• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast Scene Reconstruction Based on Improved SLAM

    2019-11-07 03:12:38ZhenlongDuYunMaXiaoliLiandHuiminLu
    Computers Materials&Continua 2019年10期

    Zhenlong Du,Yun MaXiaoli Li and Huimin Lu

    Abstract:Simultaneous location and mapping(SLAM)plays the crucial role in VR/AR application,autonomous robotics navigation,UAV remote control,etc.The traditional SLAM is not good at handle the data acquired by camera with fast movement or severe jittering,and the efficiency need to be improved.The paper proposes an improved SLAM algorithm,which mainly improves the real-time performance of classical SLAM algorithm,applies KDtree for efficient organizing feature points,and accelerates the feature points correspondence building.Moreover,the background map reconstruction thread is optimized,the SLAM parallel computation ability is increased.The color images experiments demonstrate that the improved SLAM algorithm holds better realtime performance than the classical SLAM.

    Keywords:SLAM,thread optimization,scene reconstruction,feature point match.

    1 Introduction

    With the development of virtual reality(VR)/augmented reality(AR)technology and the hardware performance upgrading,more and more VR/AR applications have been involving into our life and bringing the great convenience to modern people.At the same time,VR/AR related technology has attracted the wide and extensive attention,and VR/AR requirements prompt the related investigation forward.Moreover,the scene localization and the mapping generation are required by automatous robotics navigation,it is urgent to capture the external environment information,reconstruct the previously unknown scene in real-time.In the paper the simultaneous localization and mapping(SLAM)[Zhou,Lian,Yang et al.(2018);Zhang,Liu,Dong et al.(2016);Zhang,He,Chen et al.(2016)]algorithm is investigated.

    Although SLAM has made some progresses in recent years,it still encountered some difficulties in practical applications[Cui,McIntosh and Sun(2018)].Till now,SLAM includes MonoSLAM[Davison,Reid,Molton et al.(2007);Bresson,Feraud,Aufrere et al.(2015)],parallel tracking and mapping(PTAM)[Klein and Murray(2007)],largescale direct monocular SLAM(LSD-SLAM)[Engel,Schps and Cremers(2014)],EKFSLAM[Barrau and Bonnabel(2015)],SLAM with RGB-D camera(RGBD-SLAM)[Kerl,Stuckler and Cremers(2015)],these SLAM methods include tracking,depth map estimation and map optimization,three stages.The traditional SLAM is difficult to achieve high performance[Davison,Reid,Molton et al.(2007)],is not good at process camera with fast movement and severe jittering.The powerful chip occurrence improves SLAM performance,furthermore SLAM operates from the offline to online processing.The vision technology and the sensor promotion make the map construction more intuitive,especially the positioning in the previously unknown scene.

    The paper presents an improved SLAM algorithm,which includes the feature point match acceleration based on KDtree,homography plane iterative estimation,and background process optimization for image prefetch,updation and expansion.The presented improved SLAM algorithm can handle camera with fast movement and rapid jittering,and fast reconstruct the prior unknown scene.Compared with the classical ORB-SLAM[Mur-Artal,Montiel and Tardos(2015)]and RGBD-SLAM[Kerl,Stuckler and Cremers(2015)],the improved SLAM algorithm could fast reconstruct the scene,optimize the camera trajectory according to the scene and camera posture,and achieve the lowest RMSE.

    2 Related works

    SLAM technique originally is applied to the autonomous robotics navigation,and it depends on the sensors such as laser range-finders and sonar for rapidly sensing the surrounding environment.Due to the camera holds the advantages of compact,accurate,noninvasive,cheap and ubiquitous,etc.,the vision community has accumulated many achievements on structure-from-motion(SFM),recently sensor based SLAM has moved to the vision based SLAM.

    LSD-SLAM based on monocular vision[Engel,Schps and Cremers(2014)]performs semi-dense mapping on large-scale scene,could construct the camera trajectory,and detect the scale drift when the scene changes significantly.The depth map can be constructed by iterative introducing the keyframe,and the good pixels are selected for modeling both the depth restoration and the depth map updating.LSD-SLAM achieves the consistent map via the constraint optimization.In large-scale environment,LSDSLAM achieves the good semi-dense global consistency mapping,moreover it can run on CPU.Semi-direct visual odometry(SVO)[Forster,Pizzoli and Scaramuzza(2014)]directly on pixel intensities,estimates 3D points with the probabilistic mapping method that explicitly models outlier measurements,greatly eliminates the computation costs of feature point matching,can handle images at high rate acquisition.

    Kalman filter is generally used for estimating the system state with maximum likelihood,it is employed for the scene point prediction in EKF-SLAM[Barrau and Bonnabel(2015)].EKF-SLAM inevitability includes the error accumulation,when the current state prediction is beyond the threshold,the system could not achieve the real-time performance.

