• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast Scene Reconstruction Based on Improved SLAM

    2019-11-07 03:12:38ZhenlongDuYunMaXiaoliLiandHuiminLu
    Computers Materials&Continua 2019年10期

    Zhenlong Du,Yun MaXiaoli Li and Huimin Lu

    Abstract:Simultaneous location and mapping(SLAM)plays the crucial role in VR/AR application,autonomous robotics navigation,UAV remote control,etc.The traditional SLAM is not good at handle the data acquired by camera with fast movement or severe jittering,and the efficiency need to be improved.The paper proposes an improved SLAM algorithm,which mainly improves the real-time performance of classical SLAM algorithm,applies KDtree for efficient organizing feature points,and accelerates the feature points correspondence building.Moreover,the background map reconstruction thread is optimized,the SLAM parallel computation ability is increased.The color images experiments demonstrate that the improved SLAM algorithm holds better realtime performance than the classical SLAM.

    Keywords:SLAM,thread optimization,scene reconstruction,feature point match.

    1 Introduction

    With the development of virtual reality(VR)/augmented reality(AR)technology and the hardware performance upgrading,more and more VR/AR applications have been involving into our life and bringing the great convenience to modern people.At the same time,VR/AR related technology has attracted the wide and extensive attention,and VR/AR requirements prompt the related investigation forward.Moreover,the scene localization and the mapping generation are required by automatous robotics navigation,it is urgent to capture the external environment information,reconstruct the previously unknown scene in real-time.In the paper the simultaneous localization and mapping(SLAM)[Zhou,Lian,Yang et al.(2018);Zhang,Liu,Dong et al.(2016);Zhang,He,Chen et al.(2016)]algorithm is investigated.

    Although SLAM has made some progresses in recent years,it still encountered some difficulties in practical applications[Cui,McIntosh and Sun(2018)].Till now,SLAM includes MonoSLAM[Davison,Reid,Molton et al.(2007);Bresson,Feraud,Aufrere et al.(2015)],parallel tracking and mapping(PTAM)[Klein and Murray(2007)],largescale direct monocular SLAM(LSD-SLAM)[Engel,Schps and Cremers(2014)],EKFSLAM[Barrau and Bonnabel(2015)],SLAM with RGB-D camera(RGBD-SLAM)[Kerl,Stuckler and Cremers(2015)],these SLAM methods include tracking,depth map estimation and map optimization,three stages.The traditional SLAM is difficult to achieve high performance[Davison,Reid,Molton et al.(2007)],is not good at process camera with fast movement and severe jittering.The powerful chip occurrence improves SLAM performance,furthermore SLAM operates from the offline to online processing.The vision technology and the sensor promotion make the map construction more intuitive,especially the positioning in the previously unknown scene.

    The paper presents an improved SLAM algorithm,which includes the feature point match acceleration based on KDtree,homography plane iterative estimation,and background process optimization for image prefetch,updation and expansion.The presented improved SLAM algorithm can handle camera with fast movement and rapid jittering,and fast reconstruct the prior unknown scene.Compared with the classical ORB-SLAM[Mur-Artal,Montiel and Tardos(2015)]and RGBD-SLAM[Kerl,Stuckler and Cremers(2015)],the improved SLAM algorithm could fast reconstruct the scene,optimize the camera trajectory according to the scene and camera posture,and achieve the lowest RMSE.

    2 Related works

    SLAM technique originally is applied to the autonomous robotics navigation,and it depends on the sensors such as laser range-finders and sonar for rapidly sensing the surrounding environment.Due to the camera holds the advantages of compact,accurate,noninvasive,cheap and ubiquitous,etc.,the vision community has accumulated many achievements on structure-from-motion(SFM),recently sensor based SLAM has moved to the vision based SLAM.

    LSD-SLAM based on monocular vision[Engel,Schps and Cremers(2014)]performs semi-dense mapping on large-scale scene,could construct the camera trajectory,and detect the scale drift when the scene changes significantly.The depth map can be constructed by iterative introducing the keyframe,and the good pixels are selected for modeling both the depth restoration and the depth map updating.LSD-SLAM achieves the consistent map via the constraint optimization.In large-scale environment,LSDSLAM achieves the good semi-dense global consistency mapping,moreover it can run on CPU.Semi-direct visual odometry(SVO)[Forster,Pizzoli and Scaramuzza(2014)]directly on pixel intensities,estimates 3D points with the probabilistic mapping method that explicitly models outlier measurements,greatly eliminates the computation costs of feature point matching,can handle images at high rate acquisition.

