• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Physical Layer Algorithm for Estimation of Number of Tags in UHF RFID Anti-Collision Design

    2019-11-07 03:13:06ZhongHuangJianSuGuangjunWenWenxianZhengChuChuYijunZhang4andYiboZhang
    Computers Materials&Continua 2019年10期

    Zhong HuangJian SuGuangjun WenWenxian ZhengChu ChuYijun Zhang4 and Yibo Zhang

    Abstract:A priori knowledge of the number of tags is crucial for anti-collision protocols in slotted UHF RFID systems.The number of tags is used to decide optimal frame length in dynamic frame slotted ALOHA(DFSA)and to adjust access probability in random access protocols.Conventional researches estimate the number of tags in MAC layer based on statistics of empty slots,collided slots and successful slots.Usually,a collision detection algorithm is employed to determine types of time slots.Only three types are distinguished because of lack of ability to detect the number of tags in single time slot.In this paper,a physical layer algorithm is proposed to detect the number of tags in a collided slot.Mean shift algorithm is utilized,and some properties of backscatter signals are investigated.Simulation results verify the effectiveness of the proposed solution in terms of low estimation error with a high SNR range,outperforming the existing MAC layer approaches.

    Keywords:UHF RFID,anti-collision,cluster algorithm.

    1 Introduction

    Anti-collision algorithms are carried out in multi-access UHF RFID systems to reduce collisions as well as to increase channel efficiency.As one of the most popular anticollision algorithms for RFID system,dynamic framed slotted ALOHA(DFSA)algorithm employs a mechanism similar with time division multiple access(TDMA).Synchronized frame is divided into several time slots for random access.Reader dynamically adjusts the number of time slots based on the estimated number of tags.It is well known that DFSA reaches the optimal system throughput when the number of slots equals to the number of tags waiting to be identified.There are two main problems in DFSA design,estimation of the number of tags and frame length adjustment[Chen,Liu,Ma et al.(2018)].

    Various researches are proposed to improve the estimation accuracy so as to improve the channel efficiency of RFID system.The number of tags is estimated by multiplying the number of collided slots in a frame by the expected number of tags per collided slot(=2.39),which is a constant for all frames regardless of number of tags and frame size[Schoute(1983)].In the mechanisms proposed by Vogt et al.[Vogt(2002);Chen and Lin(2006);Cha and Kim(2005)],estimation of the number of tags is based on successful,collided,and empty probability in a frame.Probability theory is utilized in these works.The number of tags is estimated in Chen[Chen(2009)]by multiplying the number of collided time slots by a well-defined factor,which is found by an iterative algorithm.A posteriori probability distribution-based method is proposed in Eom et al.[Eom and Lee(2010)]to further improve the accuracy.However,the computation complexity is higher than the others.A Bayesian method[Annur,Srichavengsup,Nakpeerayuth et al.(2015)]is used to update the posterior probability distribution of number of users' slot by slot so as to estimate the number of tags.

    Since RFID readers usually adopt in-phase and quadrature information of tag signals,tag recovery and estimation methods of the number of tags based on signal processing are developed to solve collision problem.Tag recovery is able to turn a collided slot into a successful slot while estimation of the number of tags based on physical layer process is able to enhance performance of anti-collision algorithm in upper layer.Most researches require multiple antennas receiver[Angerer,Langwieser and Rupp(2010)],specific tag signal strength[Fyhn,Jacobsen,Popovski et al.(2011)],modified coding mechanisms[Parks,Liu,Gollakota et al.(2014)],etc.Bipartite Grouping(BiGroup)[Ou,Li and Zheng(2017)]is the first one proposed to parallelly decode multiple CTOS tags with the help of both time domain and constellation domain information in physical layer.Algorithms based on signal processing in time domain are proposed to reduce SNR requirements.Collided signals are transformed to time-scale domains and LS criterion is utilized for tag signal separation in Zeng et al.[Zeng,Wu,Yang et al.(2017)].An edge transition scheme is proposed to recover collision and decode tag signals in Benbaghdad et al.[Benbaghdad,Fergani and Tedjini(2016)].These works focus on tag signal recovery issues in physical layer and pay less attention on MAC layer design.Tan et al.[Tan,Wang,Fu et al.(2018)]proposed a collision detection and signal recovery method and combine them with DFSA algorithm.Optimal frame length is calculated based on a collision recovery probability coefficient,which is obtained by simulations of its physical layer design.A novel closed-form solution is further proposed in Ahmed et al.[Ahmed,Salah,Robert et al.(2018)]for optimal FSA frame length decision,in which collision recovery probabilities are provided arbitrarily.An accurate tag number estimation algorithm is still needed and not addressed.

