• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Compensation Controller Based on a Nonlinear Wavelet Neural Network for Continuous Material Processing Operations

    2019-11-07 03:13:04ChenShenYoupingChenBingChenandJingmingXie
    Computers Materials&Continua 2019年10期

    Chen Shen,Youping ChenBing Chen and Jingming Xie

    Abstract:Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers.

    Keywords:Continuous material processing,wavelet neural network(WNN),nonlinear generalized predictive control(NGPC),auto-leveling system.

    1 Introduction

    Textiles manufacturing,printing,and other continuous material processing operations involve essentially nonlinear dynamic systems with coupling between the multiple inputs and multiple outputs of the manifold physical process[Valenzuela Bentley and Lorenz(2004);Tsakalis,Dash,Green et al.(2002);Djiev(2016);Moghassem and Fallahpour(2011)].These processing operations differ significantly from metal cutting processing operations according to two primary features.First,the materials being processed(e.g.,cotton,paper,and polymer films)are handled by multiple processing units that must maintain a high level of mechanical synchronization.For example,slivers are spun into yarn after several times of drawing,and the multicolor printing of paper requires multiple printing operations with precise registration and post-processing.Second,the quality of the end product is not only related to the precise control of processing units(e.g.,sliver drafting motors and roller printing motors),but also depends on the continuous physical processes applied to materials,such as fiber drawing processes and the application of tension to paper materials in printing processes.Moreover,these physical processes are closely related to the material characteristics and numerous external environmental factors.Thus,the quality of the final product cannot be assured by simply improving the control precision of processing units.Meanwhile,manual adjustments are unavoidable for addressing these changes in external and internal conditions.

    The issue of control system robustness has been addressed by the development of many control strategies.For example,generalized predictive control(GPC),which was proposed in the 1980's[Clarke,Mohtadi and Tuffs(1987)],has been one of the most frequently used model-based control methods adopted in industry[Camacho and Bordons(1999);Low and Cao(2008)].In most GPC applications,linear models are employed to predict plant behavior over the prediction horizon,and to evaluate future sequences of control signals.Nevertheless,controllers based on linear models perform poorly when applied to nonlinear systems that operate over a wide range of operating conditions like continuous material processing systems.In this respect,numerous studies have analyzed the feasibility of GPC for the modeling and control of nonlinear system dynamic[Gu and Hu(2002)].For example,nonlinear GPC(NGPC)models have been developed successfully using conventional network structures such as artificial neural networks(ANNs),which have been shown to be capable of approximating a wide range of nonlinear functions to any desired degree of accuracy under specified conditions[Geng and Geary(1997);Hamdia,Lahmer,Nguyen-Thoi et al.(2015)].The neural network and hybrid regression models are applied in material design and producing field[Badawy,Msekh,Hamdia et al.(2017);Faizollahzadeh Ardabili,Najafi,Alizamir et al.(2018);Fardad,Najafi,Ardabili et al.(2018)].In addition,wavelets have been incorporated with ANNs to develop wavelet neural networks(WNNs)that combine the capability of ANNs to learn from processes together with the high resolution of wavelet decomposition[Delyon,Juditsky and Benveniste(1995);Chen and Hsiao(1999)].Here,the second layer of a WNN employs a wavelet transform rather than a standard activation function like the sigmoid function employed in conventional ANNs.The use of the wavelet transform allows for exceptional localization in the time domain via translation of the mother wavelet(a shifting process)and also in the frequency domain via dilation of the mother wavelet(a scaling process).Moreover,this time localization capability in particular readily lends the use of wavelet transforms to non-stationary signal analysis.Thus,the structure of WNNs have been demonstrated to provide greater potential than conventional ANNs for enriching the mapping relationships between inputs and outputs[Delyon,Juditsky and Benveniste(1995)].As such,WNNs are ideally suited for the modeling and control of dynamic systems[Billings and Wei(2005);Lu(2009);Abiyev and Kaynak(2008);Sureshbabu and Farrell(1999)].In addition,the training algorithms adopted for WNNs typically converge in a fewer number of iterations than those adopted for conventional ANNs.However,the standard feedforward network structure of WNNs is not the most suitable for solving temporal problems like predicting the behaviors of complex chaotic systems.To address this issue,Yoo et al.[Yoo,Park and Choi(2005)]developed a self-recurrent wavelet neural network(SRWNN)that combined the attractor dynamics of a recurrent neural network(RNN)with the rapid convergence of a WNN.Based on SRWNN,they developed a GPC for stable path tracking of mobile robots[Yoo,Choi and Park(2006)].Lu[Lu(2009)]proposed a stable predictive controller(SPC)for a class of nonlinear discrete time system using GPC with recurrent WNN(RWNN)model.This type of controller has its simplicity in parallelism to conventional GPC design and efficiency to deal with complex nonlinear dynamics.