    Kalman filter is generally used for estimating the system state with maximum likelihood,it is employed for the scene point prediction in EKF-SLAM[Barrau and Bonnabel(2015)].EKF-SLAM inevitability includes the error accumulation,when the current state prediction is beyond the threshold,the system could not achieve the real-time performance.

    PTAM[Klein and Murray(2007)]is a keyframe-based monocular parallel SLAM algorithm,it adopts the two parallel threads,foreground threads mainly captures and matches the feature points and estimates the camera posture,while the background one mainly performs the map extension.FAST(features from accelerated segment testing)feature descriptor[Rosten,Porter and Drummond(2010)]is applied to extract the feature points within the region.The selected keyframes are cached in the keyframe queue,and the mapping thread only extracts the feature points and reconstructs the 3D points from the keyframe queue.The camera tracking thread performs the feature points match,optimizes the camera posture of current frame according to the feature points correspondence.

    3 Fast scene reconstruction via the improved SLAM

    The improved SLAM adopts the parallel framework,the foreground thread manages the feature point match optimization and the local map expansion,the background thread performs the loop detection and improves the system efficiency.The improved SLAM algorithm includes the feature point match acceleration via KDtree,homography plane determination,and background thread optimization,mainly concentrates on the SLAM execution performance improvement.

    3.1 Perspective transformation

    3D pointP=[xw,yw,zw,1]Tis transformed to 2D point[xc,yc,zc,1]Tby the acquisition device.Generally,operator takes the images with camera,mobile or Kinect.As Fig.1 illustration,camera captures multiple 3D pointsXp={P1,P2,P3,…}within object,and the camera performs continuous acquisition from multiple angles,such as,camera posturesC1,C2,C3,….SLAM infers the camera position and posture from the successive images via multi-view geometry principle.The camera pose is composed of a 3×3 rotation matrix Rnand a translation vector tn.P=[xw,yw,zw,1]Tis transformed from the world coordinate system to the local camera coordinate system as Eq.(1).

    Figure 1:The camera takes object with multiple postures

    Eq.(1)is the homogeneous coordinate representation of perspective transformation.Eq.(2)is the nonhomogeneous coordinate representation of Eq.(1).

    In which Kis the camera parameter matrix,Riis the rotation matrix at postureCi,tiis the camera translational vector atis a function as.

    3.2 Feature points match acceleration

    Points match[Gao,Xia,Zhang et al.(2018)]plays an important role in SLAM,it searches the matched points among images for determining the camera posture and predicting the map expansion.ORB(Oriented FAST and Rotated BRIEF)[Mur-Artal,Montiel and Tardos(2015)]feature descriptor bears the strong feature extraction and representation ability,it is applied in SLAM for the feature points match.SLAM need handle gigantic feature points and quickly find the matched feature points,then,the search strategy is crucial for SLAM.ORB-SLAM need artificially set the threshold for feature points match.If the threshold is set inappropriately,the number of matched points is readily influenced,reduces the matching accuracy.In the paper,KDtree is employed for accelerating the feature points match.

    ORB-SLAM uses the brute force method for matching the feature points,as shown in Fig.2,the computation costs is heavy and the real-time performance is difficult guaranteed.Inspired by the work[Forster,Carlone,Dellaert et al.(2017)],KDtree is exploited for improving SLAM execution efficiency.Additionally,for further improving the feature points match efficiency,region of interest(ROI)is utilized,it reduces the region with few feature points,as Fig.3 depiction.

    Figure 2:Conventional ORB-SLAM feature points match

    KDtree includes the search tree building and the search speeding strategy.The search tree building establishes the search space based on the distance measurement on the feature points in imageItand imageIt+1.Supposemias the base point,KDtree searches the matched feature points under the measurement criteria.The search tree building constructs the candidate points for each feature point.KDtree has the special search speeding strategy,for any pointmiinIt,it starts from the tree root node,firstly locates the starting branch based on the points similarity measurement,then accesses the nodes of this branch for getting the mostly matched feature point.Meanwhile,backtracing is used to determine whether the branch holds the closer feature point.If the backtrace time is less than the threshold,the branch with the smallest distance is selected from the queue as points closer tomi.The improved SLAM feature points correspondence procedure constructs matched feature point inIt+1for any feature point inmiinIt.

    Figure 3:Rich feature points region determination by ROI

    Figure 4:Feature points correspondence building by KDtree

    Fig.4 demonstrates that the improved feature points approach can build the feature points correspondence,and the used feature point number is smaller than the one of ORB-SLAM.

    3.3 Homography plane determination

    When feature points fall within the same plane or the parallax of two images is small,the camera posture is restored with aid of the homography plane.There exist some planar planes(such as tables,walls,etc.)in the indoor scenario.