    In this paper,we propose to estimate the number of tags in a collided time slot in physical layer.Different from the existing work,we focus on improving estimation accuracy under CTOS tag assumption.Estimation error is reduced compared with MAC layer design and SNR range is expanded compared with current physical layer design.In this scheme,the number of tags in single time slot is determined by the number of clusters located in constellation domain.Signal samples are firstly scaled based on the baseband noise level.After that,mean shift algorithm is utilized to divide the data into several clusters.In the end,a cluster adjustment process is carried out to get better performance.Simulation results verify the effectiveness of the proposed solution in terms of low estimation errors and high SNR range,outperforming the existing MAC layer-based approaches.This paper is organized as following.Section II describes signal model of UHF RFID system and drawback of clustering algorithms.After that,design consideration and cluster-based algorithm is proposed in Section III,which is evaluated with numeric simulations in Section IV.Finally,conclusion follows.

    2 Signal model and cluster algorithm

    2.1 Backscatter signal and its distribution

    In a UHF RFID system,reader energizes tags by transmitting continuous wave.Passive tags backscatter the radio to communicate with the reader.After that,backscatter signals are down converted in the reader side.As shown in Fig.1(a),baseband signal in receive path of a reader consists of three components,backscatter signal of tags,self-jammer and noise.Eq.(1)shows the detailed format of those signals.

    The first one indicates signals of multiple tags,the second one indicates the signals of self-jammer caused by RFID system.Where i indicates the index of collided tags in the same time slot,Aiandθiare respective transmitted data and initial phase of the i-th tag signal.θ0andμis the amplitude and phase of self-jammer.n(t)represents white noise in the receiver.

    Figure 1:RFID framework and backscatter signal model

    Backscatter signals have both in-phase and quadrature components,with which we could plot the signal samples in a two-dimension coordinates.Every sample is represented by a point on the I-Q plane.Samples of the same transmitting status are dispersed and scattered around a centroid position,forming a cluster.As shown in Fig.1(b),there are 4 clusters,representing 4 transmitting status of 2 tags.The number of clusters is decided by the number of tags.Every tag has two transmission status,the size of the full status space is 2n,where n is the number of tags.Three properties could be obtained from Eq.(1).

    1.Since noise in in-phase axis and in quadrature axis are different due to the existence of self-jammer,every cluster is shaped as an eclipse.

    2.We assume that noise in both axes obeys gaussian distribution.As a result,around 95% samples of one cluster are located in a circle of radius of two times standard deviation of noise.The higher the noise is,the bigger the circle is.When SNR goes down,the radius gets bigger,and when it is larger than the distance between cluster centers,the clusters overlap.Fig.1(c)shows an example when clusters are overlapped.

    3.The clusters are always located in pairs,symmetrizing to the center of all samples.For every cluster,reverse all the tag status,a symmetric cluster is obtained.Their symmetric center is located at the center of the whole graph.Eq.(2)shows the coordinates of the center point,wherensam,xcenterandycenterdenotes the number of samples,x axis coordinate and y axis coordinate.

    2.2 Density based clustering algorithm

    A straight forward way to find the number of tags is to divide signal samples into clusters with a cluster algorithm.Mean shift algorithm and DBSCAN algorithm are both widely used method to identify multiple dimension data without a prior knowledge of the number of clusters.They both make use of sample density to make decisions.Mean shift algorithm updates every cluster center based on the vector sum of all samples in it until convergence.Bandwidth is setup to decide the range of clusters.On the other hand,DBSCAN choose samples with large number of neighbors as core samples.Connection between core samples are calculated and clusters are divided.Parameters distance is required to decide neighbors and minimum points are required to decide core samples.

    Table 1:Parameter settings of cluster algorithms

    Both algorithms are tested with simulations.Parameter settings are shown in Tab.1.Fig.(2)shows the cluster division of two algorithms.Samples in one cluster are encircled by a circle.DBSCAN divides the signals into 6 clusters while mean shift divides them into more than 20 clusters.