    In terms of processes requiring robust control,the sliver drafting process employed in textiles manufacturing represents a very good example of a continuous material processing operation with nonlinear dynamics.Here,the dynamics of the sliver drafting process play an essential role in the automatic control systems employed in textiles manufacturing for the reduction of sliver irregularities.Because a textile sliver is composed of thousands of discrete fibers,a sliver drafting system is complex,and includes inherent nonlinearity,which makes the control of such systems a challenging task.The long-term auto-leveling control of such systems is particularly challenging because instability and external disturbances are frequently observed.While a number of modern effectual control methods have been developed for auto-leveling sliver drafting systems[Kim,Lim and Huh(2012);Moghassem and Fallahpour(2011);Han,Youn-Sung,Soon-Yong et al.(2008)],and the problems associated with the modeling and control of the sliver drafting processes have been discussed in control engineering literature[Djiev(2016)],most of these methods can be applied in practical applications only when at least an approximate mathematical model of the process is available.As such,these methods lack robustness and are difficult to implement in nonlinear systems.Some studies have addressed this problem by implementing linearization methods[Guo,Chen and Hu(2003);Huang and Bai(2001)].However,attempts at linearization have not significantly contributed to the robustness of system control.In this sense,the feature of an SRWNN in the absence of a pre-existing mathematical model is uniquely advantageous.

    In light of the above research focused on improving control system robustness in continuous material processing operations like the sliver drafting process,this paper proposes a hybrid feedforward-feedback nonlinear model predictive controller.Block diagram of the proposed control system is shown in Fig.1.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller adopts a wavelet-based neural network model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The controller applies NGPC based on a SRWNN to generate an adaptive control signal for attaining robust performance.

    Figure 1:Block diagram of the proposed control system

    This paper is organized as follows.Section 2 presents the adopted SRWNN model structure and adaptive learning algorithm.A brief description of the adaptive predictive control is introduced in Section 3,and the design procedures of the proposed control system are also described in detail.Section 4 presents the self-leveling process and dynamics of a standard sliver drafting system.The effectiveness of the proposed control system is validated by numerical simulations and experimental results involving a single-input single-output double-zone sliver drafting system.Finally,Section 5 concludes the paper.

    2 SRWNN model structure and training algorithm

    To obtain a prediction model for the proposed prediction control scheme that is appropriate to the characteristics of continuous material processing systems,we adopt a class of nonlinear autoregressive moving average(NARX)time-series model at time stepkas the system model:

    wheref(·):R n→Ris a smooth-valued nonlinear function,kindicates the time step index,y(k)is the system output for a system inputu(k),nyandnuare the orders of the output and input,respectively,N=ny+nu,andξ(k)∈Ris a zero-mean Gaussian white noise sequence.

    2.1 SRWNN model structure

    The control strategy is implemented using an SRWNN model developed as an approximation of the nonlinear system given by(1).The proposed SRWNN adopted a mother wavelet layer composed of self-feedback neurons that can store the past information of the network,allowing the SRWNN to capture the dynamic response of a system.As a result,the SRWNN can be applied effectively to complex chaotic systems,even though the SRWNN employs fewer wavelet nodes than a WNN.Thus,the structure of the SRWNN can be simpler than that of a corresponding WNN,which makes the SRWNN more appropriate than WNNs for real-time control applications.

    Figure 2:Schematic of the proposed SRWNN structure

    A schematic illustrating a WNN and the proposed SRWNN structure is given in Fig.2.The structure comprises an input layer(layer I),a self-recurrent wavelet layer(layer II),a wavelet layer(layer III),and an output layer(layer IV)providing an estimated system output?(k).Here,xi(k),i=1,…,n,is theith input of the SRWNN,θil,l=1,…,L,denotes thelth self-feedback weight of theith input directed toward a node of layer II,z-1represents delay,αiis the connection weight between the input nodes of layer I and the output nodes of layer IV,andωilis the connection weight between the product nodes of layer III and its output nodes.The signal propagation and the function expression in each layer are given as follows.