    PTAM[Klein and Murray(2007)]is a keyframe-based monocular parallel SLAM algorithm,it adopts the two parallel threads,foreground threads mainly captures and matches the feature points and estimates the camera posture,while the background one mainly performs the map extension.FAST(features from accelerated segment testing)feature descriptor[Rosten,Porter and Drummond(2010)]is applied to extract the feature points within the region.The selected keyframes are cached in the keyframe queue,and the mapping thread only extracts the feature points and reconstructs the 3D points from the keyframe queue.The camera tracking thread performs the feature points match,optimizes the camera posture of current frame according to the feature points correspondence.

    3 Fast scene reconstruction via the improved SLAM

    The improved SLAM adopts the parallel framework,the foreground thread manages the feature point match optimization and the local map expansion,the background thread performs the loop detection and improves the system efficiency.The improved SLAM algorithm includes the feature point match acceleration via KDtree,homography plane determination,and background thread optimization,mainly concentrates on the SLAM execution performance improvement.

    3.1 Perspective transformation

    3D pointP=[xw,yw,zw,1]Tis transformed to 2D point[xc,yc,zc,1]Tby the acquisition device.Generally,operator takes the images with camera,mobile or Kinect.As Fig.1 illustration,camera captures multiple 3D pointsXp={P1,P2,P3,…}within object,and the camera performs continuous acquisition from multiple angles,such as,camera posturesC1,C2,C3,….SLAM infers the camera position and posture from the successive images via multi-view geometry principle.The camera pose is composed of a 3×3 rotation matrix Rnand a translation vector tn.P=[xw,yw,zw,1]Tis transformed from the world coordinate system to the local camera coordinate system as Eq.(1).

    Figure 1:The camera takes object with multiple postures

    Eq.(1)is the homogeneous coordinate representation of perspective transformation.Eq.(2)is the nonhomogeneous coordinate representation of Eq.(1).

    In which Kis the camera parameter matrix,Riis the rotation matrix at postureCi,tiis the camera translational vector atis a function as.

    3.2 Feature points match acceleration

    Points match[Gao,Xia,Zhang et al.(2018)]plays an important role in SLAM,it searches the matched points among images for determining the camera posture and predicting the map expansion.ORB(Oriented FAST and Rotated BRIEF)[Mur-Artal,Montiel and Tardos(2015)]feature descriptor bears the strong feature extraction and representation ability,it is applied in SLAM for the feature points match.SLAM need handle gigantic feature points and quickly find the matched feature points,then,the search strategy is crucial for SLAM.ORB-SLAM need artificially set the threshold for feature points match.If the threshold is set inappropriately,the number of matched points is readily influenced,reduces the matching accuracy.In the paper,KDtree is employed for accelerating the feature points match.

    ORB-SLAM uses the brute force method for matching the feature points,as shown in Fig.2,the computation costs is heavy and the real-time performance is difficult guaranteed.Inspired by the work[Forster,Carlone,Dellaert et al.(2017)],KDtree is exploited for improving SLAM execution efficiency.Additionally,for further improving the feature points match efficiency,region of interest(ROI)is utilized,it reduces the region with few feature points,as Fig.3 depiction.

    Figure 2:Conventional ORB-SLAM feature points match

    KDtree includes the search tree building and the search speeding strategy.The search tree building establishes the search space based on the distance measurement on the feature points in imageItand imageIt+1.Supposemias the base point,KDtree searches the matched feature points under the measurement criteria.The search tree building constructs the candidate points for each feature point.KDtree has the special search speeding strategy,for any pointmiinIt,it starts from the tree root node,firstly locates the starting branch based on the points similarity measurement,then accesses the nodes of this branch for getting the mostly matched feature point.Meanwhile,backtracing is used to determine whether the branch holds the closer feature point.If the backtrace time is less than the threshold,the branch with the smallest distance is selected from the queue as points closer tomi.The improved SLAM feature points correspondence procedure constructs matched feature point inIt+1for any feature point inmiinIt.

    Figure 3:Rich feature points region determination by ROI

    Figure 4:Feature points correspondence building by KDtree

    Fig.4 demonstrates that the improved feature points approach can build the feature points correspondence,and the used feature point number is smaller than the one of ORB-SLAM.

    3.3 Homography plane determination

    When feature points fall within the same plane or the parallax of two images is small,the camera posture is restored with aid of the homography plane.There exist some planar planes(such as tables,walls,etc.)in the indoor scenario.

