• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Physical Layer Algorithm for Estimation of Number of Tags in UHF RFID Anti-Collision Design

    2019-11-07 03:13:06ZhongHuangJianSuGuangjunWenWenxianZhengChuChuYijunZhang4andYiboZhang
    Computers Materials&Continua 2019年10期

    Zhong HuangJian SuGuangjun WenWenxian ZhengChu ChuYijun Zhang4 and Yibo Zhang

    Abstract:A priori knowledge of the number of tags is crucial for anti-collision protocols in slotted UHF RFID systems.The number of tags is used to decide optimal frame length in dynamic frame slotted ALOHA(DFSA)and to adjust access probability in random access protocols.Conventional researches estimate the number of tags in MAC layer based on statistics of empty slots,collided slots and successful slots.Usually,a collision detection algorithm is employed to determine types of time slots.Only three types are distinguished because of lack of ability to detect the number of tags in single time slot.In this paper,a physical layer algorithm is proposed to detect the number of tags in a collided slot.Mean shift algorithm is utilized,and some properties of backscatter signals are investigated.Simulation results verify the effectiveness of the proposed solution in terms of low estimation error with a high SNR range,outperforming the existing MAC layer approaches.

    Keywords:UHF RFID,anti-collision,cluster algorithm.

    1 Introduction

    Anti-collision algorithms are carried out in multi-access UHF RFID systems to reduce collisions as well as to increase channel efficiency.As one of the most popular anticollision algorithms for RFID system,dynamic framed slotted ALOHA(DFSA)algorithm employs a mechanism similar with time division multiple access(TDMA).Synchronized frame is divided into several time slots for random access.Reader dynamically adjusts the number of time slots based on the estimated number of tags.It is well known that DFSA reaches the optimal system throughput when the number of slots equals to the number of tags waiting to be identified.There are two main problems in DFSA design,estimation of the number of tags and frame length adjustment[Chen,Liu,Ma et al.(2018)].

    Various researches are proposed to improve the estimation accuracy so as to improve the channel efficiency of RFID system.The number of tags is estimated by multiplying the number of collided slots in a frame by the expected number of tags per collided slot(=2.39),which is a constant for all frames regardless of number of tags and frame size[Schoute(1983)].In the mechanisms proposed by Vogt et al.[Vogt(2002);Chen and Lin(2006);Cha and Kim(2005)],estimation of the number of tags is based on successful,collided,and empty probability in a frame.Probability theory is utilized in these works.The number of tags is estimated in Chen[Chen(2009)]by multiplying the number of collided time slots by a well-defined factor,which is found by an iterative algorithm.A posteriori probability distribution-based method is proposed in Eom et al.[Eom and Lee(2010)]to further improve the accuracy.However,the computation complexity is higher than the others.A Bayesian method[Annur,Srichavengsup,Nakpeerayuth et al.(2015)]is used to update the posterior probability distribution of number of users' slot by slot so as to estimate the number of tags.

    Since RFID readers usually adopt in-phase and quadrature information of tag signals,tag recovery and estimation methods of the number of tags based on signal processing are developed to solve collision problem.Tag recovery is able to turn a collided slot into a successful slot while estimation of the number of tags based on physical layer process is able to enhance performance of anti-collision algorithm in upper layer.Most researches require multiple antennas receiver[Angerer,Langwieser and Rupp(2010)],specific tag signal strength[Fyhn,Jacobsen,Popovski et al.(2011)],modified coding mechanisms[Parks,Liu,Gollakota et al.(2014)],etc.Bipartite Grouping(BiGroup)[Ou,Li and Zheng(2017)]is the first one proposed to parallelly decode multiple CTOS tags with the help of both time domain and constellation domain information in physical layer.Algorithms based on signal processing in time domain are proposed to reduce SNR requirements.Collided signals are transformed to time-scale domains and LS criterion is utilized for tag signal separation in Zeng et al.[Zeng,Wu,Yang et al.(2017)].An edge transition scheme is proposed to recover collision and decode tag signals in Benbaghdad et al.[Benbaghdad,Fergani and Tedjini(2016)].These works focus on tag signal recovery issues in physical layer and pay less attention on MAC layer design.Tan et al.[Tan,Wang,Fu et al.(2018)]proposed a collision detection and signal recovery method and combine them with DFSA algorithm.Optimal frame length is calculated based on a collision recovery probability coefficient,which is obtained by simulations of its physical layer design.A novel closed-form solution is further proposed in Ahmed et al.[Ahmed,Salah,Robert et al.(2018)]for optimal FSA frame length decision,in which collision recovery probabilities are provided arbitrarily.An accurate tag number estimation algorithm is still needed and not addressed.