    Layer I:The nodes in this layer receive the input variables and transmit them to the next layer directly.

    Layer II:Each node of this layer has a wavelon and a self-feedback loop.The first derivative of a Gaussian functionis adopted as a mother wavelet.The output of this layer can be represented as

    Layer III:The output of this layer is the product of all the wavelet neurons,i.e.,

    Layer IV:The single-node output of this layer is a summation which combining the outputs of layer III and the adaptive input values from the input of layer I.Therefore,the output of the SRWNN is composed of all incoming signals and the assigned tuning parameters as follows:

    The initial values ofωilandmilare given randomly in the range[-1,1],whiledilis given randomly in the range(0,1](i.e.,dil>0).In addition,the initial values ofθilare given as 0,indicating an absence of feedback initially.

    The aforementioned SRWNN can be used to be a universal uniform approximator for continuous functions over compact sets when satisfies specific conditions.These conditions and a detailed proof of this claim can be obtained elsewhere[Lin and Chen(2006);Lee and Teng(2000)].The leveling process discussed in our paper is a complex parametric nonlinear dynamical system,which has the random-like behavior usually shown in statistical systems although it is associated with deterministic dynamics.It can be seen as continuous function over compact sets and in the calculation process,suitable parameter constraints can make sure it satisfies the conditions.

    2.2 Online training algorithm for the SRWNN

    A back-propagation algorithm was adopted for SRWNN training in the purposed control system,and all weights includingmilanddilare trained via the gradient descent algorithm.The target is to minimize the following error functionJ0(k):

    Applying the gradient descent method provides the following updating laws formil,dil,θilandωil.

    Here,ηis the learning rate,and the following definitions are applied.

    3 Adaptive non-linear control strategy

    The proposed control strategy was implemented here using a nonlinear SRWNN model as a predictor and the schematic of the control strategy is given in Fig.3.The task of the predictor is to predict plant output based on the regressed inputs at each sampling time.This is conducted for all control operations within an established prediction range.The value of the control horizon should always be less than the value of the prediction horizon.A diophantine equation is used to solve and minimize the complex real-time optimization cost function at each sampling time to determine the optimum control inputs that yield the least error between the predicted output and the trajectory reference signals and which minimize the controller efforts[Astrom and Wittenmark(1994)].

    Figure 3:Structure of the predictive control strategy

    To derive the NGPC law and to find the j step-ahead prediction of y(k),the SRWNN model(4)is rewritten as

    whereΔ=1-z-1is the difference operator,

    The system parametersailandbil,that isωil,inA(z -1)andB(z -1)are estimated online with variable forgetting factor recursive least square method(VFFRLS)adaptively.From Eq.(12),

    The parameters are obtained by the following formula:

    λ(0 <λ<1)is the forgetting factor.

    In order to get the optimal predictions,Eq.(12)could be simplified as

    The proposed control law is derived to minimize the expected valueE[·]of the following predictive performance criterion:

    Here,npis the prediction output horizon,andyr(k+j)is a known bounded reference output for the discrete timek+j.In general,npis chosen to encompass all the responses that are significantly affected by the present control.Here,np Tsis typically the same magnitude as the rise time of the controlled system based on the sampling timeTs[Astrom and Wittenmark(1994)].

    In order to optimize the cost functionJ(k),the predictiony(k+j)forj ≥ 1andj ≤ Npwill be obtained.Consider the following Diophantine equation:

    where the following definitions are applied.

    The resulting overall system has been proven to be stable[Lu(2009)].Assuming that the parametersmil,dil,θilandωilin(4)are updated according to(6)-(8)and(14),the proposed SRWNN algorithm is convergent,provided thatηsatisfies the following condition:

    This convergent condition of the purposed process are verified for a chosen Lyapunov function,and the detailed proof can be obtained elsewhere[Yoo,Park and Choi(2005)].To guarantee thatηresides within this stable region,we apply an adaptive learning rate for the SRWNN as follows:

    From the above,the implementation of the adaptive control procedure can be summarized as follows,and the state flow chart of the calculation process is shown in Fig.4

    (2)Measure plant outputy(k)and the reference tracking outputyr(k+j);

    (4)Solve the Diophantine Eq.(17)and obtain;

    (5)Construct the vector R,Y(k),Δ U(k-j)and matrix F1,F2,G;

    (6)Calculate and implementu(k)via(19);

    (7)Repeat Steps 2-6.

