• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodic DFT Study on High Pressure Behavior of Nitrogen-rich Energetic Crystal 4-Amino-3,7-Dinitrotriazolo-[5,1,c][1,2,4] Triazine

    2019-11-11 07:59:38YANGDongfangLIHuiliLIUJinjianZHAOGuozhengLUMing
    火炸藥學(xué)報 2019年5期

    YANG Dong-fang, LI Hui-li, LIU Jin-jian, ZHAO Guo-zheng, LU Ming

    (1. School of Chemical and Material Science, Shanxi Normal University, Linfen Shanxi 041004, China; 2. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

    Abstract:The high pressure behavior of nitrogen-rich energetic crystal 4-amino-3,7-dinitrotriazolo-[5,1,c][1,2,4]triazine (DPX-26) in the hydrostatic pressure range of 0—130 GPa was investigated by employing the GGA/PBE-G06 method of periodic density functional theory (DFT). The changes of crystal structure, molecular structure and electronic structure of DPX-26 with pressure were analyzed by calculating lattice parameters (a, b, c), bond lengths, band gaps (ΔEg) and density of states (DOS). The results show that DPX-26 undergoes three significant structure transitions at 81, 82 and 92GPa. The structural transformation occurs at 81GPa with the destruction of intermolecular six membered rings. At 82GPa, the triazole ring is severely distorted and dissociated with the elongation of C4—N7 bond. As the pressure reaches 92 GPa, the bond length of C4—N7 decreases from 0.2324nm to 0.1333nm, and the triazole ring is formed again. The increase of external pressure leads to the delocalization enhencement of the system.

    Keywords:quantum chemistry; nitrogen-rich energetic crystal; DFT; high pressure behavior; DPX-26

    Introduction

    Energetic compounds have a good development prospect and are widely used in both national military and civilian applications. In recent decades, designing new high energetic density compounds, particularly nitrogen-rich energetic compounds, is a new challenge for researchers[1-2]. The nitrogen-rich energetic compound 4-amino-3,7-dinitrotriazolo-[5,1,c][1,2,4] triazine (DPX-26) has been synthesized by Davin et al[3]. The DPX-26 exhibits comparative detonation performance with 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) but shows a higher thermal stability and lower sensitivity, owing to the strong hydrogen bonds and nitro-π interactions along with planar conjugated structure. Although the synthesis of DPX-26 has been reported, there are still many fundamental and practical problems to be solved, due to the complicated chemical behavior.

    To our knowledge, energetic compounds bear tremendous pressure during the detonation process and would undergo phase transitions, structure transformations, decomposition or polymerization[4]. Therefore, describing the changes of molecular structures in energetic crystals under high compressions can contribute to understand more about the detonation mechanism and performance of explosives. Actually, it is scarcely possible to investigate the effect of high pressure on explosives by experimental measurements. However, the theoretical study provides an excellent approach to explore high pressure behavior. And density functional theory (DFT) method has been applied successfully to study the structures and properties of energetic crystals under high hydrostatic pressure[5-8].

    In this study, the detailed information about DPX-26 crystal under hydrostatic pressure of 0—130 GPa was obtained by using the periodic DFT calculation. In particular, we focused on the effect of pressure on structural transformations, intermolecular hydrogen interactions and electronic structure.

    1 Experimental

    Density functional theory (DFT) based on CASTEP code[9]was applied with Vanderbilt-type ultrasoft pseudo-potentials[10]and a plane-wave expansion of the wave functions. The band-by-band conjugate gradient technique was used to minimize total energy of the system with respect to the plane-wave coefficients. The structure was relaxed by the BFGS method. The generalized gradient approximation (GGA)[11-13]was employed to calculate the DPX-26 crystal at 0 K. The cutoff energy of plane wave was set to 600 eV with ak-point grid of 2×2×3. In the process of structural optimization, the total energy was converged to less than 10-5eV, the residual force lower than 0.3 eV/nm, the residual bulk stress under 0.05GPa, and the displacement of atoms below 0.001?. The experimental DPX-26 crystal (CCDC 1481755)[3], used as initial structure, belongs to the monoclinic space groupCcwitha=0.6205nm,b=2.2370nm andc=1.7547nm and contains twelve molecules per unit cell as shown in Fig. 1.