    Figure 5:Homography plane

    As the Fig.5 showing,feature pointsm1=(u1, v1,1) Tandm2=(u2, v2,1) Tseparately on the imageItandIt+1both fall within the planeγ,which follow the equation.

    In which K is the camera intrinsic parameter matrix,R is the rotation matrix fromIttoIt+1,t is the translation vector fromIttoIt+1.

    Assume the homography matrixH3×3stands for,then Eq.(4)has the following form.

    His decided by Eq.(6)and Eq.(7).The improved SLAM exploits the homography feature tracking method for adapting the camera with strong rotation and fast movement.Homography plane estimation is heavy computation procedure,furthermore the homography evaluation of any image to current one also bears the high computation.In the paper for improving SLAM efficiency,the keyframeFkis served for the agent of prefetch images,and the homography matrix between keyframeFkand current imageIjis calculated,and it is expressed as the follow.

    In which Rjand tjare separately the rotation matrix and translation vector ofIj,represent the homography plane fromFktoIj.

    3.4 Background thread optimization

    Background thread plays the important role in SLAM,it manages the region prefetch,updation and expansion.The traditional SLAM could generate a rather good result from the stable capture.For the inexperienced or novice operator sometimes manipulates SLAM,or the strong lens rotation and fast movement often occur,these captured data causes SLAM to lose keyframes or cannot achieve the matched feature points.At the same time,there exists some difference between the calculated feature point and the real point,the camera posture and the actual gesture.Latif et al.[Latif,Cadena and Neira(2013)]proposed a camera pose optimization method to correct the scale drift at the loop procedure.When the camera moves smoothly,a constant velocity motion model can be used to predict the camera pose location.

    Object pointPjis projected to the pixelxjinIiunder cameraCi,this perspective transformation is represented byxj=F(Ci,Pj).In the paper,only the matched feature points are considered for being processed,thereafterxirepresents any feature point in any imageIi,it is the 2D point ofPj.

    stands for all feature points to its scene positions the in all images,Eq.(9)attempts to achieve all feature points corresponding to its scene position as close as possible,it is employed for background thread optimization for scene reconstruction.

    In whichδhis the Huber loss function.Eq.(10)is optimized for scene prefetch by homography transformation.

    The improved SLAM foreground thread calculates the local camera posture.If a certain amount of error is below a certain threshold,the prediction based on the prior information might cause the error accumulation.Although background thread optimization can maximize a posterior error,it does not well eliminate this kind of error.

    4 Experiments

    The improved SLAM algorithm proposed by the paper is implemented on the personal laptop with Intel(R)Core(TM)i5-6500 CPU@2.5 GHz,8G RAM.The experiment deployment OS is 64-bit Ubuntu 16.04.The discussed algorithm runs online and handles the color images which are captured by the handhold Kinect within the indoor environment.

    The routine hosted by the improved algorithm is robot operating system(ROS),which is open source code maintained by Open Source Robotics Foundation Inc.ROS is a flexible framework for developing robot related software,is a collection of cross-platform tools,libraries,and conventions that aim to simplify the task of handling complex and robust robot behavior.ROS execution threads cover the foreground and background threads,the foreground thread mainly captures and matches the feature points and estimates the camera posture through the homography tracking,while the background one mainly performs map extension,system loop detection and bundle adjustment(BA)[Vo,Narasimhan and Sheikh(2016)]optimization on the data obtained by the foreground thread.

    The traditional SLAM prefers the gray images for the performance consideration and requires to input the gray images.Direct operating on color images brings on the more process data,requires the heavy computational cost,the interaction performance is influenced too.However,in the experiment the algorithm directly operates the color images,the entire data flow also is based on color images.Meanwhile the frame rate is 20 frames per second,the algorithm real-time performance is improved than the conventional SLAM.

    In the paper the improved feature points match module is based on KDtree,it is used to rapidly match the feature points across frames via hierarchical manner with minimal matching error,greatly assures the real-time capability.Fig.6 is the feature points match result by the improved SLAM algorithm.

    Figure 6:Feature points obtained by the improved SLAM algorithm

    For overall evaluating the algorithm performance,the videos involving rapid movement and strong rotation acquired by Kinect are testified by the experiment.The improved SLAM is able to process video with depth,as shown in Fig.8,and the indoor scene is reconstructed with a sparse point cloud,and the red posture describes the keyframe location.

    Figure 7:Scene layout

    Figure 8:Camera trajectory optimization

    Fig.7 describes the experiment scene,which is a lab and includes the workbench,chair,bookcase,bookshelf and electric fan,the scene length is 15310 mm and the scene width is 15200 mm,the door is at the right wall and its width is 1200 mm.In this scene,all camera postures constitute the camera trajectory which is shown by blue sign,and the current camera posture is depicted by red symbol.