    Figure 4:State flow chart of the calculation process

    4 Numerical simulations and experimental results

    4.1 Sliver drafting process dynamics and auto-leveling control

    A frequently-used auto-leveling system for a double-zone sliver drafter is illustrated in Fig.5.The positions of the fibers with respect to each other and the numbers of fibers within cross-sections are affected by the different speeds of the rollers[Hlava(2003)].At each sampling timek,displacement sensors 1 and 2 obtain the thickness of the input sliverx(k)and the thickness of the output slivery(k),respectively,from which the linear densities of the respective slivers are calculated.In this system,variations in the input sliver linear density can be seen as the dominating disturbance,which greatly affects the uniformity of the output sliver.Usually,this variation is stochastic with occasional step-like disturbances owing to nubs in the input sliver,or when changes in the characteristics of the input sliver(e.g.,batch of material)affect.In addition to this measured disturbance,a number of other unmeasured disturbancesv(k)(e.g.,environment moisture change,stacking of cotton fiber)can affect the quality of the output sliver,and these can also be treated as stochastic disturbances.

    A conventional auto-leveling feedforward control algorithm is a simple linear adjustment based on reference valueyr(k)and the measurementsx(k)from sensor1.In existing feedforward strategies,x(k)serves as an independent input that directly affectsy(k)according to a pre-established parametric model used to describe the drawing process.Accordingly,the irregularity of the output sliver is managed by sending the signal from sensor 1 to the controller to determine the control signal,which then adjusts the velocities of the drawing rollers using the servomotor to obtain an appropriate drawing rate.The signal from sensor 2 strictly serves a monitoring purpose,without participating in the automatic control process.This process allows the controller to compensate immediately for the impact of variations inx(k)ony(k)rather than waiting until the effect appears in the output.Thus,feedforward control ensures the short-term uniformity of the output sliver.In addition,the parameters of the parametric model employed in feedforward control are subject to change if the input sliver material or its characteristics are altered.

    Figure 5:Schematic of a standard feedforward controlled auto-leveling sliver drafting system

    The proposed compensation controller consists of a conventional auto-leveling control strategy in the feedforward component in addition to an online trained NGPC controller in the feedback loop.In this control method,the signal of Sensor 2 is used in the controller to automatically compensate for performance degradation.While the feedforward controller compensates immediately for the measured disturbance,the proposed SRWNN-based model predictive controller provides feedback compensation for unmeasured disturbancesv(k).Here,unmeasured disturbances represent an independent input that is not affected by the controller or the plant,and is always potentially present,but is only observable fromy(k).Unmeasured disturbances represent unknown,unpredictable events that are best addressed as un-modeled system dynamics.Therefore,all information based on the outputy(k)obtained from Sensor 2 is fed back to the NGPC controller.Then,the proposed NGPC controller observes the future behavior of the sliver drafting system and compares the actual performance to a desired reference model performance,and accordingly calculates the control input that will optimize plant performance over a specified future time horizon.The learning algorithm modifies the parameters of the NGPC controller online based on the model-following error(MFE)to obtain a match with the desired reference model response.

    4.2 Numerical simulation of the auto-leveling control system

    Simulation results are presented to verify the feasibility of the proposed SRWNN-based NGPC control scheme under various operating conditions.All algorithms were developed using MATLAB/SIMULINK in a control computer.In the simulations,the disturbance rejection capabilities of the auto-leveling system were evaluated under different long-term low-frequency disturbancesv(k)effecting on the plant.

    Simulation 1:

    At first,the two sensors data of feedforward control,x(k)andy0(k)(voltage),collected in advance are used for offline simulation.A nonlinear model for the sliver drafting process was identified by an identification experiment with a sampling period of 0.001 second,and this model serves as the plant model in our simulation[Chun,Bae,Kim et al.(2006)].Referring to the system model(1),the input variables of the SRWNN model are specified by{y(k-1),y(k-2),y(k-3),u(k-1),u(k-2)}.After removing mean,training the network parameters of the SRWNN using the input-output data,selecting the key parameter of the SRWNN asL=3 was found to be effective for this nonlinear system.The prediction horizon of the proposed control law was selected asNp=9.Then the proposed controller was employed to match the system outputy(k)to a reference output yr(k),where yr(k)=0 and the external disturbancev(k)was specified as follows:

    Case 1:v(k)=0.07sign(sin(4πkts)),

    Case 2:v(k)=0.07sin(4πkts),

    where sign(·)represents the signum function andtsis the sample time.These two cases represent long term perturbation under a step disturbance and a sinusoidal disturbance,respectively.The results for case 1 and case 2 are shown in Figs.6(a)and 6(b),respectively.The individual plots show the input thickness signalsx(k),and the output thickness signalsy(k),control errorse(k),and the control signalsu(k)of the conventional feedforward auto-leveling controller(denoted by the subscript 0)and the proposed controller.