    Fig. 1 Crystal structure and atomic number of DPX-26

    2 Results and discussion

    The generalized gradient approximation (GGA) functional with or without the van der Waals correction were used to relax the DPX-26 crystal totally without constraint at ambient pressure. Table 1 lists the optimized cell parameters with different methods, along with the experimental data for DPX-26. The relative errors of the calculated values to experimental ones show that the lattice constants calculated by GGA/PBE-G06 method agree well with the experimental data, which is lower than other methods. Therefore, GGA/PBE-G06 method was applied to discuss the effect of high pressure in this study.

    Table 1 Comparison of the relaxed lattice parameters of DPX-26 and the experimental data at ambient conditions

    Note: The values in parentheses correspond to the percentage differences relative to the experimental data

    2.1 Crystal structure

    Fig. 2(a) shows the variation tendency of lattice constantsa,bandcthroughout the whole pressure range from 0 to 130GPa. On the whole,a,bandcdecrease with the augment of pressure, due to the fact that the external pressure is large enough to overcome the intermolecular repulsion along crystallographic directions and makes the crystal structure shrink. And it is clearly found that the curveais flat comparatively. In the low pressure range of 0—80GPa, lattice parameters decrease monotonously with increasing pressure. However, some obvious fluctuations occur under the hydrostatic pressure of 80—130GPa. From 80 to 81 GPa,aincreases from 0.4484 to 0.4595nm anomalously andbdecreases from 1.8372 to 1.7041nm, suggesting that a larger compression occurs in thebdirection at 81GPa. However, at 82GPa, lattice parameters decrease exceptcincreases by 0.0678nm. When the pressure increases to 92GPa,bincreases by 0.0853nm suddenly. All phenomena indicates that large changes in the DPX-26 crystalline have occurred at 81, 82 and 92GPa.

    Fig. 2(b) shows the compressibility ratios ofa,bandcunder different pressures. Under low pressures, the intermolecular distance is far and the intermolecular repulsion is weak. Therefore, the crystal is more compressible than that at high pressures. When the pressure increases, the repulsive force becomes strongerso that DPX-26 is difficult to compress. It is apparent from Fig. 2(b) that the compression ratios of lattice constants are different, which confirms that the compressibility alonga-axis,b-axis andc-axis is anisotropic. The sequence of the compressibility along three different directions isa>b>c, except the compression ratio ofbis a little larger thanaduring 85 and 90GPa, suggesting that the cyrstal alongcdirection is much stiffer than the other two directions.

    Fig. 2 Lattice constants and compression ratios as functions of pressure

    2.2 Molecular structure

    The effect of hydrostatic pressure on bond lengths plays an important role in the study of high-pressure behavior. The reason is that external pressure causes obvious transformations in molecular structures and further leads to the changes in chemical property. Fig.3 is the variation of bond lengths with the increasing pressure.

    Fig. 3 Variation of the bond lengths with the increasing pressure

    It is clear that below 80GPa, the curve is almost horizontal, indicating that the applied compression mostly squeezes out the intermolecular space and causes only a little change in intramolecular geometry. However, when the pressure increases from 80 to 81GPa, the bond length of N8—H4 increases from 0.1084 to 0.1623nm and the torsion angle of H3—C5—C6—H4 changes from 33.6° to 64.7°, implying that the NH2group rotates obviously on the triazine ring. At 82GPa, there is a remarkable change in molecular geometry. The bond length of C4—N7 in the triazole ring elongates to 0.2324nm suddenly. The bond length of N9—O9 increases from 0.1235 to 0.2270nm compared with that at 81GPa, that is to say, the N9—O9 bond breaks above 82GPa. At the same time, the C4—O8 and C3—N9 covalent bonds form, which means the new five-membered ring C4—O8—N9—C3—N6 is formed. All changes attribute to that the molecular structures transform towards more stable configurations under external compression. From 82 to 92GPa, the C4—N7 bond length shortens from 0.2324 to 0.1333nm, which means that the triazole ring rebuilds. It is worth noting that, within the pressure range 80—130GPa, the structural transformations are caused by the increasing of the repulsion between two bonding atoms under compression. This shows that the positions of molecules have changed under external pressure.

