閆善勇,趙二亮,邱薇,王長紅
基于加權(quán)最小二乘的聲相關(guān)計(jì)程儀速度精確估計(jì)
閆善勇1,2,趙二亮1,3,邱薇1,3,王長紅1,3
(1. 中國科學(xué)院聲學(xué)研究所海洋聲學(xué)技術(shù)中心,北京 100190;2. 中國科學(xué)院大學(xué),北京 100049;3. 北京市海洋聲學(xué)裝備工程技術(shù)研究中心,北京 100190)
聲相關(guān)計(jì)程儀首先利用加權(quán)最小二乘法確定目標(biāo)函數(shù),然后通過序列二次規(guī)劃法估計(jì)速度??紤]海底混響數(shù)據(jù)時(shí)空相關(guān)函數(shù)寬度的減小、相關(guān)系數(shù)點(diǎn)與相關(guān)函數(shù)中心點(diǎn)間距的增大,都會(huì)導(dǎo)致相關(guān)系數(shù)的均值減小、分布范圍增大,此時(shí)相關(guān)系數(shù)在目標(biāo)函數(shù)中對(duì)應(yīng)項(xiàng)的權(quán)重也應(yīng)當(dāng)減小。在這樣的前提下,引入調(diào)節(jié)參數(shù),調(diào)節(jié)權(quán)重函數(shù)的寬度,使設(shè)備在各個(gè)速度下測速相對(duì)偏差的一致性達(dá)到最優(yōu),提高速度估計(jì)精確度。調(diào)節(jié)參數(shù)在設(shè)備標(biāo)定與驗(yàn)證試驗(yàn)中確定,不同的設(shè)備可能具有不同的調(diào)節(jié)參數(shù)。試驗(yàn)數(shù)據(jù)證明了該方法對(duì)不同聲相關(guān)計(jì)程儀測速精確度的提高都有效果。
聲相關(guān)計(jì)程儀;加權(quán)最小二乘;序列二次規(guī)劃;測速精確度
聲相關(guān)計(jì)程儀(Acoustic Correlation Log, ACL)基于“波形不變性”原理,通過理論相關(guān)函數(shù)與數(shù)據(jù)相關(guān)函數(shù)的匹配(均方誤差最小意義下的逼近),估計(jì)理論模型參數(shù),獲得速度估計(jì)[1-3]。相比于聲多普勒計(jì)程儀,聲相關(guān)計(jì)程儀有如下優(yōu)點(diǎn):(1) 垂直向下發(fā)射寬波束,受載體縱搖和橫搖的影響較??;(2) 相同大小的換能器,發(fā)射聲波的頻率可以更低,作用距離更大;(3) 速度估計(jì)與聲速無關(guān)[4-7]。目前,聲相關(guān)計(jì)程儀面臨的主要問題是測速精確度較聲多普勒計(jì)程儀低。為了提高聲相關(guān)計(jì)程儀的測速精確度,馮雷[8]提出包含寬度調(diào)節(jié)系數(shù)的指數(shù)型理論相關(guān)函數(shù),盡管對(duì)混響物理性質(zhì)的解釋上有所欠缺,但形式簡單,便于實(shí)時(shí)運(yùn)算;蒯多杰[9]在使用最小二乘法進(jìn)行目標(biāo)函數(shù)計(jì)算時(shí)實(shí)施了自適應(yīng)加權(quán),權(quán)值來自于經(jīng)過修正的理論相關(guān)函數(shù)的值,同時(shí),在理論相關(guān)函數(shù)中引入了幅度調(diào)節(jié)因子;易卉芹等[10]通過增加兩個(gè)橢圓因子將理論相關(guān)函數(shù)轉(zhuǎn)變?yōu)闄E圓形,使其與橢圓形數(shù)據(jù)相關(guān)函數(shù)擬合得更好;王映春等[11]利用延時(shí)為0的理論和數(shù)據(jù)相關(guān)函數(shù)估計(jì)接收陣元的聲學(xué)中心,減小陣元坐標(biāo)誤差。國外,KEARY等[2]對(duì)聲相關(guān)計(jì)程儀進(jìn)行了仿真,分析了影響海底混響時(shí)空相關(guān)特性的因素。BOLTRYK等[12-13]分析了現(xiàn)有峰值估計(jì)技術(shù)對(duì)設(shè)備速度估計(jì)精確度和精密度的影響,并在此基礎(chǔ)上提出利用徑向基函數(shù)法和高斯過程法估計(jì)落在測量區(qū)域邊緣的峰值點(diǎn),提高設(shè)備工作穩(wěn)定性。ANTHONY等[14-16]通過設(shè)計(jì)聲相關(guān)計(jì)程儀接收陣等方法提高設(shè)備工作的性能。
本文介紹了聲相關(guān)計(jì)程儀速度估計(jì)的基本原理及解算流程,給出數(shù)據(jù)相關(guān)系數(shù)的分布特征及其對(duì)應(yīng)的相關(guān)系數(shù)權(quán)重計(jì)算方法,引入權(quán)重調(diào)節(jié)參數(shù),提高設(shè)備速度估計(jì)相對(duì)偏差的一致性。此外還指明了聲相關(guān)計(jì)程儀測速精確度改進(jìn)的方向。