    These figures clearly indicate that good dynamic performances,in terms of command tracking and drift restraint,are realized for the auto-leveling system.From the change of input and output sensor datax(k)andy(k),the evenness of the sliver has improved after auto-leveling,in addition,the error with the average sliver thicknessey(k)is smaller thaney0(k),which means that the control effect is enhanced by the proposed method comparing with the traditional approach.Seen fromu(k),the algorithm is convergence with step disturbance(a;case 1)and sinusoidal disturbance(b;case 2).

    Figure 6:The input thickness signals x(k),and the responses of the conventional feedforward auto-leveling controller(denoted by the subscript 0)and the proposed controller for a reference output yr(k)=0 with a step disturbance(a;case 1)and a sinusoidal disturbance(b;case 2)

    Table 1:Simulation results of feedforward control(FF)alone,FF in conjunction with a standard GPC controller(FF+GPC),and the proposed control system(FF+NGPC)in terms of the controlled output y(k)relative to a reference output yr(k)=0

    Simulation 2:

    In order to verify the validity of the algorithm for long segment evenness,20000 sampling of output sliver thickness withTs=0.01 s are analyzed.The simulation results are listed in Tab.1 in terms of the mean and standard deviations ofy0(k)andy(k).We note from the table that,compared with the results obtained using the standard feedforward control,the mean values ofy(k)obtained using the proposed controller were decreased by 87.18% and 94.95% for Cases 1 and 2,respectively,and the corresponding standard deviations ofy(k)were decreased by 30.48% and 19.78%,respectively.Accordingly,we can conclude that the proposed controller can greatly reduce the nonuniformity of the output sliver relative to that obtained using only feedforward control.Tab.I also includes the mean and standard deviations ofy(k)obtained using feedforward control in conjunction with a conventional GPC controller[Clarke,Mohtadi and Tuffs(1987)].As seen from the results,the performance of the proposed controller is significantly better than that get from the conventional GPC controller.

    Simulation 3:

    To test the robustness of the proposed auto-leveling controller,we conducted a simulation in which the system parametersailandbilwere varied by ±5% after plant operation for 300 s.The results are shown in Fig.7,which illustrate that the proposed SRWNN-based NGPC controller can adapt to arbitrary changes of the plant parameters.The control error reveals no significant increase after the parameter changed.

    The simulation results indicate that the SRWNN-based NGPC controller demonstrates satisfactory tracking performance and system robustness.

    Figure 7:Output tracking and error responses in case of system parameter variations operative after 300 s

    4.3 Experiments on a double-zone sliver drafting system

    The experimental results were obtained using an STM32 microcontroller integrated circuit(STM Electronics)and a field programmable gate array(FPGA)control board.The input,self-recurrent wavelet,wavelet,and output layers of the SRWNN included 2,14,7,and 1 neurons,respectively.The output response in terms ofy(k)with the proposed SRWNN-based NGPC controller is shown in Fig.8.Here,the values were estimated from 20,000 consecutively sampledy(k)data with hardware sampling frequency 1000Hz.Tab.II lists the mean thickness and coefficient of variation(CV)of the output slivers respectively obtained using feedforward control alone and using the proposed controller to regulate the speed of the back roller.The values here are recorded by a USTER evenness tester,which is a professional sliver testing equipment in textile factories and laboratories.Obviously,the control method proposed in this paper can regulate the mean thickness at the desired value,and the CV of the sliver can be substantially reduced.

    Figure 8:The measures value of displacement Sensor 2(y(k))obtained over time using the proposed SRWNN-based NGPC controller

    Table 2:Output sliver thickness values obtained during experimental testing

    5 Conclusion

    This paper proposed an online-trained adaptive SRWNN-based model prediction controller for continuous material processing systems.The SRWNN was employed for establishing a discrete-time model for the nonlinear system dynamic,and the NGPC controller functioned as adaptive feedback compensation for augmenting the existing open-loop feedforward control,and for providing improved setting value tracking and external disturbance resisting capabilities.The proposed NGPC algorithm,including the adaptive learning rate for the training of SRWNN model weights,was applied to a sliver drafting process,and the simulation results indicates the better stable tracking ability and adaptability,comparing with the traditional control strategy.The physical experiments verified that the proposed control system is effective for ensuring the long-term uniformity of slivers both with and without input sliver irregularities and external noise disturbances.