    In this paper,we propose to estimate the number of tags in a collided time slot in physical layer.Different from the existing work,we focus on improving estimation accuracy under CTOS tag assumption.Estimation error is reduced compared with MAC layer design and SNR range is expanded compared with current physical layer design.In this scheme,the number of tags in single time slot is determined by the number of clusters located in constellation domain.Signal samples are firstly scaled based on the baseband noise level.After that,mean shift algorithm is utilized to divide the data into several clusters.In the end,a cluster adjustment process is carried out to get better performance.Simulation results verify the effectiveness of the proposed solution in terms of low estimation errors and high SNR range,outperforming the existing MAC layer-based approaches.This paper is organized as following.Section II describes signal model of UHF RFID system and drawback of clustering algorithms.After that,design consideration and cluster-based algorithm is proposed in Section III,which is evaluated with numeric simulations in Section IV.Finally,conclusion follows.

    2 Signal model and cluster algorithm

    2.1 Backscatter signal and its distribution

    In a UHF RFID system,reader energizes tags by transmitting continuous wave.Passive tags backscatter the radio to communicate with the reader.After that,backscatter signals are down converted in the reader side.As shown in Fig.1(a),baseband signal in receive path of a reader consists of three components,backscatter signal of tags,self-jammer and noise.Eq.(1)shows the detailed format of those signals.

    The first one indicates signals of multiple tags,the second one indicates the signals of self-jammer caused by RFID system.Where i indicates the index of collided tags in the same time slot,Aiandθiare respective transmitted data and initial phase of the i-th tag signal.θ0andμis the amplitude and phase of self-jammer.n(t)represents white noise in the receiver.

    Figure 1:RFID framework and backscatter signal model

    Backscatter signals have both in-phase and quadrature components,with which we could plot the signal samples in a two-dimension coordinates.Every sample is represented by a point on the I-Q plane.Samples of the same transmitting status are dispersed and scattered around a centroid position,forming a cluster.As shown in Fig.1(b),there are 4 clusters,representing 4 transmitting status of 2 tags.The number of clusters is decided by the number of tags.Every tag has two transmission status,the size of the full status space is 2n,where n is the number of tags.Three properties could be obtained from Eq.(1).

    1.Since noise in in-phase axis and in quadrature axis are different due to the existence of self-jammer,every cluster is shaped as an eclipse.

    2.We assume that noise in both axes obeys gaussian distribution.As a result,around 95% samples of one cluster are located in a circle of radius of two times standard deviation of noise.The higher the noise is,the bigger the circle is.When SNR goes down,the radius gets bigger,and when it is larger than the distance between cluster centers,the clusters overlap.Fig.1(c)shows an example when clusters are overlapped.

    3.The clusters are always located in pairs,symmetrizing to the center of all samples.For every cluster,reverse all the tag status,a symmetric cluster is obtained.Their symmetric center is located at the center of the whole graph.Eq.(2)shows the coordinates of the center point,wherensam,xcenterandycenterdenotes the number of samples,x axis coordinate and y axis coordinate.

    2.2 Density based clustering algorithm

    A straight forward way to find the number of tags is to divide signal samples into clusters with a cluster algorithm.Mean shift algorithm and DBSCAN algorithm are both widely used method to identify multiple dimension data without a prior knowledge of the number of clusters.They both make use of sample density to make decisions.Mean shift algorithm updates every cluster center based on the vector sum of all samples in it until convergence.Bandwidth is setup to decide the range of clusters.On the other hand,DBSCAN choose samples with large number of neighbors as core samples.Connection between core samples are calculated and clusters are divided.Parameters distance is required to decide neighbors and minimum points are required to decide core samples.

    Table 1:Parameter settings of cluster algorithms

    Both algorithms are tested with simulations.Parameter settings are shown in Tab.1.Fig.(2)shows the cluster division of two algorithms.Samples in one cluster are encircled by a circle.DBSCAN divides the signals into 6 clusters while mean shift divides them into more than 20 clusters.