    The geometrical criteria for the formation of hydrogen bond is that the bond length is in the range of 0.15—0.22nm[14]. Intermolecular hydrogen bonds which consist of the amino groups of one molecule and nitro groups from the other molecules influence the arrangement of molecules in crystal. Therefore, the intermolecular hydrogen bonds are of great importance in DPX-26 crystal. Fig.4 shows the effect of pressure on hydrogen bond lengths.

    Fig. 4 Variations of bond lengths for intermolecular H-bonds with the increasing pressure

    Based on the analysis of Fig. 4, the intermolecular six membered ring N2—O2—H5—N3—H6—O3 forms below 80GPa because of the existence of hydrogen bonds O3…H6 and O2…H5. At 81 GPa, the bond length of O3…H6 reaches 0.2440nm, meaning that the intermolecular six-membered ring is destroyed under the compression. However, the new covalent bond forms between O2 and H5 and the bond length is 0.1337nm. In addition, the distance between N4 and H6 decreases from 0.2582nm to 0.1056nm and the N3—H6 bond length suddenly increases from 0.1035 to 0.1934nm, that is, the hydrogen transfer occurs between the two molecules (H6 transfers from N3 of the NH2group to N4 of the triazole ring). From 81 to 82GPa, the O2—H5 bond length increases by 0.0220nm and O2—H5 bond turns into hydrogen bond. The length of O3…H6 bond decreases to 0.1799nm, therefore, the intermolecular six-membered ring forms once again with a chair conformation. As the same time, the N4—H6 bond elongates to 0.1507nm and turns into hydrogen bond. When the pressure exceeds 92GPa, the length of N4—H6 bond is below 0.1200nm, thus the strong covalent interaction exists between N4 and H6 above 92GPa. The changes of distance between two bonding atoms suggest that the position of molecules has changed, which is in agreement with the result observed from the bond lengths.

    In conclusion, the high pressure has a huge influence on the molecular structure in DPX-26 crystal. By analyzing the bond lengths, it is easy to find that the molecules undergo structure changes under external pressure, especially at 81, 82 and 92GPa. Fig.5 summarizes the transformations of molecules under different pressures.

    Fig. 5 The variations of molecular structures under different pressures. Gray, blue, red and white spheres stand for carbon, nitrogen, oxygen and hydrogen atoms, respectively

    2.3 Electronic structure

    Studying the electronic structure of a solid material facilitates the deeper investigation of the crystalline structure and physical properties. The energy gap (ΔEg) is a significant parameter to characterize the electronic structure of energetic crystal. Fig. 6 exhibits the changes of ΔEgwith the increasing pressure.

    Fig. 6 Band gap of DPX-26 crystal as a function of pressure

    From Fig. 6, when the pressure is lower than 81GPa, ΔEgdecreases successively from 1.615 to 0.042eV, due to the reduction in intermolecular distance. It is suggested that electrons are easy to transfer from occupied valence bands to empty conduction bands under external pressure. The reason is that the narrower the intermolecular space, the more electron overlap of energy bands. Additionally, the DPX-26 undergoes an electronic phase transition from a semiconductor to a metallic system. In the range of 82—90GPa, by the reason of deformation of triazole ring and formation of intermolecular six-membered ring, ΔEgincreases dramatically, which leads to the energy bands shift towards the higher energy region. At 92GPa, ΔEgdecreases to 0eV completely, owing to the structure transformation, that is, the triazole ring builds once more.

    The density of states (DOS) is an effective tool to understand the bond nature and electronic structure under different pressures. Fig. 7 depicts the DOS for crystalline DPX-26 at different pressures.

    Fig. 7 The DOS for crystalline DPX-26 at different pressures, s, p and total states are shown as dot, dash and solid curves, respectively

    The curves of DOS behave as obvious peaks in the pressure range of 0 80GPa. As the pressure increases, the peaks become low and wide, which explains that the electronic delocalization increases gradually in bulk DPX-26. Thus, the DPX-26 becomes a conductor under high compression. It is worth while to note that thepstates play an essential role in the sharp peaks of valence and conduction band near the Fermi level, which signifies thatpstates have a significant effect on the chemical reaction of DPX-26 crystal. Besides, the conduction bands tend to shift towards lower energy region with the increasing pressure, which leads to the band gap reduce. The DOS peaks, at 92GPa, connect together near the Fermi energy level because the band gap reduces to 0eV, suggesting that the electrons can move freely from the valence band to conduction band.