    Within the same scene as Fig.7,Fig.8 shows the camera trajectory optimization result,Fig.8(a)gives the camera trajectory without optimization,while Fig.8(b)demonstrates the camera trajectory with optimization.From camera trajectory comparison within the two brown rectangles in Fig.8(a)and Fig.8(b),it observed that the camera trajectory without optimization is rough,while the camera trajectory with optimization is more compact.

    Fig.9 shows the reconstructed scene with 3D point cloud,Fig.9(a)is the viewed from 45° view,and Fig.9(b)is the viewed from right top.From two views of Fig.9,it can be observed that the workbench,bookcase,bookshelf and chair are well reconstructed by the improved SLAM algorithm.

    Figure 9:3D point cloud of reconstructed scene

    Four data sets,Fr1/360,Fr1/floorandFr1/deskand one real-timeindoordata Indoor downloaded from https://vision.in.tum.de/data/datasets/ are employed for evaluating the algorithm performance amongORB-SLAM,RGBD-SLAMand the improved SLAM by the paper.RMSEis used as the comparison measure in Tab.1,it is observed that the improved SLAM approach achieves the lowest RMSE thanORB-SLAMandRGBDSLAMin four datasets.Additionally,Tab.1 shows that the proposed algorithm is more accurate than the originalORB-SLAMalgorithm in positioning accuracy,it can fast restore depth map thanRGBD-SLAMalgorithm.The generated depth map by the improved SLAM algorithm is accurate and satisfies the real-time object insertion requirement,as Fig.10 illustration.

    Table 1:Algorithms performance comparison

    Figure 10:Object real-time introduction

    5 Conclusion

    There exists monocular,stereo,RGB-D and ROS SLAM,these SLAM algorithms have been extensively investigated,and they can run on PC,mobile and robotics,three platforms.However,they still have the performance limitations,it is urgent for increasing SLAM real-time performance.With more types sensor involved by SLAM,more novel vision methods applied to SLAM,SLAM would be introduced and improved for handling more complicated scenario.

    In the paper an improved SLAM algorithm is proposed in which KDtree is introduced for accelerating the feature points match,therefore the efficiency of depth map acquisition and the map reconstruction are improved.Moreover,background map expansion thread is optimized and SLAM performance is increased via parallel threads.Additionally,the improved SLAM method processes color videos,while the classical SLAM deals with gray videos.

    With the big image/video emergence,such as,4K,SLAM confronts to process much bigger images/videos,and its efficiency and performance improvement need to be investigated further.

    Acknowledgement:This work is supported by the National Natural Science Foundation of China(Grant No.61672279),Project of “Six Talents Peak” in Jiangsu(2012-WLW-023),and Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,China(2016491411).