    Figure 2:Performance of two algorithm in different SNR scenarios

    3 Physical layer algorithm for estimation of the number of tags in single time slot

    3.1 Design consideration

    Mean shift algorithm and DBSCAN are available for clustering in some cases with proper parameter settings.However,both algorithms are not designed for detection of the number of tags.DBSCAN requires uniform distributed samples in one cluster,which is not preferred in our case.Density of samples in one cluster decreases along with distance to the center.Furthermore,it is not able to identify overlapped clusters.Mean shift algorithm outperforms DBSCAN in low SNR scenario.Cluster centers are updated towards a denser direction,it always finds the densest points.However,isolated samples are identified as a cluster in some cases.In this paper,we make use of samples distribution information and its properties to improve performance of mean shift algorithm.The improvement is based on the following considerations.

    First of all,our purpose is to find number of clusters,not accurate cluster division.Wrong assignment to clusters may cause bit error in signal recovery case,but not in number detection case.As a result,we only consider a small core area of clusters,which is defined as samples within distance of two times standard deviation of noise.Find it and we get a valid cluster center.The noise samples are ignored naturally.

    Second,as described in Section II,all clusters are shaped like an eclipse.On the meantime,mean shift algorithm calculates updated vector based on a Euclid distance,which means samples in a perfect circle are all considered.It brings a big performance decrease.It is fitting and proper to adjust the scale of in-phase and quadrature signal magnate by noise level.After that,the core area of clusters is formed as a perfect circle.It is better for identification.

    Finally,clusters are distributed in pairs.Every cluster have a symmetrical one with similar number of samples.Their cluster centers are also symmetrical to the whole center of samples.This property makes us able to discard isolated noise cluster identified by mean shift algorithm.

    3.2 Algorithm details

    The detailed algorithm is shown as Algorithm.1,we first transform samples to make clusters shaped as perfect circle other than eclipse.After that,mean shift algorithm is carried out.Some random points are selected as initial centers.These centers are updated based on samples in their neighborhood.After they converge,an adjustment scheme is carried out to discard isolated noise clusters.

    4 Simulation and performance evaluation

    In this section,we evaluate the performance of proposed algorithm under different scenarios.Success rate is firstly proposed for accuracy of detecting number of tags to evaluate performance in single time slot scenario.After that,total success rate and estimation error are derived based on probability to evaluate performance in multiple time slots scenario.Success rate is compared with DBSCAN algorithm and estimation error is compared with probability-based methods.

    4.1 Performance in single time slot scenario

    The performance of proposed algorithm is evaluated by accuracy or success rate,which is defined as the number of successful experiments over the total number of experiments.In order to improve reliability of simulations,simulations are carried out multiple times in different SNR scenarios.Furthermore,scenarios with different number of tags are evaluated separately due different performance in these cases.Scenarios when the number of tags is larger than 4 is not considered here because it rarely happens in practice.

    The simulation runs as the following steps.

    In the first step,we initialize the system parameters,i.e.,number of tags and SNR.

    In the second step,10000 experiments are executed.In each experiment,pseudo signals are generated based on Eq.(1).Signal strength and initial phase of tags are randomly selected in every experiment.Proposed algorithm and DBSCAN are used to determine the number of tags.Both actual number of tags and determined number of tags are recorded for performance evolution.

    In the third step,switch to the next parameter and execute Step 2 for another time.

    In the fourth step,success rate in each system parameter set are calculated.Before that,a performance indicatorbased on conditional probability is calculated by real number and determined number,as shown in Eq.(5).Wheredenotes detected number of tags whilendenotes actual number of tags.It is apparent that success rate when the number of tags is n equals probability ofp(n|n).

    Fig.3 shows success rate of proposed algorithm in different conditions of SNR and the number of tags.Success rate of proposed algorithm is greater than DBSCAN in all conditions.When SNR is larger than 18 dB,success rate of proposed algorithm is larger than 0.9 in 2 and 3 tags scenarios.Success rate is relatively lower when there are 4 tags,still over 0.8 when SNR is large enough.

    Figure 3:Success rate comparison in different conditions

    4.2 Performance of multiple time slots

    Performance of proposed algorithm in multiple time slots is evaluated by two indicators,total success rate and estimation error.When there are multiple time slots and unknown number of unidentified tags,number of tags in one time slot follows a binomial distribution,as shown in Eq.(6).

    whereB(r)denotes the probability ofrtags in one slot,ndenotes number of tags to be identified in the read range,Ldenotes frame length,i.e.,number of time slots.

    Total success rate takes distribution of number of tags in one slot into consideration,which is defined as Eq.(7).Total success rate shows an average performance under specific condition of frame length and the number of tags.