    18禁观看日本| 色播在线永久视频| 精品午夜福利视频在线观看一区| 最近最新中文字幕大全电影3 | 午夜福利在线观看吧| 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲综合一区二区三区_| 亚洲av日韩在线播放| 亚洲av日韩在线播放| 少妇被粗大的猛进出69影院| 天天躁日日躁夜夜躁夜夜| 真人做人爱边吃奶动态| 九色亚洲精品在线播放| 久热爱精品视频在线9| 又黄又爽又免费观看的视频| 老熟妇乱子伦视频在线观看| 精品国产乱子伦一区二区三区| 最新美女视频免费是黄的| 久久国产精品人妻蜜桃| 亚洲欧美一区二区三区久久| 日本黄色视频三级网站网址 | 老汉色av国产亚洲站长工具| 国产欧美亚洲国产| 国产精品久久久久久人妻精品电影| 狠狠狠狠99中文字幕| 免费人成视频x8x8入口观看| 精品国产乱码久久久久久男人| 亚洲av欧美aⅴ国产| 久久中文字幕一级| 十八禁网站免费在线| 亚洲成av片中文字幕在线观看| 丁香欧美五月| 成年动漫av网址| 精品人妻在线不人妻| 亚洲第一av免费看| 精品一品国产午夜福利视频| 久久久水蜜桃国产精品网| 狠狠婷婷综合久久久久久88av| 久久久国产精品麻豆| 性色av乱码一区二区三区2| 最近最新免费中文字幕在线| 久久99一区二区三区| 亚洲精华国产精华精| 人人妻人人澡人人爽人人夜夜| 男女下面插进去视频免费观看| 很黄的视频免费| 欧美中文综合在线视频| 淫妇啪啪啪对白视频| 欧美乱码精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 我的亚洲天堂| 国产精品免费大片| 国产成人欧美在线观看 | 又黄又爽又免费观看的视频| 欧美人与性动交α欧美软件| 搡老熟女国产l中国老女人| 国精品久久久久久国模美| 热re99久久国产66热| 啦啦啦在线免费观看视频4| 啦啦啦视频在线资源免费观看| 国产亚洲精品一区二区www | 丁香欧美五月| 91成人精品电影| 人人妻,人人澡人人爽秒播| av在线播放免费不卡| 国产一区二区激情短视频| 亚洲精品中文字幕一二三四区| 久9热在线精品视频| 欧美色视频一区免费| 人人妻人人澡人人看| 亚洲一区高清亚洲精品| e午夜精品久久久久久久| 久久这里只有精品19| 很黄的视频免费| 欧美日韩亚洲国产一区二区在线观看 | 成人国产一区最新在线观看| 亚洲熟女毛片儿| 国产精品1区2区在线观看. | 国产一卡二卡三卡精品| 十八禁高潮呻吟视频| 国产又爽黄色视频| 国产一区二区三区综合在线观看| 男女下面插进去视频免费观看| 色精品久久人妻99蜜桃| 欧美日韩福利视频一区二区| 操美女的视频在线观看| 99热网站在线观看| 91麻豆av在线| 大码成人一级视频| 国产精品久久视频播放| 麻豆乱淫一区二区| 99久久99久久久精品蜜桃| 99国产精品一区二区三区| 一级黄色大片毛片| 亚洲精品中文字幕在线视频| 美女视频免费永久观看网站| 变态另类成人亚洲欧美熟女 | 亚洲 欧美一区二区三区| 午夜精品久久久久久毛片777| 人人妻人人澡人人看| 亚洲avbb在线观看| 50天的宝宝边吃奶边哭怎么回事| 精品久久久精品久久久| av不卡在线播放| 成人国产一区最新在线观看| videos熟女内射| 精品电影一区二区在线| 超碰97精品在线观看| 日本五十路高清| 亚洲精品一二三| av视频免费观看在线观看| 男女午夜视频在线观看| 欧美 日韩 精品 国产| 国产精品亚洲一级av第二区| 一本综合久久免费| 精品久久久久久久久久免费视频 | 91成年电影在线观看| 极品教师在线免费播放| 一a级毛片在线观看| 老司机靠b影院| 欧美成人午夜精品| 国产精品免费视频内射| 亚洲成人手机| 9191精品国产免费久久| 精品久久久精品久久久| 精品少妇久久久久久888优播| 