    Figure 2:Performance of two algorithm in different SNR scenarios

    3 Physical layer algorithm for estimation of the number of tags in single time slot

    3.1 Design consideration

    Mean shift algorithm and DBSCAN are available for clustering in some cases with proper parameter settings.However,both algorithms are not designed for detection of the number of tags.DBSCAN requires uniform distributed samples in one cluster,which is not preferred in our case.Density of samples in one cluster decreases along with distance to the center.Furthermore,it is not able to identify overlapped clusters.Mean shift algorithm outperforms DBSCAN in low SNR scenario.Cluster centers are updated towards a denser direction,it always finds the densest points.However,isolated samples are identified as a cluster in some cases.In this paper,we make use of samples distribution information and its properties to improve performance of mean shift algorithm.The improvement is based on the following considerations.

    First of all,our purpose is to find number of clusters,not accurate cluster division.Wrong assignment to clusters may cause bit error in signal recovery case,but not in number detection case.As a result,we only consider a small core area of clusters,which is defined as samples within distance of two times standard deviation of noise.Find it and we get a valid cluster center.The noise samples are ignored naturally.

    Second,as described in Section II,all clusters are shaped like an eclipse.On the meantime,mean shift algorithm calculates updated vector based on a Euclid distance,which means samples in a perfect circle are all considered.It brings a big performance decrease.It is fitting and proper to adjust the scale of in-phase and quadrature signal magnate by noise level.After that,the core area of clusters is formed as a perfect circle.It is better for identification.

    Finally,clusters are distributed in pairs.Every cluster have a symmetrical one with similar number of samples.Their cluster centers are also symmetrical to the whole center of samples.This property makes us able to discard isolated noise cluster identified by mean shift algorithm.

    3.2 Algorithm details

    The detailed algorithm is shown as Algorithm.1,we first transform samples to make clusters shaped as perfect circle other than eclipse.After that,mean shift algorithm is carried out.Some random points are selected as initial centers.These centers are updated based on samples in their neighborhood.After they converge,an adjustment scheme is carried out to discard isolated noise clusters.

    4 Simulation and performance evaluation

    In this section,we evaluate the performance of proposed algorithm under different scenarios.Success rate is firstly proposed for accuracy of detecting number of tags to evaluate performance in single time slot scenario.After that,total success rate and estimation error are derived based on probability to evaluate performance in multiple time slots scenario.Success rate is compared with DBSCAN algorithm and estimation error is compared with probability-based methods.

    4.1 Performance in single time slot scenario

    The performance of proposed algorithm is evaluated by accuracy or success rate,which is defined as the number of successful experiments over the total number of experiments.In order to improve reliability of simulations,simulations are carried out multiple times in different SNR scenarios.Furthermore,scenarios with different number of tags are evaluated separately due different performance in these cases.Scenarios when the number of tags is larger than 4 is not considered here because it rarely happens in practice.

    The simulation runs as the following steps.

    In the first step,we initialize the system parameters,i.e.,number of tags and SNR.

    In the second step,10000 experiments are executed.In each experiment,pseudo signals are generated based on Eq.(1).Signal strength and initial phase of tags are randomly selected in every experiment.Proposed algorithm and DBSCAN are used to determine the number of tags.Both actual number of tags and determined number of tags are recorded for performance evolution.

    In the third step,switch to the next parameter and execute Step 2 for another time.

    In the fourth step,success rate in each system parameter set are calculated.Before that,a performance indicatorbased on conditional probability is calculated by real number and determined number,as shown in Eq.(5).Wheredenotes detected number of tags whilendenotes actual number of tags.It is apparent that success rate when the number of tags is n equals probability ofp(n|n).

    Fig.3 shows success rate of proposed algorithm in different conditions of SNR and the number of tags.Success rate of proposed algorithm is greater than DBSCAN in all conditions.When SNR is larger than 18 dB,success rate of proposed algorithm is larger than 0.9 in 2 and 3 tags scenarios.Success rate is relatively lower when there are 4 tags,still over 0.8 when SNR is large enough.

    Figure 3:Success rate comparison in different conditions

    4.2 Performance of multiple time slots

    Performance of proposed algorithm in multiple time slots is evaluated by two indicators,total success rate and estimation error.When there are multiple time slots and unknown number of unidentified tags,number of tags in one time slot follows a binomial distribution,as shown in Eq.(6).

    whereB(r)denotes the probability ofrtags in one slot,ndenotes number of tags to be identified in the read range,Ldenotes frame length,i.e.,number of time slots.

    Total success rate takes distribution of number of tags in one slot into consideration,which is defined as Eq.(7).Total success rate shows an average performance under specific condition of frame length and the number of tags.

    Similar with other estimation researches,estimation error is a good indicator for performance evaluation.Here it is defined in a probabilistic way in Eq.(8).

    whereE(n)denotes average number of tags in one time slot,whiledenotes average estimated number of tags in every time slot.It is calculated by Eq.(9).

    wheredenotes expectation of estimated number of tags on condition of the number of tags in one time slot,shown as Eq.(10).