    Figure 5:Homography plane

    As the Fig.5 showing,feature pointsm1=(u1, v1,1) Tandm2=(u2, v2,1) Tseparately on the imageItandIt+1both fall within the planeγ,which follow the equation.

    In which K is the camera intrinsic parameter matrix,R is the rotation matrix fromIttoIt+1,t is the translation vector fromIttoIt+1.

    Assume the homography matrixH3×3stands for,then Eq.(4)has the following form.

    His decided by Eq.(6)and Eq.(7).The improved SLAM exploits the homography feature tracking method for adapting the camera with strong rotation and fast movement.Homography plane estimation is heavy computation procedure,furthermore the homography evaluation of any image to current one also bears the high computation.In the paper for improving SLAM efficiency,the keyframeFkis served for the agent of prefetch images,and the homography matrix between keyframeFkand current imageIjis calculated,and it is expressed as the follow.

    In which Rjand tjare separately the rotation matrix and translation vector ofIj,represent the homography plane fromFktoIj.

    3.4 Background thread optimization

    Background thread plays the important role in SLAM,it manages the region prefetch,updation and expansion.The traditional SLAM could generate a rather good result from the stable capture.For the inexperienced or novice operator sometimes manipulates SLAM,or the strong lens rotation and fast movement often occur,these captured data causes SLAM to lose keyframes or cannot achieve the matched feature points.At the same time,there exists some difference between the calculated feature point and the real point,the camera posture and the actual gesture.Latif et al.[Latif,Cadena and Neira(2013)]proposed a camera pose optimization method to correct the scale drift at the loop procedure.When the camera moves smoothly,a constant velocity motion model can be used to predict the camera pose location.

    Object pointPjis projected to the pixelxjinIiunder cameraCi,this perspective transformation is represented byxj=F(Ci,Pj).In the paper,only the matched feature points are considered for being processed,thereafterxirepresents any feature point in any imageIi,it is the 2D point ofPj.

    stands for all feature points to its scene positions the in all images,Eq.(9)attempts to achieve all feature points corresponding to its scene position as close as possible,it is employed for background thread optimization for scene reconstruction.

    In whichδhis the Huber loss function.Eq.(10)is optimized for scene prefetch by homography transformation.

    The improved SLAM foreground thread calculates the local camera posture.If a certain amount of error is below a certain threshold,the prediction based on the prior information might cause the error accumulation.Although background thread optimization can maximize a posterior error,it does not well eliminate this kind of error.

    4 Experiments

    The improved SLAM algorithm proposed by the paper is implemented on the personal laptop with Intel(R)Core(TM)i5-6500 CPU@2.5 GHz,8G RAM.The experiment deployment OS is 64-bit Ubuntu 16.04.The discussed algorithm runs online and handles the color images which are captured by the handhold Kinect within the indoor environment.

    The routine hosted by the improved algorithm is robot operating system(ROS),which is open source code maintained by Open Source Robotics Foundation Inc.ROS is a flexible framework for developing robot related software,is a collection of cross-platform tools,libraries,and conventions that aim to simplify the task of handling complex and robust robot behavior.ROS execution threads cover the foreground and background threads,the foreground thread mainly captures and matches the feature points and estimates the camera posture through the homography tracking,while the background one mainly performs map extension,system loop detection and bundle adjustment(BA)[Vo,Narasimhan and Sheikh(2016)]optimization on the data obtained by the foreground thread.

    The traditional SLAM prefers the gray images for the performance consideration and requires to input the gray images.Direct operating on color images brings on the more process data,requires the heavy computational cost,the interaction performance is influenced too.However,in the experiment the algorithm directly operates the color images,the entire data flow also is based on color images.Meanwhile the frame rate is 20 frames per second,the algorithm real-time performance is improved than the conventional SLAM.

    In the paper the improved feature points match module is based on KDtree,it is used to rapidly match the feature points across frames via hierarchical manner with minimal matching error,greatly assures the real-time capability.Fig.6 is the feature points match result by the improved SLAM algorithm.

    Figure 6:Feature points obtained by the improved SLAM algorithm

    For overall evaluating the algorithm performance,the videos involving rapid movement and strong rotation acquired by Kinect are testified by the experiment.The improved SLAM is able to process video with depth,as shown in Fig.8,and the indoor scene is reconstructed with a sparse point cloud,and the red posture describes the keyframe location.

    Figure 7:Scene layout

    Figure 8:Camera trajectory optimization

    Fig.7 describes the experiment scene,which is a lab and includes the workbench,chair,bookcase,bookshelf and electric fan,the scene length is 15310 mm and the scene width is 15200 mm,the door is at the right wall and its width is 1200 mm.In this scene,all camera postures constitute the camera trajectory which is shown by blue sign,and the current camera posture is depicted by red symbol.

