观看 | 日韩av在线大香蕉| 黄片播放在线免费| 999久久久国产精品视频| 亚洲人成77777在线视频| 久久草成人影院| 欧美国产精品va在线观看不卡| 男女下面进入的视频免费午夜 | 久久这里只有精品19| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三| 桃红色精品国产亚洲av| 欧美日本视频| 欧美黑人精品巨大| 久久性视频一级片| 一本大道久久a久久精品| 久久狼人影院| 精品熟女少妇八av免费久了| 99久久99久久久精品蜜桃| 成人三级黄色视频| 在线观看午夜福利视频| 色播在线永久视频| 欧美午夜高清在线| 性少妇av在线| 在线观看www视频免费| 亚洲无线在线观看| 亚洲第一电影网av| 亚洲伊人色综图| 少妇裸体淫交视频免费看高清 | 黑丝袜美女国产一区| 午夜精品久久久久久毛片777| 69精品国产乱码久久久| 午夜福利免费观看在线| 国产成人影院久久av| 久久精品国产99精品国产亚洲性色 | 免费搜索国产男女视频| 国产欧美日韩综合在线一区二区| 美女扒开内裤让男人捅视频| 国产亚洲精品综合一区在线观看 | 在线播放国产精品三级| 欧美激情久久久久久爽电影 | 韩国精品一区二区三区| 日韩精品免费视频一区二区三区| 在线观看一区二区三区| 久久中文字幕人妻熟女| 中亚洲国语对白在线视频| 精品无人区乱码1区二区| 黄片播放在线免费| 老熟妇乱子伦视频在线观看| 伊人久久大香线蕉亚洲五| 欧美激情 高清一区二区三区| 精品免费久久久久久久清纯| 亚洲人成伊人成综合网2020| 久久国产精品人妻蜜桃| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久亚洲av鲁大| 十八禁网站免费在线| 满18在线观看网站| 成年女人毛片免费观看观看9| 国产精品免费视频内射| 俄罗斯特黄特色一大片| 国产成人av激情在线播放| 国产男靠女视频免费网站| 国产精品久久视频播放| 国产免费男女视频| 亚洲,欧美精品.| 精品国产一区二区久久| 一级a爱视频在线免费观看| 美女高潮到喷水免费观看| 人妻久久中文字幕网| 国产99白浆流出| 嫩草影院精品99| 日本三级黄在线观看| 18禁观看日本| 欧美成人性av电影在线观看| 亚洲中文日韩欧美视频| 精品乱码久久久久久99久播| 少妇的丰满在线观看| 夜夜看夜夜爽夜夜摸| 黄色视频,在线免费观看| www.熟女人妻精品国产| 亚洲欧美日韩无卡精品| 国产熟女午夜一区二区三区| 亚洲国产精品合色在线| 国产午夜精品久久久久久| 国产亚洲欧美98| 久热爱精品视频在线9| 国产一区二区三区综合在线观看| 操美女的视频在线观看| 曰老女人黄片| 国产一区二区在线av高清观看| 成人国语在线视频| 不卡一级毛片| 欧美日韩乱码在线| 人妻丰满熟妇av一区二区三区| 国产男靠女视频免费网站| 电影成人av| 啦啦啦韩国在线观看视频| 91成人精品电影| a级毛片在线看网站| 99国产精品99久久久久| 欧美黑人欧美精品刺激| 可以免费在线观看a视频的电影网站| 女同久久另类99精品国产91| 90打野战视频偷拍视频| 欧美另类亚洲清纯唯美| 日韩欧美国产一区二区入口| 欧美在线一区亚洲| 热re99久久国产66热| 日韩 欧美 亚洲 中文字幕| 好男人在线观看高清免费视频 | 在线观看66精品国产| 亚洲第一青青草原| 十分钟在线观看高清视频www| av免费在线观看网站| 老汉色av国产亚洲站长工具| www.