    Figure 4:Total success rate in different conditions of the number of tags

    Fig.4 shows total success rate in different conditions of the number of tags when number of time slots are set to 128.Success Rate decreases along with the number of tags increases because possibility is larger when the number of tags is higher.Apparently,SNR effects total success rate.Total success rate decreases to 0.5 when SNR is 15 dB and the number of tags reaches 300.However,total success rate is higher than 0.8 in most high SNR conditions(higher than 20).

    Figure 5:Estimation error under different number of tags and SNR conditions

    Fig.5 shows estimation error comparison between proposed algorithm and two other methods.Estimation error of our proposal decreases while SNR goes up.In 15 dB SNR condition,our proposal beats S+2.39C method when the number of tags is more than 220.In 20dB SNR condition,estimation error of our proposal is close to method proposed in Chen.(2009).Estimation error gets lower when SNR is higher than 20 and outperforms both two methods.

    5 Conclusion

    This paper focuses on tag number estimation method for RFID anti-collision purpose.A clustering algorithm is proposed to detect the number of tags in physical layer.The proposed algorithm makes full use of in-phase and quadrature information to get better performance in low SNR scenarios.Simulation results show that it is good in a large range of SNR conditions.It is better than DBSCAN in terms of success rate and better than probability-based methods in terms of estimation errors.

    Acknowledgement:This work was supported in part by the National Natural Science Foundation of China under project contracts[NOS.61601093,61791082,61701116,61371047],in part by Sichuan Provincial Science and Technology Planning Program of China under project contracts No.2016GZ0061 and No.2018HH0044,in part by Guangdong Provincial Science and Technology Planning Program of China under project contracts No.2015B090909004 and No.2016A010101036,in part by the fundamental research funds for the Central Universities under project contract No.ZYGX2016Z011,and in part by Science and Technology on Electronic Information Control Laboratory.