    日韩欧美一区视频在线观看| 人人妻人人澡人人看| av有码第一页| 一级片'在线观看视频| 丝瓜视频免费看黄片| 精品99又大又爽又粗少妇毛片| 国产老妇伦熟女老妇高清| 亚洲成av片中文字幕在线观看 | 日韩视频在线欧美| 成年动漫av网址| 亚洲精品一二三| 成人毛片60女人毛片免费| 亚洲伊人久久精品综合| 又粗又硬又长又爽又黄的视频| 免费大片18禁| 欧美人与性动交α欧美软件 | 国产精品无大码| 国产一区亚洲一区在线观看| 中文乱码字字幕精品一区二区三区| 国产成人欧美| 免费大片黄手机在线观看| 欧美精品一区二区免费开放| 亚洲精品av麻豆狂野| 国产精品久久久久久精品古装| 亚洲精华国产精华液的使用体验| 亚洲精品,欧美精品| 欧美精品av麻豆av| 婷婷成人精品国产| 久久久久久久久久久免费av| 22中文网久久字幕| 国产精品欧美亚洲77777| 在现免费观看毛片| 日韩欧美一区视频在线观看| 日产精品乱码卡一卡2卡三| 一级毛片电影观看| 少妇 在线观看| 人妻 亚洲 视频| 国产福利在线免费观看视频| 国产精品欧美亚洲77777| 国产精品一区www在线观看| 国产免费又黄又爽又色| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久 | 国产探花极品一区二区| 欧美bdsm另类| 少妇猛男粗大的猛烈进出视频| 国产无遮挡羞羞视频在线观看| 国产又色又爽无遮挡免| 边亲边吃奶的免费视频| 丰满迷人的少妇在线观看| 日韩一区二区三区影片| 在线精品无人区一区二区三| 国产精品秋霞免费鲁丝片| 国产1区2区3区精品| 国产精品久久久久久精品古装| 深夜精品福利| 精品国产一区二区久久| 中文字幕精品免费在线观看视频 | 国产视频首页在线观看| 婷婷色av中文字幕| 久久精品人人爽人人爽视色| 久久久久视频综合| 欧美成人午夜精品| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到 | 欧美精品国产亚洲| 少妇人妻精品综合一区二区| 国产一区二区三区综合在线观看 | 巨乳人妻的诱惑在线观看| 十八禁网站网址无遮挡| 这个男人来自地球电影免费观看 | 一边亲一边摸免费视频| 一二三四在线观看免费中文在 | 啦啦啦在线观看免费高清www| 久久精品国产综合久久久 | 有码 亚洲区| 黄色视频在线播放观看不卡| 人人妻人人爽人人添夜夜欢视频| 亚洲伊人久久精品综合| 久久久久精品性色| 欧美+日韩+精品| 免费观看a级毛片全部| 亚洲色图综合在线观看| 亚洲国产精品sss在线观看 | 日本一区二区免费在线视频| 欧美性长视频在线观看| 国产91精品成人一区二区三区| 麻豆av在线久日| 两个人看的免费小视频| 国产不卡一卡二| 亚洲中文字幕日韩| 国产无遮挡羞羞视频在线观看| 欧美 日韩 精品 国产| 日韩精品免费视频一区二区三区| 香蕉丝袜av| 国产熟女午夜一区二区三区| 久久久久视频综合| netflix在线观看网站| 丰满饥渴人妻一区二区三| 亚洲精品在线观看二区| 亚洲国产看品久久| 欧美日本中文国产一区发布| 免费观看人在逋| 国产欧美日韩一区二区精品| 成人三级做爰电影| 人人澡人人妻人| 久热爱精品视频在线9| 在线视频色国产色| 宅男免费午夜| 51午夜福利影视在线观看| 十分钟在线观看高清视频www| 啦啦啦视频在线资源免费观看| 亚洲专区字幕在线| 国产亚洲精品久久久久久毛片 | 在线观看免费午夜福利视频| 亚洲精品国产一区二区精华液| 国产精品乱码一区二三区的特点 | 午夜久久久在线观看| 曰老女人黄片| 悠悠久久av| 午夜福利一区二区在线看| 叶爱在线成人免费视频播放| 老司机午夜十八禁免费视频| 黄色毛片三级朝国网站| 91字幕亚洲| 亚洲成av片中文字幕在线观看| 丝袜人妻中文字幕| 99久久综合精品五月天人人| 亚洲专区字幕在线| 嫩草影视91久久| 久久久国产精品麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品av麻豆av| 9热在线视频观看99| 日韩免费av在线播放| 高清视频免费观看一区二区| 久久久久国内视频| av网站在线播放免费| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩欧美一区视频在线观看| 99热只有精品国产| 成在线人永久免费视频| 久久亚洲真实| 久久久久国内视频| aaaaa片日本免费| 大片电影免费在线观看免费| 成人影院久久| 久久国产亚洲av麻豆专区| 国产精品乱码一区二三区的特点 | 可以免费在线观看a视频的电影网站| 99精品在免费线老司机午夜| 男人舔女人的私密视频| 亚洲av熟女| 亚洲情色 制服丝袜| 在线观看免费视频日本深夜| 久热爱精品视频在线9| 久久久国产成人免费| 国产精品 国内视频| 亚洲五月天丁香| 黄片大片在线免费观看| 在线观看日韩欧美| 可以免费在线观看a视频的电影网站| 欧美精品av麻豆av| 咕卡用的链子| 黄色成人免费大全| www.