海底混響的理論時(shí)空相關(guān)函數(shù)[8]:
式中,代表相關(guān)函數(shù)最大值點(diǎn)。也就是說,在已知兩信號(hào)間時(shí)延的情況下,確定相關(guān)函數(shù)最大值點(diǎn)即可估計(jì)出速度,這就是“波形不變性”原理在聲相關(guān)計(jì)程儀上的應(yīng)用。為此利用平面陣在多個(gè)位置接收海底混響信號(hào),再將信號(hào)兩兩時(shí)延相關(guān),作為兩接收基元間距處的相關(guān)函數(shù)采樣。在采樣數(shù)目足夠時(shí),即可利用最小二乘法估計(jì)包含載體x、y方向速度在內(nèi)的理論相關(guān)函數(shù)模型參數(shù)。
根據(jù)1.1節(jié)中聲相關(guān)測速的基本原理,ACL速度解算的流程如圖2所示[9]。多個(gè)接收基元接收到混響信號(hào)后,進(jìn)行時(shí)延相關(guān)獲得數(shù)據(jù)相關(guān)系數(shù)。
圖2 ACL速度解算流程
目標(biāo)函數(shù)由加權(quán)最小二乘法(Weighted Least Square, WLS)根據(jù)理論和數(shù)據(jù)相關(guān)系數(shù)得到[9]:
在確定目標(biāo)函數(shù)后,利用最優(yōu)化算法中的序列二次規(guī)劃法(Sequential Quadratic Programming, SQP)進(jìn)行目標(biāo)函數(shù)的最大值點(diǎn)估計(jì)[17-18]。估計(jì)結(jié)果中包含載體的、方向速度。
如圖1所示,相關(guān)函數(shù)在相關(guān)平面上表現(xiàn)為鐘形,定義相關(guān)系數(shù)=0.707時(shí)對(duì)應(yīng)的寬度為相關(guān)函數(shù)寬度,用來判斷相關(guān)函數(shù)的變化情況。由式(1) 推導(dǎo)可得:
根據(jù)ACL接收基元的排布,可以獲得多種空間間隔的相關(guān)系數(shù),它們構(gòu)成對(duì)該試驗(yàn)條件下相關(guān)函數(shù)的采樣。在相關(guān)函數(shù)最大值點(diǎn)附近,相關(guān)系數(shù)的分布范圍較小,隨著與相關(guān)函數(shù)最大值點(diǎn)距離的增大,相關(guān)系數(shù)的分布范圍逐漸增大,如圖4所示。圖4是湖上試驗(yàn)中2 366幀數(shù)據(jù)的計(jì)算結(jié)果,圓圈表示相關(guān)系數(shù)均值,誤差棒表示相關(guān)系數(shù)標(biāo)準(zhǔn)偏差,曲線表示利用相關(guān)系數(shù)均值擬合的相關(guān)函數(shù)結(jié)果,試驗(yàn)中載體速度9.04 kn,相關(guān)時(shí)延1.83 ms,圖4中曲線最大值點(diǎn)位置-0.017 m。另外,海上試驗(yàn)中,相關(guān)系數(shù)的分布范圍相比于湖上試驗(yàn)更小,這與其較大的相關(guān)函數(shù)寬度、較大的相關(guān)系數(shù)有關(guān)。從相關(guān)系數(shù)分布的角度來說,在同一相關(guān)函數(shù)條件下,距離相關(guān)函數(shù)中心點(diǎn)越近的相關(guān)系數(shù)可信度越高,越應(yīng)該被分配較大的權(quán)重;在不同的相關(guān)函數(shù)條件下,相關(guān)函數(shù)越寬,相關(guān)系數(shù)值越大,相關(guān)系數(shù)分布范圍越小,越應(yīng)當(dāng)被分配較大的權(quán)重,或者說,相關(guān)系數(shù)間權(quán)重的分配應(yīng)該越均衡,權(quán)重之間的差距應(yīng)該越小。
(a)=1.397 2
(b)=1.433 4
(c)=0.848 4
(d)=0.737 1
圖3 不同相關(guān)函數(shù)寬度情況下速度估計(jì)的結(jié)果比較
Fig.3 Comparison of the velocity results under different widths of correlation function
式中,是一個(gè)調(diào)節(jié)參數(shù)。此時(shí),相關(guān)函數(shù)寬度增大,權(quán)重值增大,權(quán)重間的差距變小。
2015~2017年間,在某湖上進(jìn)行了9套70 kHz ACL的標(biāo)定與驗(yàn)證試驗(yàn),本文重新對(duì)數(shù)據(jù)進(jìn)行處理,采用式(7)進(jìn)行權(quán)重計(jì)算。已知湖底深60 m左右,試驗(yàn)船航速5~10 kn,調(diào)節(jié)參數(shù)在-1.8~3.6之間變化。對(duì)同一套設(shè)備,選定不同的調(diào)節(jié)參數(shù),觀察不同速度下,速度估計(jì)相對(duì)偏差的變化情況,圖5顯示了1#~4#ACL的數(shù)據(jù)處理結(jié)果。