    女人十人毛片免费观看3o分钟| 亚洲精品乱久久久久久| 中文精品一卡2卡3卡4更新| 国产成人福利小说| 亚洲精品乱久久久久久| 欧美性猛交╳xxx乱大交人| 国语对白做爰xxxⅹ性视频网站| 少妇人妻精品综合一区二区| 国产美女午夜福利| 免费看av在线观看网站| 少妇人妻精品综合一区二区| 久久ye,这里只有精品| 欧美高清成人免费视频www| 97超碰精品成人国产| 青春草视频在线免费观看| 成人综合一区亚洲| 久久久久久久亚洲中文字幕| 亚洲天堂国产精品一区在线| 免费少妇av软件| 国产伦精品一区二区三区四那| 在线播放无遮挡| 精品久久久久久久人妻蜜臀av| 国产一区二区三区综合在线观看 | 看免费成人av毛片| 成人国产麻豆网| 精品少妇久久久久久888优播| 三级国产精品片| 国产伦精品一区二区三区四那| 国产女主播在线喷水免费视频网站| 亚洲精品乱久久久久久| 国产人妻一区二区三区在| 国产免费又黄又爽又色| 91久久精品电影网| a级毛片免费高清观看在线播放| 亚洲精品日本国产第一区| 日本一本二区三区精品| 欧美日韩一区二区视频在线观看视频在线 | 日本与韩国留学比较| 久久久久久久午夜电影| 国产视频内射| 不卡视频在线观看欧美| 成人国产麻豆网| 91久久精品国产一区二区成人| 国产一级毛片在线| 国产成人freesex在线| 国产真实伦视频高清在线观看| 在线观看国产h片| 97精品久久久久久久久久精品| 亚洲丝袜综合中文字幕| 亚洲真实伦在线观看| 狂野欧美激情性xxxx在线观看| 51国产日韩欧美| a级一级毛片免费在线观看| 午夜福利高清视频| 亚洲av电影在线观看一区二区三区 | 黄色一级大片看看| 五月伊人婷婷丁香| videossex国产| 丝瓜视频免费看黄片| 色综合色国产| 99久久精品热视频| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 国产成人freesex在线| 3wmmmm亚洲av在线观看| 一二三四中文在线观看免费高清| 高清在线视频一区二区三区| 精品酒店卫生间| 日韩伦理黄色片| 18禁裸乳无遮挡免费网站照片| 80岁老熟妇乱子伦牲交| 熟女人妻精品中文字幕| 一级av片app| 免费黄网站久久成人精品| 中国美白少妇内射xxxbb| 国产熟女欧美一区二区| 日本黄大片高清| 久久99蜜桃精品久久| 日本黄大片高清| 97人妻精品一区二区三区麻豆| 日本午夜av视频| 色视频在线一区二区三区| 色视频在线一区二区三区| 女人十人毛片免费观看3o分钟| 国内精品宾馆在线| 麻豆精品久久久久久蜜桃| 久久99热6这里只有精品| 97在线人人人人妻| 可以在线观看毛片的网站| 夜夜爽夜夜爽视频| 午夜视频国产福利| 在线看a的网站| 国产成人免费观看mmmm| 久久久精品94久久精品| 成人无遮挡网站| 国产黄色视频一区二区在线观看| 成人鲁丝片一二三区免费| 久热这里只有精品99| 全区人妻精品视频| 夫妻性生交免费视频一级片| 身体一侧抽搐| 日本与韩国留学比较| 久久久久精品久久久久真实原创| 一级片'在线观看视频| 女人十人毛片免费观看3o分钟| 一级毛片电影观看| 最近中文字幕高清免费大全6| 免费观看性生交大片5| 少妇熟女欧美另类| 直男gayav资源| 国产欧美日韩精品一区二区| 亚洲人成网站在线观看播放| 成人亚洲精品一区在线观看 | 老司机影院成人| 国产视频内射| 国产69精品久久久久777片| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 亚洲欧美一区二区三区黑人 | 高清在线视频一区二区三区| 真实男女啪啪啪动态图| 别揉我奶头 嗯啊视频| 国产黄片美女视频| 国产成人福利小说| 久久久久久久大尺度免费视频| 色综合色国产| 日本猛色少妇xxxxx猛交久久| 国产片特级美女逼逼视频| 国产午夜精品一二区理论片| 中文天堂在线官网| av一本久久久久| 人妻系列 视频| 男女无遮挡免费网站观看| 成人毛片a级毛片在线播放| 国产精品一及| 听说在线观看完整版免费高清| 日韩av免费高清视频| 有码 亚洲区| 少妇丰满av| 日韩成人av中文字幕在线观看| 亚洲精品国产色婷婷电影| 亚洲,一卡二卡三卡| 久久人人爽人人片av| 99热这里只有精品一区| 亚洲,欧美,日韩| 全区人妻精品视频| 精品国产乱码久久久久久小说| 欧美另类一区| 亚洲欧美中文字幕日韩二区| 国产欧美日韩一区二区三区在线 | 久久精品国产亚洲av天美| 97超碰精品成人国产| 午夜福利高清视频| 国产成人免费观看mmmm| 亚洲高清免费不卡视频| 一区二区三区免费毛片| 18禁动态无遮挡网站| 岛国毛片在线播放| 2021天堂中文幕一二区在线观| 日韩三级伦理在线观看| 性插视频无遮挡在线免费观看| 美女高潮的动态| 又黄又爽又刺激的免费视频.