    Within the same scene as Fig.7,Fig.8 shows the camera trajectory optimization result,Fig.8(a)gives the camera trajectory without optimization,while Fig.8(b)demonstrates the camera trajectory with optimization.From camera trajectory comparison within the two brown rectangles in Fig.8(a)and Fig.8(b),it observed that the camera trajectory without optimization is rough,while the camera trajectory with optimization is more compact.

    Fig.9 shows the reconstructed scene with 3D point cloud,Fig.9(a)is the viewed from 45° view,and Fig.9(b)is the viewed from right top.From two views of Fig.9,it can be observed that the workbench,bookcase,bookshelf and chair are well reconstructed by the improved SLAM algorithm.

    Figure 9:3D point cloud of reconstructed scene

    Four data sets,Fr1/360,Fr1/floorandFr1/deskand one real-timeindoordata Indoor downloaded from https://vision.in.tum.de/data/datasets/ are employed for evaluating the algorithm performance amongORB-SLAM,RGBD-SLAMand the improved SLAM by the paper.RMSEis used as the comparison measure in Tab.1,it is observed that the improved SLAM approach achieves the lowest RMSE thanORB-SLAMandRGBDSLAMin four datasets.Additionally,Tab.1 shows that the proposed algorithm is more accurate than the originalORB-SLAMalgorithm in positioning accuracy,it can fast restore depth map thanRGBD-SLAMalgorithm.The generated depth map by the improved SLAM algorithm is accurate and satisfies the real-time object insertion requirement,as Fig.10 illustration.

    Table 1:Algorithms performance comparison

    Figure 10:Object real-time introduction

    5 Conclusion

    There exists monocular,stereo,RGB-D and ROS SLAM,these SLAM algorithms have been extensively investigated,and they can run on PC,mobile and robotics,three platforms.However,they still have the performance limitations,it is urgent for increasing SLAM real-time performance.With more types sensor involved by SLAM,more novel vision methods applied to SLAM,SLAM would be introduced and improved for handling more complicated scenario.

    In the paper an improved SLAM algorithm is proposed in which KDtree is introduced for accelerating the feature points match,therefore the efficiency of depth map acquisition and the map reconstruction are improved.Moreover,background map expansion thread is optimized and SLAM performance is increased via parallel threads.Additionally,the improved SLAM method processes color videos,while the classical SLAM deals with gray videos.

    With the big image/video emergence,such as,4K,SLAM confronts to process much bigger images/videos,and its efficiency and performance improvement need to be investigated further.

    Acknowledgement:This work is supported by the National Natural Science Foundation of China(Grant No.61672279),Project of “Six Talents Peak” in Jiangsu(2012-WLW-023),and Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,China(2016491411).