    Similar with other estimation researches,estimation error is a good indicator for performance evaluation.Here it is defined in a probabilistic way in Eq.(8).

    whereE(n)denotes average number of tags in one time slot,whiledenotes average estimated number of tags in every time slot.It is calculated by Eq.(9).

    wheredenotes expectation of estimated number of tags on condition of the number of tags in one time slot,shown as Eq.(10).

    Figure 4:Total success rate in different conditions of the number of tags

    Fig.4 shows total success rate in different conditions of the number of tags when number of time slots are set to 128.Success Rate decreases along with the number of tags increases because possibility is larger when the number of tags is higher.Apparently,SNR effects total success rate.Total success rate decreases to 0.5 when SNR is 15 dB and the number of tags reaches 300.However,total success rate is higher than 0.8 in most high SNR conditions(higher than 20).

    Figure 5:Estimation error under different number of tags and SNR conditions

    Fig.5 shows estimation error comparison between proposed algorithm and two other methods.Estimation error of our proposal decreases while SNR goes up.In 15 dB SNR condition,our proposal beats S+2.39C method when the number of tags is more than 220.In 20dB SNR condition,estimation error of our proposal is close to method proposed in Chen.(2009).Estimation error gets lower when SNR is higher than 20 and outperforms both two methods.

    5 Conclusion

    This paper focuses on tag number estimation method for RFID anti-collision purpose.A clustering algorithm is proposed to detect the number of tags in physical layer.The proposed algorithm makes full use of in-phase and quadrature information to get better performance in low SNR scenarios.Simulation results show that it is good in a large range of SNR conditions.It is better than DBSCAN in terms of success rate and better than probability-based methods in terms of estimation errors.

    Acknowledgement:This work was supported in part by the National Natural Science Foundation of China under project contracts[NOS.61601093,61791082,61701116,61371047],in part by Sichuan Provincial Science and Technology Planning Program of China under project contracts No.2016GZ0061 and No.2018HH0044,in part by Guangdong Provincial Science and Technology Planning Program of China under project contracts No.2015B090909004 and No.2016A010101036,in part by the fundamental research funds for the Central Universities under project contract No.ZYGX2016Z011,and in part by Science and Technology on Electronic Information Control Laboratory.