| 不卡视频在线观看欧美| 欧美日韩精品成人综合77777| 91久久精品国产一区二区成人| 最近2019中文字幕mv第一页| 久久久久久久国产电影| 人妻一区二区av| 久久久久久九九精品二区国产| 亚洲怡红院男人天堂| 嫩草影院入口| 一本一本综合久久| 国产综合懂色| 成人毛片60女人毛片免费| 九九久久精品国产亚洲av麻豆| 国产高清有码在线观看视频| 成人二区视频| 一级毛片aaaaaa免费看小| 日本-黄色视频高清免费观看| 97人妻精品一区二区三区麻豆| 哪个播放器可以免费观看大片| 激情 狠狠 欧美| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久精品电影小说 | 日韩伦理黄色片| 男女下面进入的视频免费午夜| 欧美成人a在线观看| 国产精品蜜桃在线观看| av网站免费在线观看视频| 黄色怎么调成土黄色| 精品亚洲乱码少妇综合久久| 只有这里有精品99| 99久国产av精品国产电影| 18+在线观看网站| 精品久久久久久久久亚洲| 日本欧美国产在线视频| 国产欧美亚洲国产| 亚洲精品国产色婷婷电影| 亚洲精品乱码久久久v下载方式| 在线看a的网站| 天美传媒精品一区二区| 乱码一卡2卡4卡精品| 三级国产精品欧美在线观看| 久久韩国三级中文字幕| 国产成人午夜福利电影在线观看| 99久久精品热视频| 狂野欧美白嫩少妇大欣赏| 99久久九九国产精品国产免费| 国产国拍精品亚洲av在线观看| 国产乱来视频区| 在线精品无人区一区二区三 | 激情五月婷婷亚洲| 亚洲天堂国产精品一区在线| eeuss影院久久| 老司机影院成人| 天天一区二区日本电影三级| 亚洲精品国产色婷婷电影| 日本三级黄在线观看| 男的添女的下面高潮视频| 日韩强制内射视频| 国产高清三级在线| 在线观看一区二区三区| 最近的中文字幕免费完整| 国产精品一区二区三区四区免费观看| 亚洲精品国产成人久久av| 精品99又大又爽又粗少妇毛片| 三级国产精品欧美在线观看| 天天躁日日操中文字幕| 欧美高清成人免费视频www| 日本wwww免费看| 国产在视频线精品| 国产精品国产av在线观看| 日本色播在线视频| 国产精品一区www在线观看| 亚洲成色77777| 一级毛片电影观看| 精品人妻一区二区三区麻豆| 亚洲自拍偷在线| 97热精品久久久久久| 久久久欧美国产精品| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 国产黄色免费在线视频| 精品一区二区三区视频在线| 看十八女毛片水多多多| 国产高清国产精品国产三级 | 国产探花极品一区二区| a级毛片免费高清观看在线播放| 丝瓜视频免费看黄片| 亚洲真实伦在线观看| 亚洲av免费高清在线观看| 九草在线视频观看| 亚洲av电影在线观看一区二区三区 | 国产真实伦视频高清在线观看| 久久久久网色| 免费观看在线日韩| 最后的刺客免费高清国语| 人妻一区二区av| 中文精品一卡2卡3卡4更新| 极品教师在线视频| 亚洲真实伦在线观看| 五月天丁香电影| 久久久久久久久久久免费av| 久久久久久久精品精品| 中国美白少妇内射xxxbb| 777米奇影视久久| 亚洲久久久久久中文字幕| 免费高清在线观看视频在线观看| 人妻少妇偷人精品九色| 国内精品美女久久久久久| 色播亚洲综合网| 97超碰精品成人国产| 秋霞在线观看毛片| 国产女主播在线喷水免费视频网站| 六月丁香七月| 国产精品一区二区三区四区免费观看| 青青草视频在线视频观看| 国产欧美日韩精品一区二区| 中文精品一卡2卡3卡4更新| 亚洲av在线观看美女高潮| 深夜a级毛片| 乱系列少妇在线播放| 日本免费在线观看一区| 嫩草影院入口| 色综合色国产| 青青草视频在线视频观看| 美女被艹到高潮喷水动态| 高清日韩中文字幕在线| 99久久人妻综合| 亚洲熟女精品中文字幕| 婷婷色av中文字幕| 亚洲欧美日韩无卡精品| a级毛色黄片| 男的添女的下面高潮视频| 国产在视频线精品| 在线天堂最新版资源| 国产成人免费无遮挡视频| 人人妻人人爽人人添夜夜欢视频 | 欧美日本视频| 26uuu在线亚洲综合色| 久久精品综合一区二区三区| 久久人人爽av亚洲精品天堂 | 香蕉精品网在线| www.av在线官网国产| 亚洲av成人精品一二三区| 欧美日韩国产mv在线观看视频 | 