自偷自拍.com| 他把我摸到了高潮在线观看| 欧美激情高清一区二区三区| 久久午夜亚洲精品久久| 欧美日韩瑟瑟在线播放| 日本精品一区二区三区蜜桃| 久久草成人影院| 亚洲精品成人av观看孕妇| 啦啦啦 在线观看视频| 人人妻人人澡人人看| 欧美激情久久久久久爽电影 | 精品电影一区二区在线| 亚洲精品自拍成人| 精品高清国产在线一区| 一区福利在线观看| 国产精品秋霞免费鲁丝片| 美女国产高潮福利片在线看| 人人妻人人澡人人爽人人夜夜| 成年女人毛片免费观看观看9 | 久久国产精品大桥未久av| www.精华液| 999精品在线视频| 香蕉丝袜av| 欧美精品av麻豆av| 精品人妻1区二区| 亚洲五月天丁香| 久久 成人 亚洲| 国产xxxxx性猛交| 国产精品偷伦视频观看了| 欧美乱码精品一区二区三区| 80岁老熟妇乱子伦牲交| 69精品国产乱码久久久| 国产精品99久久99久久久不卡| 日韩三级视频一区二区三区| svipshipincom国产片| 在线观看www视频免费| 午夜福利在线免费观看网站| 久久人妻av系列| 女人高潮潮喷娇喘18禁视频| tocl精华| 欧美不卡视频在线免费观看 | 一进一出抽搐动态| 久热爱精品视频在线9| 国产一区二区激情短视频| 成人三级做爰电影| 国产日韩欧美亚洲二区| 男人操女人黄网站| 亚洲五月色婷婷综合| 久久久国产精品麻豆| 成人18禁在线播放| 亚洲av成人不卡在线观看播放网| 国产精品偷伦视频观看了| 99久久99久久久精品蜜桃| 一区二区日韩欧美中文字幕| 女人精品久久久久毛片| 大型黄色视频在线免费观看| 午夜福利在线观看吧| 看片在线看免费视频| 精品国产一区二区三区四区第35| 极品人妻少妇av视频| 国产精品亚洲一级av第二区| 亚洲国产精品一区二区三区在线| 国精品久久久久久国模美| 女人高潮潮喷娇喘18禁视频| 久9热在线精品视频| 国产成+人综合+亚洲专区| 人人妻人人爽人人添夜夜欢视频| 法律面前人人平等表现在哪些方面| 中文字幕制服av| 国产精品 国内视频| netflix在线观看网站| 久久中文看片网| 最新在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 国产精品久久久久久人妻精品电影| 亚洲欧美日韩高清在线视频| 一a级毛片在线观看| 99精品久久久久人妻精品| 9热在线视频观看99| 国产免费现黄频在线看| www.熟女人妻精品国产| 日韩 欧美 亚洲 中文字幕| 别揉我奶头~嗯~啊~动态视频| 欧美激情久久久久久爽电影 | 欧美激情 高清一区二区三区| 最新在线观看一区二区三区| 丝瓜视频免费看黄片| 久久久久国内视频| 成年版毛片免费区| 狠狠婷婷综合久久久久久88av| 亚洲精品久久午夜乱码| 另类亚洲欧美激情| 亚洲avbb在线观看| 在线观看一区二区三区激情| 精品无人区乱码1区二区| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 欧美日韩瑟瑟在线播放| 成人亚洲精品一区在线观看| 国产日韩一区二区三区精品不卡| 国产xxxxx性猛交| 精品一区二区三区四区五区乱码| 欧美日韩亚洲高清精品| 制服诱惑二区| 一区二区三区激情视频| 男女下面插进去视频免费观看| 啦啦啦视频在线资源免费观看| 另类亚洲欧美激情| 多毛熟女@视频| 波多野结衣av一区二区av| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人午夜精品| 午夜福利在线观看吧| 成人永久免费在线观看视频| 精品视频人人做人人爽| 国产亚洲精品久久久久5区| 久久久国产欧美日韩av| 国产av一区二区精品久久| 男人操女人黄网站| 国产免费男女视频| 两个人免费观看高清视频| 欧美精品一区二区免费开放| 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 亚洲成av片中文字幕在线观看| 女人精品久久久久毛片| 欧美国产精品va在线观看不卡| 村上凉子中文字幕在线| 国产三级黄色录像| 91国产中文字幕| 精品久久久久久久久久免费视频 | 精品一区二区三区视频在线观看免费 | 国产亚洲精品久久久久久毛片 | 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 别揉我奶头~嗯~啊~动态视频| 成年人午夜在线观看视频| 亚洲人成77777在线视频| 黄片播放在线免费| avwww免费| 久久久久久亚洲精品国产蜜桃av| av天堂在线播放| 午夜精品久久久久久毛片777| 亚洲欧美激情在线| 国产黄色免费在线视频| 下体分泌物呈黄色| 久久99一区二区三区| 午夜日韩欧美国产| 90打野战视频偷拍视频| 成人精品一区二区免费| 国产精品.