    tube8黄色片| 久久久久精品性色| 自拍欧美九色日韩亚洲蝌蚪91| 免费高清在线观看日韩| 午夜免费观看性视频| 在线观看www视频免费| 国产1区2区3区精品| 毛片一级片免费看久久久久| 超碰成人久久| 成年人午夜在线观看视频| 美女国产高潮福利片在线看| 国产精品三级大全| 亚洲国产av新网站| 亚洲av男天堂| 日韩精品有码人妻一区| 亚洲精品日韩在线中文字幕| 夫妻性生交免费视频一级片| 久久精品国产亚洲av涩爱| 99re6热这里在线精品视频| 日韩一区二区视频免费看| 99久久人妻综合| 啦啦啦啦在线视频资源| 欧美成人午夜精品| 九色亚洲精品在线播放| 亚洲国产欧美网| 精品少妇久久久久久888优播| 在线观看国产h片| 熟女少妇亚洲综合色aaa.| 亚洲国产av影院在线观看| 80岁老熟妇乱子伦牲交| 侵犯人妻中文字幕一二三四区| 一区二区三区乱码不卡18| 男男h啪啪无遮挡| 国产一区二区 视频在线| 久久这里只有精品19| 亚洲精品aⅴ在线观看| 九草在线视频观看| 久久久国产欧美日韩av| 亚洲熟女毛片儿| 我要看黄色一级片免费的| 夜夜骑夜夜射夜夜干| 国产成人a∨麻豆精品| 丰满迷人的少妇在线观看| 丰满乱子伦码专区| 欧美中文综合在线视频| 亚洲综合色网址| 中国国产av一级| av免费观看日本| 1024视频免费在线观看| 汤姆久久久久久久影院中文字幕| 欧美激情高清一区二区三区 | 日韩一本色道免费dvd| 夫妻性生交免费视频一级片| 岛国毛片在线播放| 精品人妻熟女毛片av久久网站| 欧美老熟妇乱子伦牲交| 高清视频免费观看一区二区| 少妇被粗大的猛进出69影院| 欧美成人精品欧美一级黄| 一二三四在线观看免费中文在| 亚洲成人手机| 中国国产av一级| 亚洲av福利一区| 国产黄色免费在线视频| 99精国产麻豆久久婷婷| 国产成人一区二区在线| 国产精品久久久人人做人人爽| 十八禁高潮呻吟视频| 亚洲欧美激情在线| 2021少妇久久久久久久久久久| bbb黄色大片| 91精品伊人久久大香线蕉| 日日撸夜夜添| 日本一区二区免费在线视频| 亚洲人成电影观看| 成人毛片60女人毛片免费| 九草在线视频观看| 欧美黄色片欧美黄色片| 秋霞伦理黄片| 97在线人人人人妻| 中文字幕高清在线视频| 国产亚洲午夜精品一区二区久久| 亚洲欧美精品自产自拍| 精品免费久久久久久久清纯 | 欧美精品人与动牲交sv欧美| 日韩,欧美,国产一区二区三区| 久久鲁丝午夜福利片| 国产在线一区二区三区精| 老司机靠b影院| 一边摸一边抽搐一进一出视频| 国产成人91sexporn| 中国三级夫妇交换| 天堂8中文在线网| 人人澡人人妻人| 日本一区二区免费在线视频| 色婷婷av一区二区三区视频| 最近最新中文字幕免费大全7| 日韩中文字幕视频在线看片| 亚洲成国产人片在线观看| 少妇的丰满在线观看| av网站在线播放免费| 亚洲欧洲日产国产| 久久久久久久久免费视频了| 校园人妻丝袜中文字幕| 一区二区三区乱码不卡18| 丰满少妇做爰视频| 亚洲欧洲国产日韩| 午夜av观看不卡| 欧美精品人与动牲交sv欧美| 日韩一本色道免费dvd| 一级,二级,三级黄色视频| 日本av免费视频播放| 视频在线观看一区二区三区| 久久久亚洲精品成人影院| 国产成人一区二区在线| 日本黄色日本黄色录像| 男女下面插进去视频免费观看| 国产精品国产三级专区第一集| 国产精品一国产av| 在线观看免费午夜福利视频| 日韩伦理黄色片| 亚洲国产av新网站| 欧美另类一区| 最近最新中文字幕免费大全7| 国产国语露脸激情在线看| 日韩大码丰满熟妇| 国产熟女午夜一区二区三区| 久久99一区二区三区| 日韩一本色道免费dvd| 亚洲熟女精品中文字幕| 性少妇av在线| 亚洲国产精品一区三区| 伦理电影免费视频| 午夜福利视频精品| 欧美日韩av久久| 建设人人有责人人尽责人人享有的| 一边摸一边做爽爽视频免费| 97在线人人人人妻| 九九爱精品视频在线观看| 精品亚洲成a人片在线观看| 老司机靠b影院| av在线app专区| av线在线观看网站| 日韩中文字幕欧美一区二区 | 夫妻午夜视频| 亚洲综合色网址| 在线观看三级黄色| 啦啦啦在线观看免费高清www| 国产一区亚洲一区在线观看| 精品国产一区二区久久| 精品国产一区二区久久| 日韩不卡一区二区三区视频在线| 久久这里只有精品19| av片东京热男人的天堂| 国产成人免费观看mmmm| 日韩制服骚丝袜av| 久久这里只有精品19| 国产精品免费大片| 一级毛片电影观看| 久久久久久久久免费视频了| 9191精品国产免费久久| 国产精品一二三区在线看| 