熟女人妻精品国产| 精品人妻1区二区| av超薄肉色丝袜交足视频| 国产精品电影一区二区三区| av欧美777| 一区在线观看完整版| 又黄又爽又免费观看的视频| 老汉色av国产亚洲站长工具| 欧美另类亚洲清纯唯美| 侵犯人妻中文字幕一二三四区| 一a级毛片在线观看| 精品欧美国产一区二区三| 正在播放国产对白刺激| 少妇粗大呻吟视频| 日韩av在线大香蕉| 一级毛片高清免费大全| 黄片小视频在线播放| 免费在线观看亚洲国产| 老汉色∧v一级毛片| 国产伦人伦偷精品视频| 99精品在免费线老司机午夜| 久久亚洲精品不卡| 国内精品久久久久久久电影| 在线观看www视频免费| 91av网站免费观看| 国产1区2区3区精品| 男女午夜视频在线观看| 一级作爱视频免费观看| 欧美成人午夜精品| 亚洲av第一区精品v没综合| 亚洲精品国产色婷婷电影| 波多野结衣高清无吗| 麻豆av在线久日| netflix在线观看网站| 国产一卡二卡三卡精品| 99久久综合精品五月天人人| 国产精品久久久久久亚洲av鲁大| 国产极品粉嫩免费观看在线| 免费在线观看影片大全网站| 久久九九热精品免费| 色老头精品视频在线观看| 90打野战视频偷拍视频| 国产1区2区3区精品| 黄片小视频在线播放| 亚洲av电影不卡..在线观看| 亚洲美女黄片视频| 国内精品久久久久久久电影| 自线自在国产av| 久久午夜亚洲精品久久| 黄网站色视频无遮挡免费观看| 电影成人av| 男男h啪啪无遮挡| 18禁国产床啪视频网站| 色尼玛亚洲综合影院| 欧美av亚洲av综合av国产av| 午夜老司机福利片| 伊人久久大香线蕉亚洲五| 给我免费播放毛片高清在线观看| 亚洲三区欧美一区| www.www免费av| 欧美日韩瑟瑟在线播放| 欧美成人性av电影在线观看| 国产精品乱码一区二三区的特点 | 老司机在亚洲福利影院| 亚洲国产精品成人综合色| 91老司机精品| 神马国产精品三级电影在线观看 | 欧美绝顶高潮抽搐喷水| 性少妇av在线| 多毛熟女@视频| 麻豆成人av在线观看| 欧美黄色片欧美黄色片| 欧美日韩福利视频一区二区| 国产熟女xx| 久热这里只有精品99| 一级作爱视频免费观看| 欧美乱色亚洲激情| 他把我摸到了高潮在线观看| 别揉我奶头~嗯~啊~动态视频| netflix在线观看网站| 亚洲激情在线av| 欧美老熟妇乱子伦牲交| 国产精品美女特级片免费视频播放器 | 午夜福利成人在线免费观看| 好看av亚洲va欧美ⅴa在| av天堂在线播放| 视频在线观看一区二区三区| 久久久久国内视频| 美国免费a级毛片| 欧美日本中文国产一区发布| 制服诱惑二区| 国产伦一二天堂av在线观看| 午夜a级毛片| 久久午夜亚洲精品久久| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久国产a免费观看| 老司机午夜福利在线观看视频| 夜夜看夜夜爽夜夜摸| 国产一区二区三区在线臀色熟女| 欧美另类亚洲清纯唯美| 国产成人欧美| 俄罗斯特黄特色一大片| www.熟女人妻精品国产| www.自偷自拍.com| 国产成人精品久久二区二区91| 精品国产乱子伦一区二区三区| 亚洲国产精品999在线| 一区二区三区精品91| 国产精品亚洲美女久久久| 欧美激情 高清一区二区三区| 操美女的视频在线观看| 亚洲专区国产一区二区| 黑丝袜美女国产一区| 欧美大码av| 亚洲伊人色综图| 一本久久中文字幕| 999久久久精品免费观看国产| 一区二区三区精品91| 国产亚洲精品久久久久久毛片| av超薄肉色丝袜交足视频| 9热在线视频观看99| 久久中文字幕人妻熟女| 国内精品久久久久精免费| 亚洲国产精品sss在线观看| 大香蕉久久成人网| 日韩精品中文字幕看吧| 露出奶头的视频| 久久伊人香网站| 999久久久国产精品视频| 日韩av在线大香蕉| 亚洲国产日韩欧美精品在线观看 | 亚洲一区二区三区色噜噜| 国产成人精品在线电影| 国产av一区在线观看免费| 精品电影一区二区在线| 欧美在线一区亚洲| 