    日韩中字成人| 亚洲国产成人一精品久久久| 大香蕉97超碰在线| 男人和女人高潮做爰伦理| 国语对白做爰xxxⅹ性视频网站| 欧美xxxx黑人xx丫x性爽| 亚洲高清免费不卡视频| 日日摸夜夜添夜夜爱| 男男h啪啪无遮挡| 18禁在线无遮挡免费观看视频| 亚洲欧美清纯卡通| 精品一区二区三区视频在线| 免费看日本二区| 精品人妻一区二区三区麻豆| 少妇的逼水好多| 1000部很黄的大片| av播播在线观看一区| 在线观看三级黄色| 校园人妻丝袜中文字幕| 黄色视频在线播放观看不卡| a级一级毛片免费在线观看| 国产免费福利视频在线观看| 国产男女内射视频| 亚洲欧美一区二区三区国产| 欧美日本视频| 国产亚洲5aaaaa淫片| 欧美少妇被猛烈插入视频| 成年人午夜在线观看视频| 免费黄频网站在线观看国产| 国内精品美女久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 别揉我奶头 嗯啊视频| 人妻制服诱惑在线中文字幕| 哪个播放器可以免费观看大片| 偷拍熟女少妇极品色| 在线免费十八禁| 成人美女网站在线观看视频| 精品人妻偷拍中文字幕| 成人国产av品久久久| 两个人的视频大全免费| 九九在线视频观看精品| 亚洲精品日韩在线中文字幕| 日韩精品有码人妻一区| 91久久精品国产一区二区三区| 老司机影院成人| 色播亚洲综合网| 国产亚洲91精品色在线| 欧美bdsm另类| 国产午夜精品久久久久久一区二区三区| 免费观看a级毛片全部| 一区二区av电影网| 在线观看一区二区三区| 中文天堂在线官网| 免费高清在线观看视频在线观看| 午夜福利高清视频| 亚洲人成网站在线观看播放| 免费av毛片视频| 麻豆成人av视频| 欧美性感艳星| 亚洲精品国产成人久久av| 日韩av免费高清视频| 国产精品国产三级国产av玫瑰| 亚洲精品国产色婷婷电影| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产mv在线观看视频 | 亚洲精品久久午夜乱码| 国产人妻一区二区三区在| 丝袜脚勾引网站| 久久99热这里只频精品6学生| 日本爱情动作片www.在线观看| 看非洲黑人一级黄片| 交换朋友夫妻互换小说| 免费播放大片免费观看视频在线观看| 99久久精品热视频| 精品酒店卫生间| 欧美成人精品欧美一级黄| 尤物成人国产欧美一区二区三区| 如何舔出高潮| 一二三四中文在线观看免费高清| 禁无遮挡网站| 久久久国产一区二区| 最近中文字幕高清免费大全6| 亚洲,一卡二卡三卡| 国产成人a∨麻豆精品| 精品久久久精品久久久| 国产国拍精品亚洲av在线观看| 亚洲天堂av无毛| h日本视频在线播放| 午夜福利在线观看免费完整高清在| 99热国产这里只有精品6| 我的老师免费观看完整版| 国产熟女欧美一区二区| 黄色欧美视频在线观看| 黄色日韩在线| 91午夜精品亚洲一区二区三区| 成人亚洲欧美一区二区av| av免费观看日本| 日韩,欧美,国产一区二区三区| 午夜福利在线观看免费完整高清在| 日韩人妻高清精品专区| 国产毛片在线视频| 亚洲欧美一区二区三区黑人 | 国产成人a∨麻豆精品| 男人爽女人下面视频在线观看| 成人亚洲精品av一区二区| 天堂俺去俺来也www色官网| 色视频www国产| 又爽又黄无遮挡网站| 国产精品熟女久久久久浪| 亚洲欧美清纯卡通| 精品少妇久久久久久888优播| 国产黄片视频在线免费观看| 亚洲精品乱久久久久久| 亚洲精品色激情综合| 午夜激情久久久久久久| 男女边吃奶边做爰视频| 国产精品无大码| 日本色播在线视频| 日韩欧美精品v在线| 国产精品偷伦视频观看了| 久久久久久久久久成人| 久久精品国产a三级三级三级| 亚洲精品乱码久久久v下载方式| 国产精品麻豆人妻色哟哟久久| 日韩,欧美,国产一区二区三区| 精品熟女少妇av免费看| 久久精品久久久久久噜噜老黄| 亚洲精品国产色婷婷电影| 久久久久久久久大av| 国产亚洲91精品色在线| 九九久久精品国产亚洲av麻豆| 哪个播放器可以免费观看大片| 五月玫瑰六月丁香| 又粗又硬又长又爽又黄的视频| 久久久久久国产a免费观看| 2021天堂中文幕一二区在线观| 久久久国产一区二区| 视频中文字幕在线观看| 亚洲欧美日韩卡通动漫| 欧美日韩国产mv在线观看视频 | 中文字幕亚洲精品专区| 男人添女人高潮全过程视频| 赤兔流量卡办理| 一级毛片aaaaaa免费看小| 免费看光身美女| 联通29元200g的流量卡| 成人亚洲欧美一区二区av| 两个人的视频大全免费| 亚洲国产日韩一区二区| 国产亚洲av片在线观看秒播厂| 日日摸夜夜添夜夜添av毛片| 日韩不卡一区二区三区视频在线| 一二三四中文在线观看免费高清| 亚洲av不卡在线观看| 又黄又爽又刺激的免费视频.