久久久久久久大尺度免费视频| 丝袜喷水一区| 涩涩av久久男人的天堂| 丰满迷人的少妇在线观看| 七月丁香在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av电影在线观看一区二区三区| 中文字幕最新亚洲高清| 黑人欧美特级aaaaaa片| 一区二区三区四区激情视频| 亚洲,一卡二卡三卡| av国产久精品久网站免费入址| 日本欧美国产在线视频| 亚洲国产精品成人久久小说| 精品少妇一区二区三区视频日本电影 | 女性生殖器流出的白浆| 亚洲成人av在线免费| 精品国产乱码久久久久久男人| 欧美日韩成人在线一区二区| 色婷婷av一区二区三区视频| 久久久久人妻精品一区果冻| 色播在线永久视频| 少妇人妻精品综合一区二区| 久久人人97超碰香蕉20202| 一区二区日韩欧美中文字幕| 成人亚洲精品一区在线观看| 免费观看人在逋| 欧美日韩成人在线一区二区| 久久久久视频综合| 成人18禁高潮啪啪吃奶动态图| 日韩免费高清中文字幕av| 97精品久久久久久久久久精品| 中文字幕制服av| 午夜影院在线不卡| a级片在线免费高清观看视频| kizo精华| 99国产综合亚洲精品| 亚洲精品日韩在线中文字幕| 日本一区二区免费在线视频| 人人澡人人妻人| av在线播放精品| 免费日韩欧美在线观看| 欧美精品亚洲一区二区| 青春草国产在线视频| 久久人人97超碰香蕉20202| 欧美av亚洲av综合av国产av | 欧美人与性动交α欧美精品济南到| 性少妇av在线| 日日爽夜夜爽网站| 咕卡用的链子| 亚洲成人一二三区av| 国产成人系列免费观看| 十八禁网站网址无遮挡| 母亲3免费完整高清在线观看| 免费观看a级毛片全部| www.熟女人妻精品国产| 女人爽到高潮嗷嗷叫在线视频| 晚上一个人看的免费电影| 国产日韩欧美在线精品| 国产男女超爽视频在线观看| 国产精品偷伦视频观看了| 免费在线观看黄色视频的| 日韩制服骚丝袜av| 国产男人的电影天堂91| 久久久久久久精品精品| av不卡在线播放| 欧美日韩亚洲高清精品| 秋霞伦理黄片| 午夜免费男女啪啪视频观看| 国产成人一区二区在线| 女性生殖器流出的白浆| 亚洲男人天堂网一区| 老司机影院毛片| 亚洲精品视频女| 亚洲av男天堂| 久久午夜综合久久蜜桃| 精品久久久精品久久久| 亚洲欧美日韩另类电影网站| 美女视频免费永久观看网站| 一区二区日韩欧美中文字幕| 一级,二级,三级黄色视频| 一本—道久久a久久精品蜜桃钙片| 制服人妻中文乱码| 99久久综合免费| 亚洲欧美日韩另类电影网站| 老熟女久久久| 国产精品国产av在线观看| 精品酒店卫生间| 交换朋友夫妻互换小说| 极品人妻少妇av视频| 国产片内射在线| 亚洲欧美一区二区三区久久| 超碰97精品在线观看| 国产精品久久久av美女十八| 十八禁网站网址无遮挡| 满18在线观看网站| 看非洲黑人一级黄片| 日韩大片免费观看网站| 天堂8中文在线网| 一本大道久久a久久精品| 狂野欧美激情性bbbbbb| 伊人久久大香线蕉亚洲五| 在线观看免费视频网站a站| 女人久久www免费人成看片| 欧美精品一区二区大全| 精品午夜福利在线看| 一二三四中文在线观看免费高清| a级毛片黄视频| 亚洲少妇的诱惑av| 99国产精品免费福利视频| 人成视频在线观看免费观看| 精品一区二区免费观看| 久久久久久久精品精品| 大香蕉久久成人网| 日本色播在线视频| av网站在线播放免费| 丁香六月欧美| 侵犯人妻中文字幕一二三四区| videos熟女内射| 高清视频免费观看一区二区| 高清黄色对白视频在线免费看| 99香蕉大伊视频| 中文字幕最新亚洲高清| av不卡在线播放| 老熟女久久久| 亚洲成av片中文字幕在线观看| 日韩一本色道免费dvd| 成年女人毛片免费观看观看9 | 国产1区2区3区精品| 国产黄色视频一区二区在线观看| 日本91视频免费播放| 成年人免费黄色播放视频| 国产精品 国内视频| xxx大片免费视频| 咕卡用的链子| 日韩中文字幕欧美一区二区 | 涩涩av久久男人的天堂| 欧美人与善性xxx| 你懂的网址亚洲精品在线观看| 看非洲黑人一级黄片| 黑人欧美特级aaaaaa片| 国产精品一区二区精品视频观看| 国产野战对白在线观看| 人妻 亚洲 视频| 免费女性裸体啪啪无遮挡网站| 又大又黄又爽视频免费| 亚洲情色 制服丝袜| 黄网站色视频无遮挡免费观看| 久久狼人影院| 亚洲欧美一区二区三区黑人| 国产成人91sexporn| 亚洲 欧美一区二区三区| 国产精品一二三区在线看| 国产av一区二区精品久久| 成年美女黄网站色视频大全免费| 