免费一级毛片在线播放高清视频 | 成人三级做爰电影| 免费在线观看影片大全网站| 久久久久久久久久久久大奶| 麻豆一二三区av精品| 精品国产一区二区三区四区第35| 欧美日韩福利视频一区二区| 91九色精品人成在线观看| 日韩精品青青久久久久久| 亚洲精品久久国产高清桃花| 久久久久久久午夜电影| 麻豆av在线久日| 自拍欧美九色日韩亚洲蝌蚪91| 搞女人的毛片| 黄色视频不卡| 国产高清videossex| 亚洲全国av大片| 可以在线观看的亚洲视频| 午夜精品国产一区二区电影| 99久久国产精品久久久| 最好的美女福利视频网| 国产成人欧美在线观看| 午夜a级毛片| 国产成人啪精品午夜网站| 国产精品香港三级国产av潘金莲| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 久久久久精品国产欧美久久久| 两个人免费观看高清视频| 欧美国产日韩亚洲一区| 亚洲第一青青草原| 国产99久久九九免费精品| 亚洲精品粉嫩美女一区| 精品国产国语对白av| 国产一区二区三区在线臀色熟女| 中文字幕精品免费在线观看视频| 91av网站免费观看| 老熟妇乱子伦视频在线观看| 日韩大码丰满熟妇| 99精品久久久久人妻精品| 99久久久亚洲精品蜜臀av| 亚洲五月婷婷丁香| 欧美亚洲日本最大视频资源| 国产极品粉嫩免费观看在线| 国产亚洲精品第一综合不卡| 色av中文字幕| 国产私拍福利视频在线观看| 黄色a级毛片大全视频| 亚洲熟妇熟女久久| 91在线观看av| 男女下面插进去视频免费观看| 久久久久国产精品人妻aⅴ院| 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 午夜精品久久久久久毛片777| 天天躁夜夜躁狠狠躁躁| 最新在线观看一区二区三区| 国产三级在线视频| a在线观看视频网站| 天天一区二区日本电影三级 | 午夜影院日韩av| 午夜亚洲福利在线播放| 欧美一级a爱片免费观看看 | 日韩中文字幕欧美一区二区| 中文字幕人妻熟女乱码| 久久欧美精品欧美久久欧美| 欧美丝袜亚洲另类 | √禁漫天堂资源中文www| 午夜免费观看网址| 精品国内亚洲2022精品成人| 国产一区二区三区在线臀色熟女| 国产精品乱码一区二三区的特点 | 12—13女人毛片做爰片一| 在线观看免费午夜福利视频| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 人妻丰满熟妇av一区二区三区| 两个人免费观看高清视频| 亚洲成国产人片在线观看| 91字幕亚洲| 男人操女人黄网站| 中文亚洲av片在线观看爽| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩一级在线毛片| 亚洲精品在线美女| www.www免费av| 免费无遮挡裸体视频| 国产亚洲精品久久久久5区| 99国产精品99久久久久| 亚洲熟妇熟女久久| 一级毛片女人18水好多| 深夜精品福利| 人妻丰满熟妇av一区二区三区| 国产精品爽爽va在线观看网站 | 不卡一级毛片| 桃色一区二区三区在线观看| 少妇被粗大的猛进出69影院| 免费在线观看日本一区| 成在线人永久免费视频| 欧美精品亚洲一区二区| 如日韩欧美国产精品一区二区三区| 波多野结衣高清无吗| 极品人妻少妇av视频| 啦啦啦免费观看视频1| 91大片在线观看| 久久久久久久午夜电影| 欧美日韩瑟瑟在线播放| 青草久久国产| 亚洲伊人色综图| 熟女少妇亚洲综合色aaa.