| 免费av不卡在线播放| 久久久午夜欧美精品| 2021天堂中文幕一二区在线观| 亚洲精品乱久久久久久| 亚洲高清免费不卡视频| 又爽又黄无遮挡网站| 国产欧美日韩精品一区二区| 精品国产一区二区三区久久久樱花 | 色吧在线观看| 久久99热这里只频精品6学生| 日韩一区二区三区影片| 青春草视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 国产 一区精品| 男女国产视频网站| 狂野欧美白嫩少妇大欣赏| 一级毛片aaaaaa免费看小| 国产精品久久久久久久电影| 国产成人免费观看mmmm| 精品久久久精品久久久| 一级毛片 在线播放| 夫妻午夜视频| 日本欧美国产在线视频| 97在线人人人人妻| 精品酒店卫生间| 久久国产乱子免费精品| 综合色av麻豆| 久久久久精品性色| 亚洲人成网站高清观看| 亚洲色图av天堂| 日韩中字成人| 99九九线精品视频在线观看视频| 亚洲精品影视一区二区三区av| 干丝袜人妻中文字幕| 国产欧美日韩精品一区二区| 身体一侧抽搐| 我的女老师完整版在线观看| 校园人妻丝袜中文字幕| 青春草国产在线视频| a级一级毛片免费在线观看| 黄色日韩在线| 国产精品av视频在线免费观看| 69av精品久久久久久| 最近2019中文字幕mv第一页| 真实男女啪啪啪动态图| av福利片在线观看| 久久久久精品久久久久真实原创| 综合色丁香网| 国产乱来视频区| 小蜜桃在线观看免费完整版高清| 纵有疾风起免费观看全集完整版| 亚洲av福利一区| 热99国产精品久久久久久7| 国产精品久久久久久精品古装| 人妻一区二区av| 日产精品乱码卡一卡2卡三| 欧美性感艳星| 麻豆精品久久久久久蜜桃| 小蜜桃在线观看免费完整版高清| 91久久精品电影网| 一级片'在线观看视频| 99久久精品国产国产毛片| 国产大屁股一区二区在线视频| 久久女婷五月综合色啪小说 | 亚洲国产欧美在线一区| 欧美成人a在线观看| 欧美 日韩 精品 国产| 久久久精品免费免费高清| 日韩人妻高清精品专区| 搡老乐熟女国产| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 交换朋友夫妻互换小说| 国产亚洲午夜精品一区二区久久 | 国产精品国产三级专区第一集| 午夜免费鲁丝| 午夜激情福利司机影院| 欧美变态另类bdsm刘玥| 国产免费一级a男人的天堂| 久久久成人免费电影| 在线观看免费高清a一片| 免费黄色在线免费观看| 联通29元200g的流量卡| 国产免费一级a男人的天堂| 亚洲av福利一区| 在线免费十八禁| 中文字幕久久专区| 最近中文字幕2019免费版| 国产精品秋霞免费鲁丝片| 啦啦啦中文免费视频观看日本| 免费看日本二区| 搞女人的毛片| 亚洲精品日韩在线中文字幕| 国产黄a三级三级三级人| 久久久色成人| 精品一区二区三卡| 永久网站在线| 各种免费的搞黄视频| 久久久久九九精品影院| 亚洲国产精品国产精品| 三级男女做爰猛烈吃奶摸视频| 黄片wwwwww| 美女内射精品一级片tv| 国产爽快片一区二区三区| av福利片在线观看| av免费在线看不卡| 好男人视频免费观看在线| 直男gayav资源| 免费av不卡在线播放| 免费av毛片视频| 精品久久久久久久末码| 中文字幕制服av| 日韩,欧美,国产一区二区三区| 国产成人freesex在线| 五月伊人婷婷丁香| 亚洲av电影在线观看一区二区三区 | 色综合色国产| av免费观看日本| 久久久久久久午夜电影| 2021少妇久久久久久久久久久| 真实男女啪啪啪动态图| 你懂的网址亚洲精品在线观看| 日韩制服骚丝袜av| 欧美激情在线99| 久久久久久久大尺度免费视频| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 一个人观看的视频www高清免费观看| 高清在线视频一区二区三区| 国产精品久久久久久久电影| 国产一区亚洲一区在线观看| 国产成人aa在线观看| 午夜免费男女啪啪视频观看| 午夜日本视频在线| 偷拍熟女少妇极品色| 国产欧美日韩一区二区三区在线 | 大陆偷拍与自拍| 亚洲综合色惰| 简卡轻食公司| 免费大片黄手机在线观看| 免费电影在线观看免费观看| 久久久久久久午夜电影| 国产欧美日韩一区二区三区在线 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| 精品国产三级普通话版| 99久国产av精品国产电影| 