久久久| 亚洲在线自拍视频| 中文字幕人妻丝袜一区二区| 黄色a级毛片大全视频| 久久狼人影院| 免费久久久久久久精品成人欧美视频| 久久狼人影院| 国产激情久久老熟女| 欧美午夜高清在线| 天天操日日干夜夜撸| 精品少妇久久久久久888优播| 精品久久久久久,| 两性夫妻黄色片| 91在线观看av| 亚洲av美国av| 国产区一区二久久| 999久久久精品免费观看国产| 久久人妻熟女aⅴ| 91老司机精品| 成人国产一区最新在线观看| 亚洲精华国产精华精| 精品国内亚洲2022精品成人 | 国产精品久久久人人做人人爽| 极品人妻少妇av视频| 天天躁夜夜躁狠狠躁躁| 无人区码免费观看不卡| 乱人伦中国视频| 中文字幕人妻熟女乱码| 欧美 日韩 精品 国产| 亚洲五月婷婷丁香| 国产无遮挡羞羞视频在线观看| 高清毛片免费观看视频网站 | 嫩草影视91久久| 国产欧美日韩一区二区精品| 午夜视频精品福利| 麻豆国产av国片精品| 999久久久精品免费观看国产| 母亲3免费完整高清在线观看| 国产免费男女视频| 国产亚洲精品久久久久5区| 亚洲欧美日韩高清在线视频| 成年人免费黄色播放视频| 午夜免费鲁丝| 亚洲精品国产精品久久久不卡| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区综合在线观看| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| √禁漫天堂资源中文www| 巨乳人妻的诱惑在线观看| 国产单亲对白刺激| 精品国产一区二区三区四区第35| 法律面前人人平等表现在哪些方面| 国产精品香港三级国产av潘金莲| 国产男女内射视频| 亚洲片人在线观看| av一本久久久久| 丰满的人妻完整版| 国产精品一区二区免费欧美| 少妇被粗大的猛进出69影院| 国产精品永久免费网站| 亚洲,欧美精品.| 久久人妻av系列| 精品乱码久久久久久99久播| 欧美久久黑人一区二区| 亚洲久久久国产精品| 91老司机精品| 国产三级黄色录像| 久久精品国产综合久久久| 大陆偷拍与自拍| 少妇猛男粗大的猛烈进出视频| 高清视频免费观看一区二区| 怎么达到女性高潮| 国产精品.久久久| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 好看av亚洲va欧美ⅴa在| 久久人妻福利社区极品人妻图片| 国产精品久久久久成人av| 欧美激情高清一区二区三区| 一边摸一边抽搐一进一出视频| 久久精品国产亚洲av高清一级| 无限看片的www在线观看| 少妇裸体淫交视频免费看高清 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品中文字幕一二三四区| 色婷婷久久久亚洲欧美| 天天操日日干夜夜撸| 成年版毛片免费区| 桃红色精品国产亚洲av| 身体一侧抽搐| 三级毛片av免费| 久久精品国产a三级三级三级| 色婷婷av一区二区三区视频| 欧美在线黄色| 久久ye,这里只有精品| 在线免费观看的www视频| 丰满迷人的少妇在线观看| 日韩欧美三级三区| 黄色毛片三级朝国网站| 久久人妻福利社区极品人妻图片| 久久久久国产精品人妻aⅴ院 | 亚洲熟女毛片儿| 亚洲色图 男人天堂 中文字幕| 在线观看www视频免费| 国产熟女午夜一区二区三区| 99国产极品粉嫩在线观看| 操美女的视频在线观看| 国产不卡一卡二| 色尼玛亚洲综合影院| 在线免费观看的www视频| 久久青草综合色| 久久久国产精品麻豆| 好看av亚洲va欧美ⅴa在| а√天堂www在线а√下载 | 国产精品秋霞免费鲁丝片| 亚洲少妇的诱惑av| 国产成人欧美在线观看 | 精品一区二区三区av网在线观看| 精品人妻熟女毛片av久久网站| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 一本大道久久a久久精品| 久久久久久久精品吃奶| 亚洲欧美激情在线| 黄色片一级片一级黄色片| 新久久久久国产一级毛片| 国产男女超爽视频在线观看| 精品久久久精品久久久| 夜夜爽天天搞| 国产99白浆流出| 精品熟女少妇八av免费久了| 精品久久久久久,| 国产激情久久老熟女| 热99久久久久精品小说推荐| 久久青草综合色| 久久久水蜜桃国产精品网| 成人影院久久| 两个人免费观看高清视频| 热99re8久久精品国产| 国内久久婷婷六月综合欲色啪| 国产男靠女视频免费网站| 