    3 Conclusion

    DFT periodic calculations have been applied to explore the effect of external pressure on DPX-26 crystal in the range of 0—130GPa. And the GGA/PBE-G06 functional was adopted to perform the computation. The conclusion is drawn as follows:

    (1) The crystalline DPX-26 undergoes three distinct molecular structure transformations at 81, 82 and 92GPa. At 81GPa, the planarity of molecules is destroyed, meanwhile, the intermolecular six-membered ring ruptures. When 82GPa is applied, the length of C4—N7 bond is more than 0.22nm, and the triazole ring cleavages. The bond length of N4—H6 increases to 0.1507nm, and the covalent interaction translates into hydrogen bonding. At 92GPa, the triazole ring rebuilds because C4—N7 bond length shortens from 0.2324 to 0.1333nm.

    (2) The external pressure leads to the increase of electronic delocalization in bulk DPX-26. All analysis shows that the pressure-induced transformations in the molecular structure and changes in electronic structure occur at 81, 82 and 92GPa.

    99热只有精品国产| 欧美一级毛片孕妇| 久久国产亚洲av麻豆专区| 亚洲欧美日韩另类电影网站| 亚洲激情在线av| 成人18禁在线播放| 又黄又粗又硬又大视频| 亚洲国产毛片av蜜桃av| 极品教师在线免费播放| 免费在线观看亚洲国产| 黄色毛片三级朝国网站| 国产精品久久久久久亚洲av鲁大| 成在线人永久免费视频| 热99re8久久精品国产| 日韩大尺度精品在线看网址 | 黑丝袜美女国产一区| 欧美色视频一区免费| 亚洲国产中文字幕在线视频| 变态另类成人亚洲欧美熟女 | 50天的宝宝边吃奶边哭怎么回事| 每晚都被弄得嗷嗷叫到高潮| 女性生殖器流出的白浆| av片东京热男人的天堂| 精品久久久精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产亚洲av高清一级| 国产97色在线日韩免费| 中文字幕精品免费在线观看视频| 国产精品香港三级国产av潘金莲| 欧美在线一区亚洲| 国产成人啪精品午夜网站| 亚洲最大成人中文| 亚洲精品久久成人aⅴ小说| av在线天堂中文字幕| 国产精品秋霞免费鲁丝片| 中文字幕久久专区| 欧美一区二区精品小视频在线| 十八禁网站免费在线| 久久久久九九精品影院| 九色国产91popny在线| 中文亚洲av片在线观看爽| 国产精品久久久人人做人人爽| cao死你这个sao货| 成人18禁高潮啪啪吃奶动态图| 一级a爱视频在线免费观看| 久久亚洲精品不卡| 嫁个100分男人电影在线观看| 亚洲第一电影网av| 亚洲精品中文字幕在线视频| 黄色视频不卡| 免费不卡黄色视频| 亚洲一区中文字幕在线| 国产精品香港三级国产av潘金莲| 亚洲精品久久国产高清桃花| 一级毛片女人18水好多| 日韩精品青青久久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 