午夜精品一区二区三区免费看| 午夜福利在线观看免费完整高清在| 国产精品三级大全| 国产精品国产三级国产专区5o| 麻豆成人av视频| 久久99热这里只有精品18| 性色avwww在线观看| 另类亚洲欧美激情| 国产午夜精品久久久久久一区二区三区| 免费观看无遮挡的男女| 成年女人在线观看亚洲视频 | 国产精品99久久99久久久不卡 | 亚洲av在线观看美女高潮| 不卡视频在线观看欧美| 亚洲av.av天堂| 麻豆成人午夜福利视频| 亚洲丝袜综合中文字幕| 2021天堂中文幕一二区在线观| 中文精品一卡2卡3卡4更新| 中文乱码字字幕精品一区二区三区| 国产精品99久久久久久久久| 一区二区av电影网| 18禁在线播放成人免费| 人妻系列 视频| 国产精品不卡视频一区二区| 日本午夜av视频| 久久国内精品自在自线图片| 精品亚洲乱码少妇综合久久| 亚洲第一区二区三区不卡| 欧美国产精品一级二级三级 | 中文精品一卡2卡3卡4更新| 亚洲欧美日韩另类电影网站 | 亚洲国产成人一精品久久久| 精品酒店卫生间| 日韩欧美精品v在线| 日本猛色少妇xxxxx猛交久久| 亚洲最大成人手机在线| 国产久久久一区二区三区| 天天一区二区日本电影三级| 一级毛片 在线播放| 亚洲人与动物交配视频| 日韩国内少妇激情av| 国产成年人精品一区二区| 午夜爱爱视频在线播放| 97超碰精品成人国产| 视频区图区小说| 人妻少妇偷人精品九色| 日韩国内少妇激情av| 亚洲精品色激情综合| 精品人妻熟女av久视频| 日韩国内少妇激情av| 成人国产av品久久久| 美女主播在线视频| 亚洲国产精品成人久久小说| 欧美人与善性xxx| 精品一区二区免费观看| 人妻少妇偷人精品九色| 亚洲国产日韩一区二区| 18禁裸乳无遮挡动漫免费视频 | 免费看a级黄色片| 色视频在线一区二区三区| 丝袜喷水一区| 久久99精品国语久久久| 最近手机中文字幕大全| 成年女人在线观看亚洲视频 | 婷婷色av中文字幕| 国产男女超爽视频在线观看| 国产精品三级大全| 国产精品蜜桃在线观看| 天天躁夜夜躁狠狠久久av| 91在线精品国自产拍蜜月| 男女那种视频在线观看| 蜜臀久久99精品久久宅男| 久久午夜福利片| 熟女av电影| 亚洲精品乱久久久久久| 国产亚洲一区二区精品| 亚洲国产高清在线一区二区三| 观看美女的网站| 亚洲国产色片| 黄色一级大片看看| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 1000部很黄的大片| 免费大片18禁| 涩涩av久久男人的天堂| 国产精品国产三级专区第一集| 热99国产精品久久久久久7| 久久精品国产自在天天线| 亚洲国产精品成人久久小说| 国产男女超爽视频在线观看| 青青草视频在线视频观看| 中文字幕久久专区| 久久精品国产自在天天线| 国产美女午夜福利| 亚洲欧美一区二区三区黑人 | 国产伦在线观看视频一区| 精品久久国产蜜桃| 久久久久久久亚洲中文字幕| 精品人妻视频免费看| 亚洲人与动物交配视频| 网址你懂的国产日韩在线| 丰满乱子伦码专区| 国产精品麻豆人妻色哟哟久久| 日韩中字成人| 精品人妻熟女av久视频| 黄色日韩在线| 日韩强制内射视频| 高清毛片免费看| 国产永久视频网站| 91在线精品国自产拍蜜月| 午夜精品一区二区三区免费看| 26uuu在线亚洲综合色| 国产乱来视频区| 夜夜看夜夜爽夜夜摸| 搡老乐熟女国产| 国产大屁股一区二区在线视频| 2021天堂中文幕一二区在线观| 国产大屁股一区二区在线视频| 欧美激情久久久久久爽电影| 国产一区二区亚洲精品在线观看| 亚洲精品乱码久久久v下载方式| 日韩av不卡免费在线播放| 久久韩国三级中文字幕| 看黄色毛片网站| 亚洲一级一片aⅴ在线观看| 特大巨黑吊av在线直播| 男的添女的下面高潮视频| 女人十人毛片免费观看3o分钟| 91精品一卡2卡3卡4卡| 777米奇影视久久| 亚洲久久久久久中文字幕| 在线观看av片永久免费下载| 国产精品久久久久久av不卡| 久久亚洲国产成人精品v| 亚洲自偷自拍三级| 亚洲久久久久久中文字幕| 汤姆久久久久久久影院中文字幕| 大香蕉97超碰在线| 网址你懂的国产日韩在线| 狂野欧美激情性xxxx在线观看| 亚洲av成人精品一区久久| av免费观看日本| 国产精品一二三区在线看| 天堂中文最新版在线下载 | 在线亚洲精品国产二区图片欧美 | 国产精品人妻久久久影院| 国产精品久久久久久久久免| 久久久久久九九精品二区国产| 毛片一级片免费看久久久久| 色5月婷婷丁香| 国产精品三级大全| 一级爰片在线观看| 少妇人妻 视频| 又爽又黄无遮挡网站| 国产永久视频网站| 大香蕉97超碰在线| 黄色一级大片看看| 在线观看国产h片| 久久这里有精品视频免费| 亚洲一级一片aⅴ在线观看| 高清毛片免费看| 91久久精品电影网| 精品久久久精品久久久| 少妇高潮的动态图| 激情五月婷婷亚洲| 成人美女网站在线观看视频| 久久久久久伊人网av| 久久精品久久久久久久性| 纵有疾风起免费观看全集完整版| 亚洲av免费高清在线观看| av.