99热网站在线观看| 国产亚洲精品第一综合不卡| 免费不卡黄色视频| 乱人伦中国视频| 三级毛片av免费| 久久人人97超碰香蕉20202| 免费观看a级毛片全部| 亚洲三区欧美一区| 黄片大片在线免费观看| 黄网站色视频无遮挡免费观看| 国产成人影院久久av| 99国产精品一区二区三区| 色94色欧美一区二区| 国产亚洲精品一区二区www | 老司机在亚洲福利影院| 青草久久国产| 国产精品影院久久| 国产成人啪精品午夜网站| 99精品欧美一区二区三区四区| 一区二区三区国产精品乱码| 久久久久久久精品吃奶| 亚洲熟女毛片儿| 国产欧美日韩综合在线一区二区| 免费少妇av软件| 91大片在线观看| 国产欧美亚洲国产| 热99国产精品久久久久久7| 久久精品成人免费网站| 中文字幕制服av| 久久久久视频综合| 亚洲,欧美精品.| 丝袜美足系列| 亚洲国产欧美一区二区综合| 999精品在线视频| 亚洲免费av在线视频| 黄色女人牲交| 男男h啪啪无遮挡| 亚洲一码二码三码区别大吗| 国产精品久久久久久精品古装| 99久久精品国产亚洲精品| 成年动漫av网址| 精品国产乱子伦一区二区三区| 大陆偷拍与自拍| 亚洲欧美精品综合一区二区三区| 在线观看日韩欧美| 在线观看一区二区三区激情| 亚洲精品美女久久久久99蜜臀| 咕卡用的链子| 麻豆av在线久日| 亚洲专区中文字幕在线| 亚洲avbb在线观看| 19禁男女啪啪无遮挡网站| 中文字幕精品免费在线观看视频| 欧美日韩成人在线一区二区| av中文乱码字幕在线| 国内久久婷婷六月综合欲色啪| 岛国毛片在线播放| 一边摸一边抽搐一进一出视频| 如日韩欧美国产精品一区二区三区| videos熟女内射| 男女高潮啪啪啪动态图| 久久香蕉国产精品| 老熟妇乱子伦视频在线观看| 欧美日韩视频精品一区| 在线视频色国产色| 精品一区二区三区av网在线观看| 欧美日韩亚洲综合一区二区三区_| 麻豆成人av在线观看| 99久久国产精品久久久| 精品视频人人做人人爽| 一级毛片精品| 中文字幕另类日韩欧美亚洲嫩草| 一级a爱视频在线免费观看| 18禁黄网站禁片午夜丰满| tube8黄色片| 久久久久久久久免费视频了| 狠狠婷婷综合久久久久久88av| 日本黄色视频三级网站网址 | 午夜免费观看网址| 91在线观看av| 欧美亚洲 丝袜 人妻 在线| 亚洲专区中文字幕在线| 色综合欧美亚洲国产小说| 美女高潮喷水抽搐中文字幕| 无限看片的www在线观看| 在线观看免费日韩欧美大片| 久久国产乱子伦精品免费另类| xxx96com| 男女之事视频高清在线观看| 亚洲精品在线美女| 亚洲第一欧美日韩一区二区三区| 高清视频免费观看一区二区| 不卡av一区二区三区| 久久午夜亚洲精品久久| 巨乳人妻的诱惑在线观看| 久久青草综合色| 国产成人精品无人区| 成人av一区二区三区在线看| 亚洲国产中文字幕在线视频| 成人亚洲精品一区在线观看| 亚洲五月色婷婷综合| 日韩一卡2卡3卡4卡2021年| 一区福利在线观看| 免费一级毛片在线播放高清视频 | 18禁美女被吸乳视频| 欧美亚洲日本最大视频资源| 自拍欧美九色日韩亚洲蝌蚪91| 欧美黑人欧美精品刺激| 老司机亚洲免费影院| 久久午夜亚洲精品久久| 极品少妇高潮喷水抽搐| 国产精品一区二区免费欧美| 久久精品国产亚洲av高清一级| 12—13女人毛片做爰片一| 免费久久久久久久精品成人欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 国内毛片毛片毛片毛片毛片| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久电影网| 国产91精品成人一区二区三区| 久久精品亚洲精品国产色婷小说| 制服诱惑二区| 久久狼人影院| 丝袜美足系列| 国产精华一区二区三区| 国产又爽黄色视频| 91精品国产国语对白视频| 免费看十八禁软件| 国产日韩欧美亚洲二区| 我的亚洲天堂| 亚洲一码二码三码区别大吗| 好男人电影高清在线观看| 伦理电影免费视频| 香蕉丝袜av| 成人av一区二区三区在线看| 色尼玛亚洲综合影院| 久久中文字幕人妻熟女| 国产乱人伦免费视频| 99久久精品国产亚洲精品| www.999成人在线观看| 美女国产高潮福利片在线看| 精品久久久久久电影网| 欧美激情 高清一区二区三区| 国产精品乱码一区二三区的特点 | 亚洲五月婷婷丁香| 国产精品久久久av美女十八| 国产成人免费无遮挡视频| 超色免费av| 午夜福利欧美成人| 午夜91福利影院| 午夜精品在线福利| 久久精品国产亚洲av香蕉五月 | 久久久久国内视频| 免费少妇av软件| 99久久99久久久精品蜜桃| 欧美色视频一区免费| 他把我摸到了高潮在线观看| 亚洲va日本ⅴa欧美va伊人久久|