人妻久久中文字幕网| 少妇熟女aⅴ在线视频| 美女大奶头视频| 18禁美女被吸乳视频| 欧美成人免费av一区二区三区| 99国产精品一区二区三区| 亚洲国产精品sss在线观看| 国产一区二区三区在线臀色熟女| 女性生殖器流出的白浆| 999久久久精品免费观看国产| 成人国产一区最新在线观看| 亚洲视频免费观看视频| 亚洲av日韩精品久久久久久密| 免费看十八禁软件| 女警被强在线播放| 极品人妻少妇av视频| 人人澡人人妻人| 亚洲一区二区三区不卡视频| 精品不卡国产一区二区三区| 乱人伦中国视频| 久久精品国产清高在天天线| 黑丝袜美女国产一区| 一边摸一边抽搐一进一小说| 免费在线观看亚洲国产| xxx96com| 欧美精品啪啪一区二区三区| 999精品在线视频| 日本欧美视频一区| 亚洲狠狠婷婷综合久久图片| 精品欧美国产一区二区三| 精品日产1卡2卡| 在线观看舔阴道视频| 午夜影院日韩av| 51午夜福利影视在线观看| 熟女少妇亚洲综合色aaa.| 亚洲色图av天堂| 丰满的人妻完整版| 中文字幕人妻熟女乱码| 国产精品亚洲美女久久久| 美女免费视频网站| 免费搜索国产男女视频| 国产精品一区二区免费欧美| av中文乱码字幕在线| 久久中文字幕一级| 高清在线国产一区| 欧美日韩黄片免| 亚洲精品国产精品久久久不卡| 热99re8久久精品国产| av电影中文网址| av天堂在线播放| 国产一区二区三区在线臀色熟女| 精品久久蜜臀av无| 日日爽夜夜爽网站| 久久人人爽av亚洲精品天堂| 麻豆国产av国片精品| 很黄的视频免费| 午夜久久久在线观看| 久久国产亚洲av麻豆专区| 老司机靠b影院| 久久精品人人爽人人爽视色| 国产精品亚洲av一区麻豆| 亚洲一区中文字幕在线| www.999成人在线观看| 日韩有码中文字幕| 日韩精品中文字幕看吧| 男女床上黄色一级片免费看| 女人精品久久久久毛片| 亚洲三区欧美一区| 久久人妻福利社区极品人妻图片| 成人18禁高潮啪啪吃奶动态图| 12—13女人毛片做爰片一| 久久久久久大精品| 精品日产1卡2卡| 国产亚洲精品久久久久久毛片| 99国产精品免费福利视频| 一进一出抽搐动态| 9热在线视频观看99| 亚洲免费av在线视频| netflix在线观看网站| 亚洲国产精品999在线| 啪啪无遮挡十八禁网站| 黄色毛片三级朝国网站| 久久亚洲精品不卡| 国产成人av教育| 久久精品亚洲熟妇少妇任你| 国产精品,欧美在线| 黄片大片在线免费观看| 精品高清国产在线一区| 丰满的人妻完整版| 国产极品粉嫩免费观看在线| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 亚洲欧洲精品一区二区精品久久久| 欧美亚洲日本最大视频资源| av视频在线观看入口| 国产精品一区二区在线不卡| 在线视频色国产色| 日韩大码丰满熟妇| 又黄又粗又硬又大视频| 亚洲av成人av| 桃色一区二区三区在线观看| 夜夜看夜夜爽夜夜摸| 久久久久久久午夜电影| 亚洲第一电影网av| 午夜影院日韩av| 最近最新免费中文字幕在线| 9191精品国产免费久久| 欧美激情 高清一区二区三区| 18禁黄网站禁片午夜丰满| 精品久久久精品久久久| 欧美黑人欧美精品刺激| 99久久综合精品五月天人人| 日本免费一区二区三区高清不卡 | 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看| 久久这里只有精品19| 亚洲午夜精品一区,二区,三区| 岛国视频午夜一区免费看| 极品人妻少妇av视频| 成年版毛片免费区| 亚洲性夜色夜夜综合| 国产av一区在线观看免费| 成人av一区二区三区在线看| 亚洲欧美一区二区三区黑人| 中文字幕av电影在线播放| 国产真人三级小视频在线观看| 91国产中文字幕| 91九色精品人成在线观看| 国产主播在线观看一区二区| 免费在线观看亚洲国产| 欧美日韩黄片免| 欧美日韩乱码在线| 欧美一级a爱片免费观看看 | 亚洲少妇的诱惑av| tocl精华| 国产乱人伦免费视频| 老汉色av国产亚洲站长工具| √禁漫天堂资源中文www| 一区二区三区高清视频在线| 视频在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 19禁男女啪啪无遮挡网站| 欧美成人免费av一区二区三区| 亚洲精品中文字幕在线视频| 18禁美女被吸乳视频| 人人澡人人妻人| 日韩成人在线观看一区二区三区| 亚洲成av人片免费观看| 成人永久免费在线观看视频| 久久久水蜜桃国产精品网| 亚洲av电影不卡..