(a) 1#ACL
(b) 2#ACL
(c) 3#ACL
(d) 4#ACL
圖5 各速度下測速相對(duì)偏差隨調(diào)節(jié)參數(shù)的變化情況
Fig.5 Variation of the relative deviation of velocity measure- ment with the adjustable parameter
表1 3# ACL測速相對(duì)偏差
對(duì)其余設(shè)備進(jìn)行同樣的處理,結(jié)果如表2所示??梢钥吹?,經(jīng)過該方法處理的測速結(jié)果,測速相對(duì)偏差都有一定的改善。除了7#設(shè)備以外,測速相對(duì)偏差范圍都控制在1%以內(nèi),也即測速相對(duì)偏差控制在0.5%以內(nèi)。
表2 ACL測速相對(duì)偏差改善效果
此外,本文討論了序列二次規(guī)劃法對(duì)速度估計(jì)的影響,研究表明,對(duì)不同寬度的相關(guān)函數(shù),SQP算法均能夠較準(zhǔn)確地估計(jì)目標(biāo)函數(shù)的最大值點(diǎn),不是產(chǎn)生測速相對(duì)偏差的主要原因,即為了減小目標(biāo)函數(shù)最大值點(diǎn)與速度真值的偏差,提高聲相關(guān)計(jì)程儀測速精確度,目標(biāo)函數(shù)的確定是關(guān)鍵。
[1] Jr DICKEY F R, EDWARD J A. Velocity measurement using correlation sonar[C]//Proc. IEEE Plans, San Diego, CA, 1978: 255-264.
[2] KEARY A, HILL M, WHITE P R, et al. Simulation of the correlation velocity log using a computer based acoustic model[C]//11th Int. Symp. Unmanned Untethered Submersible Technol., 1999: 446-454.
[3] ZHU W Q, FENG L, WANG C H, et al. Theory and signal processing of acoustic correlation techniques for velocity measurement of vessel[J]. IEEE J. of Ocean. Eng., 2006, 36(2): 338-346.
[4] DENBIGH P N. Ship velocity determination by Doppler and correlation techniques[C]//IEE Proceedings F-Communications, Radar and Signal Processing, 1984, 131(3): 315-326.
[5] HOLE S K, WOODWARD B, FORSYTHE W. Design constraints and error analysis of the temporal correlation log[J]. IEEE J. of Ocean. Eng., 1992; 17(3): 269-279.
[6] GRIFFITHS G, BRADLEY S E, WATSON G, et al. Acoustic correlation sonar for vertical profiling of ocean currents to a range of 1km[C]//IEE Proeedings-Radar, Sonar and Navigation, 1996; 143(3): 177-183.
[7] 張殿倫, 田坦, 盧逢春. 聲相關(guān)測速技術(shù)仿真與試驗(yàn)研究[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2003, 24(4): 415-418.
ZHANG Dianlun, TIAN Tan, LU Fengchun. Simulation and experimental study on acoustical correlation velocity determination technique[J]. Journal of Harbin Engineering University, 2003, 24(4): 415-418.
[8] 馮雷. 相關(guān)測速聲吶理論、信號(hào)處理研究及海試驗(yàn)證[D]. 北京: 中國科學(xué)院聲學(xué)研究所, 2005.