又粗又硬又长又爽又黄的视频| 国产精品熟女久久久久浪| 国产色婷婷99| 亚洲国产欧美一区二区综合| 国产片内射在线| 亚洲欧美激情在线| 在线天堂中文资源库| 日韩精品有码人妻一区| 好男人视频免费观看在线| 久久人人97超碰香蕉20202| 国产高清不卡午夜福利| 精品久久久久久电影网| 女人爽到高潮嗷嗷叫在线视频| 中文字幕制服av| 女人久久www免费人成看片| 久久精品久久久久久噜噜老黄| 午夜日韩欧美国产| 超碰97精品在线观看| 成年人免费黄色播放视频| 看非洲黑人一级黄片| 99久久综合免费| 极品少妇高潮喷水抽搐| 国产福利在线免费观看视频| 美女扒开内裤让男人捅视频| 免费黄色在线免费观看| 捣出白浆h1v1| av片东京热男人的天堂| 老司机深夜福利视频在线观看 | 亚洲免费av在线视频| 女性被躁到高潮视频| 青春草视频在线免费观看| 一级片免费观看大全| 国产精品三级大全| 丰满饥渴人妻一区二区三| 亚洲,欧美,日韩| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区久久| 精品一区二区三卡| a级毛片在线看网站| 黑人猛操日本美女一级片| 青春草国产在线视频| 19禁男女啪啪无遮挡网站| 亚洲美女视频黄频| 久久久久网色| 人人妻人人爽人人添夜夜欢视频| 两性夫妻黄色片| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 亚洲精品国产色婷婷电影| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| a级片在线免费高清观看视频| 99热国产这里只有精品6| netflix在线观看网站| 极品少妇高潮喷水抽搐| 国产精品久久久久久人妻精品电影 | 中文天堂在线官网| 校园人妻丝袜中文字幕| 韩国精品一区二区三区| 99精国产麻豆久久婷婷| xxx大片免费视频| 最近的中文字幕免费完整| 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕| 日日摸夜夜添夜夜爱| 乱人伦中国视频| 成人毛片60女人毛片免费| 国产精品女同一区二区软件| 18禁观看日本| 国产成人精品久久二区二区91 | 国产精品一区二区精品视频观看| 国产一卡二卡三卡精品 | 久久久久精品国产欧美久久久 | 亚洲人成网站在线观看播放| 日韩一卡2卡3卡4卡2021年| av国产久精品久网站免费入址| avwww免费| 亚洲精品,欧美精品| 我的亚洲天堂| 亚洲图色成人| 国产免费福利视频在线观看| 久久综合国产亚洲精品| 性色av一级| 国产成人精品在线电影| av又黄又爽大尺度在线免费看| 欧美国产精品va在线观看不卡| 国产伦理片在线播放av一区| 精品一区二区免费观看| 亚洲国产精品成人久久小说| 欧美黄色片欧美黄色片| 色婷婷av一区二区三区视频| 老司机在亚洲福利影院| 亚洲视频免费观看视频| 欧美日韩一级在线毛片| 日本欧美国产在线视频| 少妇被粗大的猛进出69影院| 久久精品久久久久久噜噜老黄| 亚洲精品国产av成人精品| 热99久久久久精品小说推荐| 别揉我奶头~嗯~啊~动态视频 | 51午夜福利影视在线观看| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区激情| 十八禁人妻一区二区| 五月天丁香电影| 在线天堂最新版资源| 久久青草综合色| 亚洲国产精品999| 欧美另类一区| 国产精品久久久av美女十八| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美软件| 人人妻人人爽人人添夜夜欢视频| 午夜激情久久久久久久| av线在线观看网站| 国产福利在线免费观看视频| 久久久久精品国产欧美久久久 | 欧美最新免费一区二区三区| 欧美日本中文国产一区发布| 一区福利在线观看| 久久人妻熟女aⅴ| 久久ye,这里只有精品| 国产精品久久久久久久久免| 国产av精品麻豆| 亚洲欧洲日产国产| 老司机靠b影院| 久久人妻熟女aⅴ| 两个人看的免费小视频| 乱人伦中国视频| 亚洲精品aⅴ在线观看| 精品少妇久久久久久888优播| 国产日韩欧美亚洲二区| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 一级爰片在线观看| 街头女战士在线观看网站| 亚洲婷婷狠狠爱综合网| 欧美黑人精品巨大| 看非洲黑人一级黄片| 不卡av一区二区三区| a级片在线免费高清观看视频| 午夜老司机福利片| a 毛片基地| 