在线观看| 午夜精品国产一区二区电影| 一本久久中文字幕| 老司机在亚洲福利影院| av在线天堂中文字幕| av天堂久久9| 国产野战对白在线观看| av福利片在线| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 正在播放国产对白刺激| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| 日韩大尺度精品在线看网址 | 怎么达到女性高潮| 在线永久观看黄色视频| 亚洲第一欧美日韩一区二区三区| 久久婷婷成人综合色麻豆| av视频在线观看入口| 黄色毛片三级朝国网站| 日本精品一区二区三区蜜桃| 国产av一区在线观看免费| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 亚洲国产日韩欧美精品在线观看 | 欧美乱妇无乱码| 亚洲自偷自拍图片 自拍| 亚洲av成人av| 成人18禁高潮啪啪吃奶动态图| 亚洲自拍偷在线| 欧美色视频一区免费| 曰老女人黄片| 欧美日韩乱码在线| 9191精品国产免费久久| av有码第一页| 夜夜躁狠狠躁天天躁| 美女午夜性视频免费| 三级毛片av免费| 黄网站色视频无遮挡免费观看| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 男人舔女人下体高潮全视频| 十分钟在线观看高清视频www| 国产99白浆流出| 99国产精品一区二区蜜桃av| 无限看片的www在线观看| 天堂√8在线中文| svipshipincom国产片| 涩涩av久久男人的天堂| 女警被强在线播放| 亚洲成人免费电影在线观看| 一级片免费观看大全| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密| 久久午夜综合久久蜜桃| 国产蜜桃级精品一区二区三区| 国产亚洲欧美98| 12—13女人毛片做爰片一| 中国美女看黄片| 一本大道久久a久久精品| 黄色视频不卡| 国内精品久久久久精免费| 亚洲片人在线观看| 人妻久久中文字幕网| 亚洲伊人色综图| 香蕉国产在线看| av免费在线观看网站| 极品教师在线免费播放| 99久久99久久久精品蜜桃| 深夜精品福利| 国产片内射在线| 美女午夜性视频免费| 亚洲欧美激情综合另类| 神马国产精品三级电影在线观看 | 免费看十八禁软件| 九色亚洲精品在线播放| 一个人观看的视频www高清免费观看 | 波多野结衣高清无吗| 香蕉国产在线看| 国产精品1区2区在线观看.| 免费女性裸体啪啪无遮挡网站| 国产1区2区3区精品| 大型av网站在线播放| 精品国产乱子伦一区二区三区| 欧美黑人精品巨大| 午夜久久久在线观看| 波多野结衣av一区二区av| 可以在线观看的亚洲视频| 亚洲精品在线美女| 亚洲成av人片免费观看| 国产一级毛片七仙女欲春2 | 免费观看精品视频网站| 十八禁网站免费在线| 欧美大码av| 国产高清激情床上av| 久久草成人影院| 国产精品久久久久久亚洲av鲁大| 精品国产一区二区久久| 好男人电影高清在线观看| 如日韩欧美国产精品一区二区三区| 欧美精品亚洲一区二区| 亚洲aⅴ乱码一区二区在线播放 | 在线观看舔阴道视频| 国产精品九九99| 亚洲在线自拍视频| 中文字幕人妻丝袜一区二区| 黑人欧美特级aaaaaa片| 在线免费观看的www视频| 色尼玛亚洲综合影院| 午夜福利欧美成人| 亚洲男人的天堂狠狠| 亚洲国产毛片av蜜桃av| 99久久综合精品五月天人人| 啦啦啦免费观看视频1| 国产成人一区二区三区免费视频网站| 伊人久久大香线蕉亚洲五| 午夜a级毛片| 国产单亲对白刺激| 天天躁狠狠躁夜夜躁狠狠躁| 成年女人毛片免费观看观看9| 18禁观看日本| 操出白浆在线播放| 免费在线观看影片大全网站| av福利片在线| 成人国产一区最新在线观看| 极品人妻少妇av视频| 自线自在国产av| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三区在线| 