FENG Lei. Theory, signal processing and sea test verification of correlation sonar for velocity measurement[D]. Beijing: Institute of Acoustics, Chinese Academy of Science, 2005.
[9] 蒯多杰. 相關(guān)測速聲吶系統(tǒng)仿真及處理算法研究[D]. 北京: 中國科學(xué)院聲學(xué)研究所, 2009.
KUAI Duojie. System simulation and algorithm improvements of correlation sonar for velocity measurement[D]. Beijing: Institute of Acoustics, Chinese Academy of Science, 2009.
[10] 易卉芹, 陳龍, 王長紅. 相關(guān)測速聲吶時(shí)空相關(guān)函數(shù)模型改進(jìn)研究[J]. 聲學(xué)學(xué)報(bào), 2011, 36(5): 484-488.
YI Huiqin, CHEN Long, WANG Changhong. The research of temporal-spatial correlation function model improvement of correlation sonar[J]. Acta Acustica, 2011, 36(5): 484-488.
[11] 王映春, 王長紅, 陳龍等. 相關(guān)測速聲吶陣元坐標(biāo)估計(jì)算法研究[J]. 聲學(xué)學(xué)報(bào), 2013, 38(1): 29-34.
WANG Yingchun, WANG Changhong, CHEN Long, et al. The research of element coordinates estimating algorithm of correlation sonar[J]. Acta Acustica, 2013; 38(1): 29-34.
[12] BOLTRYK P J, HILL M, ALISON C K, et al. Surface fitting for improving the resolution of peak estimation on a sparsely sampled two-dimensional surface with high levels of variance, for an acoustic velocity log[J]. Meas. Sci. Technol., 2004, 15(3): 581-591.
[13] BOLTRYK P J, HILL M, WHITE P R. Improving the resolution of peak estimation on a sparsely sampled surface with high variance using Gaussian processes and radial basis functions[J].Meas. Sci. Technol., 2005, 16(4): 995-965.
[14] ANTHONY L S, JERRY G K, JAMES G H. Method and apparatus for correlation sonar[P]. US: 7295492B2, 2007-11-13.
[15] ANTHONY L S, JERRY G K, JAMES G H. Method and apparatus for fault-tolerant, correlation sonar processing[P]. US: 7738318B2, 2010-06-15.
[16] ANTHONY L S, JAMES G H. Spatial correlation sonar method for high ships speeds[P]. US: 8004934B2, 2011-08-23.
[17] THOMAS V M, SIDNEY I R, STEPHEN M R. Numerical optimization[M]. New York: Springer-Verlag. 2006: 529-561.
[18] ANDREAS A, LU W S. Practical optimization[M]. New York: Springer-Verlag, 2007: 501-529.
[19] SMITH B V, ATKINS P R. Horizontal spatial correlation of bottom reverberation for normal incidence[J].J. Acoust. Soc. Am., 1991, 89(5): 2197-2206.
Accurate velocity estimation of acoustic correlation log based on weighted least squares
YAN Shan-yong1,2, ZHAO Er-liang1,3, QIU Wei1,3, WANG Chang-hong1,3
(1. Ocean Acoustic Technology Center, Institute of Acoustics,Chinese Academy of Sciences, Beijing 100190, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Beijing Engineering Technology Research Center of Ocean Acoustic Equipment, Beijing 100190, China)
An acoustic correlation log utilizes the weighted least square method to determine objective function and the sequential quadratic programming to estimate velocity. The calculation of weights is modified by considering the characteristics of the spatial-temporal correlation of bottom echo. The correlation function and the weight function all have the bell-shaped form. Along with the decrease of the correlation function width or the increase of the distance of the correlation point away from the peak, the mean value of correlation coefficient decreases and its distribution increases, then the weight of the corresponding term of the correlation coefficient in the objective function should also decrease. Under this circumstance, a parameter, which can adjust the width of the weight function, is introduced to enhance the consistency and the accuracy of velocity estimation. The adjustment parameter μ is determined in the calibration of an acoustic correlation log, and different devices may have different adjustment parameters. Trial data has proved the effectiveness of this method in improving the velocity measurement accuracy of different acoustic correlation logs.
acoustic correlation log; weighted least square; sequential quadratic programming; accuracy of velocity measurement
TN911.7
A
1000-3630(2019)-05-0502-06
10.16300/j.cnki.1000-3630.2019.05.004
2018-04-24;
2018-07-11
閆善勇(1990-), 男, 黑龍江哈爾濱人, 博士研究生, 研究方向?yàn)樗曅盘?hào)處理。
閆善勇, E-mail: yanshanyongyhy@163.com