欧美激情极品国产一区二区三区| 日韩中文字幕视频在线看片| 免费看av在线观看网站| 亚洲成人av在线免费| 国产成人av激情在线播放| 巨乳人妻的诱惑在线观看| 美女主播在线视频| 黄色视频在线播放观看不卡| 免费观看人在逋| 国语对白做爰xxxⅹ性视频网站| 久久鲁丝午夜福利片| 色视频在线一区二区三区| 久久毛片免费看一区二区三区| 国产亚洲欧美精品永久| 国产亚洲精品第一综合不卡| 亚洲三区欧美一区| 伊人亚洲综合成人网| 亚洲精品国产色婷婷电影| 国产又色又爽无遮挡免| 午夜久久久在线观看| 男女无遮挡免费网站观看| 桃花免费在线播放| 国产亚洲av片在线观看秒播厂| 国产国语露脸激情在线看| 国产 精品1| 女人被躁到高潮嗷嗷叫费观| 纵有疾风起免费观看全集完整版| av国产精品久久久久影院| 久久人人97超碰香蕉20202| 一级片免费观看大全| 久久 成人 亚洲| 日韩视频在线欧美| 菩萨蛮人人尽说江南好唐韦庄| 天堂俺去俺来也www色官网| 久久久久久久久久久久大奶| 99久久99久久久精品蜜桃| 18禁国产床啪视频网站| 亚洲国产欧美在线一区| 国产在线一区二区三区精| 青草久久国产| 9热在线视频观看99| 99国产综合亚洲精品| 日日爽夜夜爽网站| 国产精品二区激情视频| 国产亚洲欧美精品永久| 久久久国产欧美日韩av| bbb黄色大片| 老汉色∧v一级毛片| 午夜日本视频在线| av不卡在线播放| 国产熟女欧美一区二区| 中文字幕高清在线视频| 久久鲁丝午夜福利片| 一级毛片电影观看| 久久狼人影院| 99热网站在线观看| 久久人人97超碰香蕉20202| 欧美成人精品欧美一级黄| 黄频高清免费视频| 好男人视频免费观看在线| 伦理电影大哥的女人| 亚洲av电影在线观看一区二区三区| 美女中出高潮动态图| 一级毛片 在线播放| 女人被躁到高潮嗷嗷叫费观| 又大又爽又粗| a级毛片黄视频| 精品国产乱码久久久久久男人| 亚洲成人手机| 九草在线视频观看| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 成人国产av品久久久| 亚洲美女视频黄频| 另类精品久久| 视频在线观看一区二区三区| 国产亚洲av高清不卡| 十八禁人妻一区二区| 欧美 日韩 精品 国产| 91国产中文字幕| 天堂俺去俺来也www色官网| 美女大奶头黄色视频| av女优亚洲男人天堂| 国产成人精品无人区| 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜| 一二三四中文在线观看免费高清| 在线天堂中文资源库| 最近中文字幕高清免费大全6| 亚洲成av片中文字幕在线观看| 色视频在线一区二区三区| 人人妻人人爽人人添夜夜欢视频| 久久久久人妻精品一区果冻| 欧美黑人精品巨大| 久久久久人妻精品一区果冻| 99国产精品免费福利视频| 一二三四中文在线观看免费高清| 90打野战视频偷拍视频| 毛片一级片免费看久久久久| 亚洲成人av在线免费| 午夜91福利影院| 夫妻性生交免费视频一级片| 精品少妇内射三级| 看十八女毛片水多多多| 久久久久久久久免费视频了| 亚洲,欧美精品.| 搡老乐熟女国产| 亚洲人成网站在线观看播放| 伦理电影免费视频| 两个人免费观看高清视频| 国产人伦9x9x在线观看| 熟女av电影| 久久综合国产亚洲精品| 亚洲,欧美精品.| 青春草亚洲视频在线观看| 熟女av电影| 亚洲情色 制服丝袜| 亚洲国产精品999| av天堂久久9| 亚洲精品一二三| 天堂8中文在线网| 精品酒店卫生间| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久久免费av| av卡一久久| 色网站视频免费| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频| 女性被躁到高潮视频| 纵有疾风起免费观看全集完整版| 我要看黄色一级片免费的| 大话2 男鬼变身卡| 日本欧美国产在线视频| 亚洲成av片中文字幕在线观看| 免费观看性生交大片5| 日韩,欧美,国产一区二区三区| 一二三四中文在线观看免费高清| 国产一区二区三区综合在线观看| 久久97久久精品| 女人久久www免费人成看片| 毛片一级片免费看久久久久| 99精国产麻豆久久婷婷| 欧美 亚洲 国产 日韩一| 国产免费福利视频在线观看| 男人爽女人下面视频在线观看| 大话2 男鬼变身卡| 日韩 亚洲 欧美在线| 最新的欧美精品一区二区| 天天躁夜夜躁狠狠躁躁| 久久精品久久久久久噜噜老黄| 精品亚洲乱码少妇综合久久| 一级毛片 在线播放|