18禁黄网站禁片午夜丰满| 午夜视频精品福利| 国产麻豆成人av免费视频| 12—13女人毛片做爰片一| 男人操女人黄网站| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影免费在线| 日韩精品青青久久久久久| 日本一区二区免费在线视频| 国产精品影院久久| 国产区一区二久久| 日韩成人在线观看一区二区三区| 婷婷丁香在线五月| 欧美黑人精品巨大| 午夜久久久久精精品| 一进一出好大好爽视频| 国产在线精品亚洲第一网站| 亚洲成av片中文字幕在线观看| 国产在线精品亚洲第一网站| 亚洲精品美女久久av网站| 91老司机精品| 久久久水蜜桃国产精品网| 99精品在免费线老司机午夜| 琪琪午夜伦伦电影理论片6080| 亚洲精品av麻豆狂野| 久久香蕉国产精品| 精品国产国语对白av| 亚洲av电影在线进入| 热re99久久国产66热| 久久香蕉国产精品| 欧美日本视频| 亚洲七黄色美女视频| 亚洲va日本ⅴa欧美va伊人久久| 男女之事视频高清在线观看| 老熟妇乱子伦视频在线观看| 1024视频免费在线观看| 日本黄色视频三级网站网址| 久久香蕉激情| 日韩精品青青久久久久久| 久久这里只有精品19| 亚洲精品在线观看二区| 狂野欧美激情性xxxx| 日本欧美视频一区| 色尼玛亚洲综合影院| 免费av毛片视频| 91大片在线观看| 岛国视频午夜一区免费看| 人人澡人人妻人| 亚洲av成人av| 亚洲av成人一区二区三| 亚洲狠狠婷婷综合久久图片| 日韩国内少妇激情av| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一出视频| cao死你这个sao货| 国产视频一区二区在线看| 18禁裸乳无遮挡免费网站照片 | 人人妻人人澡欧美一区二区 | 久久精品国产清高在天天线| 怎么达到女性高潮| or卡值多少钱| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一码二码三码区别大吗| 亚洲专区国产一区二区| 久久午夜亚洲精品久久| 此物有八面人人有两片| 老司机午夜福利在线观看视频| 国产不卡一卡二| 多毛熟女@视频| 欧美午夜高清在线| 欧美最黄视频在线播放免费| 亚洲性夜色夜夜综合| 老司机深夜福利视频在线观看| 一夜夜www| 欧美日韩精品网址| 两性夫妻黄色片| 日韩免费av在线播放| 无人区码免费观看不卡| 日韩成人在线观看一区二区三区| 多毛熟女@视频| 久久中文看片网| 久久青草综合色| 成人亚洲精品一区在线观看| 不卡av一区二区三区| 久久久久久久久久久久大奶| 亚洲电影在线观看av| 好男人在线观看高清免费视频 | 黄色视频,在线免费观看| 日韩国内少妇激情av| 久久久久久久久久久久大奶| 999久久久精品免费观看国产| 在线观看免费午夜福利视频| 久久人人精品亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久人人做人人爽| 亚洲情色 制服丝袜| 欧美激情极品国产一区二区三区| 国产伦一二天堂av在线观看| 免费人成视频x8x8入口观看| 国产午夜福利久久久久久| 免费在线观看黄色视频的| 欧美日本亚洲视频在线播放| 午夜a级毛片| 女人精品久久久久毛片| 日韩欧美一区视频在线观看| 淫妇啪啪啪对白视频| 色综合站精品国产| www日本在线高清视频| a级毛片在线看网站| 久久精品91蜜桃| 人人妻人人澡人人看| 久久国产乱子伦精品免费另类| 国产激情久久老熟女| 亚洲成人国产一区在线观看| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区黑人| 午夜两性在线视频| 日本一区二区免费在线视频| 国产又爽黄色视频| 国产在线精品亚洲第一网站| 亚洲狠狠婷婷综合久久图片| 精品福利观看| 久久久国产成人精品二区| 午夜福利18| 多毛熟女@视频| www.999成人在线观看| 9191精品国产免费久久| 一个人观看的视频www高清免费观看 | 日本精品一区二区三区蜜桃| 人人妻人人澡人人看| 男女午夜视频在线观看| 国产精品永久免费网站| 久久香蕉国产精品| 色婷婷久久久亚洲欧美| 午夜免费激情av| 成人国产一区最新在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品免费一区二区三区在线| 亚洲国产欧美网| 色播亚洲综合网| 国产一区二区三区视频了| 操美女的视频在线观看| 丰满的人妻完整版| 精品高清国产在线一区| 国产精品久久久久久人妻精品电影| 国产一级毛片七仙女欲春2 | 欧美日韩瑟瑟在线播放| 久久午夜亚洲精品久久| 精品久久久久久,| 亚洲天堂国产精品一区在线| 欧美日韩中文字幕国产精品一区二区三区 | 美女大奶头视频| av天堂久久9| 国产成人精品在线电影| 国产精品1区2区在线观看.