国产成人一区二区在线| 久久99精品国语久久久| 黄色怎么调成土黄色| 99热这里只有精品一区| 精品国产一区二区三区久久久樱花 | 亚洲色图av天堂| 超碰av人人做人人爽久久| 成人一区二区视频在线观看| 日韩av免费高清视频| 国产精品麻豆人妻色哟哟久久| 日韩制服骚丝袜av| 内地一区二区视频在线| 久久久久精品久久久久真实原创| 亚洲人成网站在线播| 国产一区二区三区av在线| 狂野欧美激情性bbbbbb| 国内精品美女久久久久久| 亚洲va在线va天堂va国产| 一个人看的www免费观看视频| 一级二级三级毛片免费看| 日韩欧美一区视频在线观看 | 日韩伦理黄色片| 亚洲成人一二三区av| 午夜福利在线在线| 免费在线观看成人毛片| 亚洲一区二区三区欧美精品 | 美女主播在线视频| 香蕉精品网在线| 国产精品无大码| 国产精品一二三区在线看| 午夜日本视频在线| 狂野欧美白嫩少妇大欣赏| 91久久精品电影网| 国产精品一区www在线观看| 寂寞人妻少妇视频99o| 午夜福利视频1000在线观看| 最近中文字幕2019免费版| 美女内射精品一级片tv| 国产老妇女一区| 亚洲精品影视一区二区三区av| 国产毛片a区久久久久| 校园人妻丝袜中文字幕| 免费大片黄手机在线观看| 69人妻影院| 国产探花极品一区二区| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看 | 男人爽女人下面视频在线观看| 免费观看在线日韩| 精品一区二区三区视频在线| 午夜福利高清视频| 秋霞在线观看毛片| 国产精品无大码| 欧美3d第一页| 五月伊人婷婷丁香| 午夜精品国产一区二区电影 | 久久久久国产精品人妻一区二区| 亚洲av国产av综合av卡| a级毛色黄片| 久久99精品国语久久久| 国产一级毛片在线| 亚洲精品成人久久久久久| 成人鲁丝片一二三区免费| 黄片无遮挡物在线观看| 欧美丝袜亚洲另类| 亚洲精品日韩在线中文字幕| 国产69精品久久久久777片| 2022亚洲国产成人精品| 免费在线观看成人毛片| 国产精品偷伦视频观看了| 日本黄色片子视频| 日本色播在线视频| 亚洲不卡免费看| eeuss影院久久| 建设人人有责人人尽责人人享有的 | 国产在线男女| 偷拍熟女少妇极品色| 人人妻人人爽人人添夜夜欢视频 | 美女脱内裤让男人舔精品视频| 精品久久国产蜜桃| 别揉我奶头 嗯啊视频| 国产黄频视频在线观看| 精品久久久精品久久久| 国产淫语在线视频| 少妇人妻 视频| 乱系列少妇在线播放| 久久久久国产网址| 最近最新中文字幕免费大全7| 在线免费十八禁| 99久久九九国产精品国产免费| 亚洲欧洲日产国产| 一级黄片播放器| 肉色欧美久久久久久久蜜桃 | 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 三级国产精品片| 永久网站在线| 色视频在线一区二区三区| 精品视频人人做人人爽| 最新中文字幕久久久久| 久久精品夜色国产| 永久网站在线| 久久精品夜色国产| 国产精品成人在线| 乱系列少妇在线播放| 91午夜精品亚洲一区二区三区| 插阴视频在线观看视频| 国产毛片a区久久久久| 夫妻午夜视频| 欧美成人精品欧美一级黄| 国产男女超爽视频在线观看| 一级毛片电影观看| 99热这里只有是精品50| 日韩伦理黄色片| 久久久久性生活片| 国产免费一级a男人的天堂| 男男h啪啪无遮挡| 日日摸夜夜添夜夜添av毛片| 亚洲av福利一区| 国产亚洲av片在线观看秒播厂| 久久午夜福利片| 99久久精品一区二区三区| 免费电影在线观看免费观看| 亚洲精品一区蜜桃| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 九色成人免费人妻av| 亚洲精品一二三| 在线观看美女被高潮喷水网站| 看免费成人av毛片| 最近手机中文字幕大全| 在线观看av片永久免费下载| 热re99久久精品国产66热6| 3wmmmm亚洲av在线观看| 国产大屁股一区二区在线视频| 国产亚洲91精品色在线| 亚洲无线观看免费| 91精品伊人久久大香线蕉| 99视频精品全部免费 在线| 性色avwww在线观看| 麻豆久久精品国产亚洲av| 亚洲精品第二区| 日本与韩国留学比较| 中文字幕亚洲精品专区| 97超视频在线观看视频| 日本一二三区视频观看| 亚洲成色77777| 亚洲国产精品成人综合色| 亚洲成人av在线免费| 2021少妇久久久久久久久久久| 国产乱人视频| 美女视频免费永久观看网站| 一级毛片 在线播放| 欧美潮喷喷水| 亚洲精品久久午夜乱码| 