在线天堂| 大香蕉97超碰在线| 在线a可以看的网站| 亚洲国产精品成人综合色| 亚洲,欧美,日韩| 激情 狠狠 欧美| 秋霞伦理黄片| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 国产午夜精品久久久久久一区二区三区| 下体分泌物呈黄色| 制服丝袜香蕉在线| 一区二区三区乱码不卡18| 国产黄片美女视频| 91久久精品国产一区二区成人| 国产伦在线观看视频一区| a级毛片免费高清观看在线播放| 国产色婷婷99| 五月玫瑰六月丁香| 男女那种视频在线观看| 亚洲国产精品专区欧美| 欧美高清性xxxxhd video| 亚洲成人精品中文字幕电影| 水蜜桃什么品种好| 国产免费一级a男人的天堂| 久久国内精品自在自线图片| 在线a可以看的网站| 性插视频无遮挡在线免费观看| 免费看光身美女| 嫩草影院精品99| 国产伦精品一区二区三区四那| xxx大片免费视频| 久久精品熟女亚洲av麻豆精品| 免费电影在线观看免费观看| 国产日韩欧美亚洲二区| 精品久久久久久电影网| 成年av动漫网址| 日韩伦理黄色片| 直男gayav资源| av免费在线看不卡| 老女人水多毛片| 大码成人一级视频| 青春草视频在线免费观看| 一边亲一边摸免费视频| 一级爰片在线观看| 免费不卡的大黄色大毛片视频在线观看| 乱码一卡2卡4卡精品| 色吧在线观看| 精品99又大又爽又粗少妇毛片| 黄片wwwwww| 高清毛片免费看| 视频区图区小说| 丝瓜视频免费看黄片| 日韩制服骚丝袜av| 亚洲精品国产av蜜桃| 亚洲国产av新网站| av在线app专区| 国产成年人精品一区二区| 国产探花在线观看一区二区| 国产男女内射视频| 看黄色毛片网站| 偷拍熟女少妇极品色| 国产精品国产av在线观看| 成人特级av手机在线观看| 在线观看一区二区三区激情| 精品国产乱码久久久久久小说| 欧美极品一区二区三区四区| 亚洲欧美成人综合另类久久久| 亚洲天堂国产精品一区在线| 七月丁香在线播放| 国产成人a区在线观看| 又粗又硬又长又爽又黄的视频| 亚洲丝袜综合中文字幕| 国产精品爽爽va在线观看网站| 99热网站在线观看| 别揉我奶头 嗯啊视频| 99久久精品热视频| 国产一区有黄有色的免费视频| 国产男人的电影天堂91| 成年女人在线观看亚洲视频 | 国产欧美日韩精品一区二区| 搡老乐熟女国产| 亚洲欧美日韩东京热| 国产成人免费无遮挡视频| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 99视频精品全部免费 在线| 一区二区三区乱码不卡18| 制服丝袜香蕉在线| 欧美xxxx性猛交bbbb| 国产精品福利在线免费观看| 久久久久久久大尺度免费视频| 国产精品av视频在线免费观看| 精品亚洲乱码少妇综合久久| 国产成人免费观看mmmm| 男女无遮挡免费网站观看| 成人特级av手机在线观看| 熟女av电影| 久久97久久精品| 夜夜看夜夜爽夜夜摸| 精品人妻熟女av久视频| 国产精品成人在线| 国产91av在线免费观看| 日韩大片免费观看网站| 亚洲在线观看片| 激情五月婷婷亚洲| 内射极品少妇av片p| 久久午夜福利片| 身体一侧抽搐| 免费黄色在线免费观看| 亚洲成人精品中文字幕电影| 18禁动态无遮挡网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99视频精品全部免费 在线| 在现免费观看毛片| 亚洲一区二区三区欧美精品 | 亚洲av成人精品一二三区| 国产成人精品一,二区| a级毛片免费高清观看在线播放| 天天一区二区日本电影三级| 欧美成人一区二区免费高清观看| 日本黄大片高清| 国产视频内射| 一区二区av电影网| 一级毛片aaaaaa免费看小| 视频中文字幕在线观看| 三级经典国产精品| 在现免费观看毛片| 2021天堂中文幕一二区在线观| 高清毛片免费看| 国产av不卡久久| 欧美+日韩+精品| 亚洲高清免费不卡视频| 在线看a的网站| 国产精品一二三区在线看| 最新中文字幕久久久久| 真实男女啪啪啪动态图| 国产亚洲午夜精品一区二区久久 | 综合色丁香网| 三级经典国产精品| 99久国产av精品国产电影|