| 国产成年人精品一区二区| 亚洲av片天天在线观看| 亚洲国产精品成人综合色| 激情视频va一区二区三区| 久久这里只有精品19| 欧美在线黄色| 啦啦啦观看免费观看视频高清 | 久热爱精品视频在线9| 69精品国产乱码久久久| 美女大奶头视频| 最近最新中文字幕大全电影3 | 欧美在线一区亚洲| 999精品在线视频| 欧美色欧美亚洲另类二区 | 免费在线观看日本一区| 久久人妻福利社区极品人妻图片| 一级黄色大片毛片| 一进一出抽搐动态| 国产一区在线观看成人免费| 午夜免费鲁丝| 51午夜福利影视在线观看| 日韩中文字幕欧美一区二区| 国内精品久久久久久久电影| 少妇被粗大的猛进出69影院| 精品高清国产在线一区| 69av精品久久久久久| 欧美日韩黄片免| 极品人妻少妇av视频| 男人舔女人下体高潮全视频| 日韩大尺度精品在线看网址 | 免费无遮挡裸体视频| 99在线视频只有这里精品首页| 午夜影院日韩av| 日韩欧美在线二视频| 91精品三级在线观看| 又黄又粗又硬又大视频| 日韩大码丰满熟妇| 亚洲少妇的诱惑av| 欧美国产日韩亚洲一区| 午夜福利免费观看在线| 一级a爱视频在线免费观看| 一进一出抽搐动态| 精品人妻在线不人妻| 久久国产亚洲av麻豆专区| 亚洲九九香蕉| 亚洲人成网站在线播放欧美日韩| 亚洲人成伊人成综合网2020| 久热这里只有精品99| 看片在线看免费视频| 亚洲av熟女| 在线观看www视频免费| 十分钟在线观看高清视频www| 亚洲成人国产一区在线观看| 午夜福利影视在线免费观看| 黄片大片在线免费观看| 涩涩av久久男人的天堂| 欧美久久黑人一区二区| 欧美激情高清一区二区三区| 999久久久精品免费观看国产| 欧美中文日本在线观看视频| 人人妻人人爽人人添夜夜欢视频| 中文字幕精品免费在线观看视频| 久久九九热精品免费| 国产成人系列免费观看| 精品国内亚洲2022精品成人| 精品免费久久久久久久清纯| 老司机靠b影院| 中出人妻视频一区二区| 变态另类丝袜制服| 老司机在亚洲福利影院| 美女 人体艺术 gogo| 在线永久观看黄色视频| 亚洲av片天天在线观看| 十八禁人妻一区二区| 国产亚洲精品第一综合不卡| 人人澡人人妻人| 51午夜福利影视在线观看| 亚洲成人久久性| 亚洲欧美精品综合久久99| 变态另类丝袜制服| 国产精品98久久久久久宅男小说| 精品无人区乱码1区二区| 1024香蕉在线观看| 欧美绝顶高潮抽搐喷水| 别揉我奶头~嗯~啊~动态视频| 亚洲片人在线观看| 亚洲av成人一区二区三| 一本久久中文字幕| 97人妻精品一区二区三区麻豆 | 99国产精品一区二区三区| 99在线视频只有这里精品首页| 国产精品香港三级国产av潘金莲| 成人精品一区二区免费| 日韩高清综合在线| 无遮挡黄片免费观看| 看免费av毛片| 亚洲五月天丁香| 精品人妻1区二区| 久久人人爽av亚洲精品天堂| 亚洲一码二码三码区别大吗| 纯流量卡能插随身wifi吗| 亚洲第一电影网av| 精品国产乱码久久久久久男人| 麻豆久久精品国产亚洲av| 午夜福利成人在线免费观看| 久久久久久大精品| 亚洲三区欧美一区| 老司机福利观看| 女生性感内裤真人,穿戴方法视频| 777久久人妻少妇嫩草av网站| 日本撒尿小便嘘嘘汇集6| 巨乳人妻的诱惑在线观看| 久久久久精品国产欧美久久久| 美女大奶头视频| 黑丝袜美女国产一区| 禁无遮挡网站| 亚洲国产欧美日韩在线播放| 午夜福利在线观看吧| 日韩中文字幕欧美一区二区| 精品欧美国产一区二区三| 午夜精品国产一区二区电影| 欧美色欧美亚洲另类二区 | 亚洲九九香蕉| 亚洲午夜精品一区,二区,三区| 久久天躁狠狠躁夜夜2o2o| 一区二区三区激情视频| 无人区码免费观看不卡| 啦啦啦免费观看视频1| 国产日韩一区二区三区精品不卡| 国产精品九九99| 久久久久久久久中文| 18禁美女被吸乳视频| 亚洲熟女毛片儿| 非洲黑人性xxxx精品又粗又长| 午夜福利欧美成人| 国产成人av激情在线播放| 天天添夜夜摸| 九色亚洲精品在线播放|