久久久久久久久久久免费av| 一本久久精品| 亚洲成色77777| 色婷婷久久久亚洲欧美| 国产精品成人在线| 亚洲精品乱码久久久v下载方式| 亚洲精品色激情综合| 欧美变态另类bdsm刘玥| 久久97久久精品| 99视频精品全部免费 在线| 在线免费十八禁| 欧美亚洲 丝袜 人妻 在线| 久热久热在线精品观看| 成人国产av品久久久| 中国三级夫妇交换| 国产又色又爽无遮挡免| 丝袜美腿在线中文| 寂寞人妻少妇视频99o| 久久久久性生活片| 久久99热这里只有精品18| 精品一区二区三卡| 校园人妻丝袜中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 国产色婷婷99| 色视频在线一区二区三区| 在线a可以看的网站| 精品人妻熟女av久视频| 少妇被粗大猛烈的视频| 夜夜爽夜夜爽视频| 日韩成人av中文字幕在线观看| 99精国产麻豆久久婷婷| 亚洲人与动物交配视频| 精品久久久久久久久亚洲| 男女那种视频在线观看| 搡老乐熟女国产| 久久久久久久久久久免费av| 简卡轻食公司| 久久精品国产自在天天线| 免费少妇av软件| 一级毛片电影观看| 三级经典国产精品| 亚洲欧美中文字幕日韩二区| 欧美日韩精品成人综合77777| 国产高清三级在线| 听说在线观看完整版免费高清| 免费av不卡在线播放| 亚洲国产精品成人久久小说| 欧美日韩精品成人综合77777| 在线观看一区二区三区激情| 深爱激情五月婷婷| 国产老妇女一区| 国产中年淑女户外野战色| 久久精品国产自在天天线| 欧美一级a爱片免费观看看| 超碰av人人做人人爽久久| 插逼视频在线观看| 天堂俺去俺来也www色官网| 精品久久久久久电影网| 小蜜桃在线观看免费完整版高清| 嫩草影院入口| 午夜日本视频在线| 日日啪夜夜爽| 91久久精品国产一区二区三区| 网址你懂的国产日韩在线| 黄色视频在线播放观看不卡| 少妇被粗大猛烈的视频| 可以在线观看毛片的网站| 亚洲,一卡二卡三卡| 亚洲av日韩在线播放| 嘟嘟电影网在线观看| 国产欧美另类精品又又久久亚洲欧美| 特级一级黄色大片| 色婷婷久久久亚洲欧美| 日韩中字成人| 亚洲丝袜综合中文字幕| 久久97久久精品| 永久免费av网站大全| 18禁动态无遮挡网站| 国产国拍精品亚洲av在线观看| 成人高潮视频无遮挡免费网站| 中文乱码字字幕精品一区二区三区| 亚洲成人中文字幕在线播放| 精品视频人人做人人爽| 久久韩国三级中文字幕| 亚洲激情五月婷婷啪啪| 国产乱人偷精品视频| 狂野欧美激情性xxxx在线观看| 欧美最新免费一区二区三区| 国产中年淑女户外野战色| 亚洲综合色惰| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产欧美在线一区| 亚洲国产日韩一区二区| 在线 av 中文字幕| 最新中文字幕久久久久| 国产午夜精品一二区理论片| 大片免费播放器 马上看| 国产黄色免费在线视频| 国产综合懂色| 校园人妻丝袜中文字幕| 日韩欧美 国产精品| 九九爱精品视频在线观看| 综合色av麻豆| 九九在线视频观看精品| 韩国高清视频一区二区三区| 五月玫瑰六月丁香| 黄色配什么色好看| 亚洲人与动物交配视频| 高清日韩中文字幕在线| 亚洲在久久综合| 中文乱码字字幕精品一区二区三区| 少妇被粗大猛烈的视频| 亚洲人成网站在线观看播放| 一区二区三区免费毛片| 国产精品福利在线免费观看| 国产成人a区在线观看| 亚洲欧美日韩卡通动漫| 中文字幕av成人在线电影| 精品人妻一区二区三区麻豆| 少妇裸体淫交视频免费看高清| 1000部很黄的大片| 亚洲图色成人| 久久ye,这里只有精品| 欧美区成人在线视频| 国产精品伦人一区二区| 精品久久国产蜜桃| 五月开心婷婷网| 插阴视频在线观看视频| 街头女战士在线观看网站| 国产精品麻豆人妻色哟哟久久| 日韩成人av中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产成人一区二区在线| 麻豆成人午夜福利视频| 日韩制服骚丝袜av| 欧美激情国产日韩精品一区| 黄色视频在线播放观看不卡| 亚洲怡红院男人天堂| 伦精品一区二区三区| 国产人妻一区二区三区在| 九九久久精品国产亚洲av麻豆| 国产伦在线观看视频一区| 中文乱码字字幕精品一区二区三区| 久久精品国产自在天天线| 欧美潮喷喷水| 国产成人a∨麻豆精品| 亚洲激情五月婷婷啪啪| 男女那种视频在线观看| 91久久精品国产一区二区成人| 国产精品国产三级专区第一集| 欧美一级a爱片免费观看看| 国产成人免费无遮挡视频| 亚洲精品,欧美精品|