| 亚洲一卡2卡3卡4卡5卡精品中文| 美女免费视频网站| 亚洲欧美日韩高清在线视频| 午夜亚洲福利在线播放| 精品一区二区三区视频在线观看免费| 夜夜夜夜夜久久久久| 国产av一区二区精品久久| 国产激情欧美一区二区| 99国产精品一区二区蜜桃av| 免费在线观看影片大全网站| 99久久综合精品五月天人人| www.999成人在线观看| 欧美乱色亚洲激情| 成人手机av| av天堂在线播放| 成人18禁在线播放| 国产精品爽爽va在线观看网站 | 欧美一区二区精品小视频在线| 大码成人一级视频| 老汉色av国产亚洲站长工具| 欧美国产精品va在线观看不卡| 成人手机av| 亚洲成人精品中文字幕电影| 欧美久久黑人一区二区| 少妇裸体淫交视频免费看高清 | 久久青草综合色| 亚洲精品中文字幕一二三四区| 久久久久久免费高清国产稀缺| 最新在线观看一区二区三区| 精品人妻在线不人妻| 淫妇啪啪啪对白视频| 制服丝袜大香蕉在线| 亚洲精品在线美女| 精品久久蜜臀av无| 老汉色av国产亚洲站长工具| 国产精品国产高清国产av| 波多野结衣一区麻豆| 国产在线观看jvid| 啦啦啦韩国在线观看视频| 18禁美女被吸乳视频| 欧美亚洲日本最大视频资源| 老司机福利观看| 黄色视频不卡| 九色亚洲精品在线播放| 亚洲人成伊人成综合网2020| 1024香蕉在线观看| 午夜福利影视在线免费观看| 亚洲成av人片免费观看| 国产又爽黄色视频| 一级毛片精品| 日本 欧美在线| 伊人久久大香线蕉亚洲五| 国产精品永久免费网站| 嫩草影院精品99| 国产精品亚洲一级av第二区| av片东京热男人的天堂| 欧美黑人欧美精品刺激| 757午夜福利合集在线观看| av福利片在线| 午夜福利一区二区在线看| 色播在线永久视频| 桃红色精品国产亚洲av| 在线视频色国产色| 精品国内亚洲2022精品成人| av网站免费在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 天堂影院成人在线观看| 免费观看人在逋| 国产成人欧美| 亚洲avbb在线观看| 90打野战视频偷拍视频| 亚洲人成网站在线播放欧美日韩| 亚洲成a人片在线一区二区| 人人妻人人爽人人添夜夜欢视频| 搞女人的毛片| 欧美日韩一级在线毛片| 国产免费av片在线观看野外av| 亚洲国产日韩欧美精品在线观看 | 久久青草综合色| 久久久久久久久久久久大奶| 国产av在哪里看| 国产成人av激情在线播放| cao死你这个sao货| 国产精品久久久久久亚洲av鲁大| 最近最新中文字幕大全电影3 | 制服诱惑二区| 精品一品国产午夜福利视频| 国产成人精品久久二区二区免费| a在线观看视频网站| 无遮挡黄片免费观看| 啦啦啦观看免费观看视频高清 | 999久久久国产精品视频| 国产高清videossex| 国产亚洲精品久久久久5区| 午夜视频精品福利| 国产人伦9x9x在线观看| 午夜亚洲福利在线播放| 午夜精品国产一区二区电影| 午夜久久久久精精品| 亚洲欧美一区二区三区黑人| 国产成人欧美| 免费久久久久久久精品成人欧美视频| 露出奶头的视频| 国产一级毛片七仙女欲春2 | 国产视频一区二区在线看| 久久草成人影院| 亚洲av日韩精品久久久久久密| 成人特级黄色片久久久久久久| 十分钟在线观看高清视频www| 一二三四社区在线视频社区8| 国产精品98久久久久久宅男小说| 最新在线观看一区二区三区| 日韩三级视频一区二区三区| 女同久久另类99精品国产91| 婷婷丁香在线五月| 国产一区二区三区在线臀色熟女| 亚洲中文字幕一区二区三区有码在线看 | 日韩精品青青久久久久久| 国产精品一区二区免费欧美| 亚洲黑人精品在线| 男女午夜视频在线观看| 日日爽夜夜爽网站|