欧美久久黑人一区二区| 国产在线精品亚洲第一网站| 黄色怎么调成土黄色| 精品少妇久久久久久888优播| 大片电影免费在线观看免费| 欧美国产精品一级二级三级| 国产成人av激情在线播放| 两个人看的免费小视频| 中文字幕av电影在线播放| 国产aⅴ精品一区二区三区波| 可以免费在线观看a视频的电影网站| 热99re8久久精品国产| 日本一区二区免费在线视频| 国产精品秋霞免费鲁丝片| 久久久久久久午夜电影 | 亚洲色图av天堂| 久久精品亚洲熟妇少妇任你| 看免费av毛片| 无人区码免费观看不卡| 国产亚洲精品久久久久5区| 狠狠狠狠99中文字幕| 国产蜜桃级精品一区二区三区 | 亚洲欧美色中文字幕在线| 日韩欧美在线二视频 | 精品久久久久久久久久免费视频 | 成人免费观看视频高清| 日韩熟女老妇一区二区性免费视频| 午夜福利在线免费观看网站| 在线看a的网站| 操出白浆在线播放| 亚洲第一欧美日韩一区二区三区| 欧美另类亚洲清纯唯美| 久久久久国产一级毛片高清牌| 一级作爱视频免费观看| 一边摸一边抽搐一进一小说 | 岛国在线观看网站| 国产一区二区三区视频了| 精品电影一区二区在线| 波多野结衣av一区二区av| 亚洲国产毛片av蜜桃av| 丰满的人妻完整版| 欧美激情极品国产一区二区三区| 天堂中文最新版在线下载| 亚洲国产精品一区二区三区在线| 亚洲aⅴ乱码一区二区在线播放 | 在线播放国产精品三级| 极品人妻少妇av视频| 首页视频小说图片口味搜索| 国产成人av教育| av网站免费在线观看视频| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区黑人| 99在线人妻在线中文字幕 | 国产精品久久视频播放| 黄色视频,在线免费观看| 亚洲精华国产精华精| 国产极品粉嫩免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉激情| 亚洲av欧美aⅴ国产| 天天操日日干夜夜撸| 视频在线观看一区二区三区| 国产精品久久视频播放| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区精品| 婷婷丁香在线五月| xxx96com| 欧美精品av麻豆av| 亚洲精品国产色婷婷电影| 日日爽夜夜爽网站| a级毛片黄视频| 欧美亚洲日本最大视频资源| 亚洲三区欧美一区| 午夜影院日韩av| 国产91精品成人一区二区三区| 99精品欧美一区二区三区四区| 亚洲av欧美aⅴ国产| 欧美色视频一区免费| 国产色视频综合| 欧美日韩福利视频一区二区| 两人在一起打扑克的视频| 最新美女视频免费是黄的| 久久国产亚洲av麻豆专区| 色婷婷久久久亚洲欧美| 亚洲精品国产区一区二| 99re在线观看精品视频| 18禁国产床啪视频网站| 精品视频人人做人人爽| 黑人巨大精品欧美一区二区蜜桃| 免费日韩欧美在线观看| 国产激情欧美一区二区| 精品少妇久久久久久888优播| av片东京热男人的天堂| 欧美精品一区二区免费开放| 久久久国产成人免费| 国产精品美女特级片免费视频播放器 | 女人爽到高潮嗷嗷叫在线视频| 亚洲av片天天在线观看| 热re99久久国产66热| 国产在视频线精品| 激情视频va一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 午夜福利乱码中文字幕| 国产麻豆69| 亚洲一区二区三区欧美精品| 亚洲精品国产一区二区精华液| 熟女少妇亚洲综合色aaa.| 多毛熟女@视频| 男女高潮啪啪啪动态图| 久久国产亚洲av麻豆专区| 咕卡用的链子| 亚洲欧美激情在线| 国产视频一区二区在线看| 黄色 视频免费看| 中文字幕av电影在线播放| 美女福利国产在线| 韩国精品一区二区三区| 在线视频色国产色| 啦啦啦 在线观看视频| 99久久人妻综合| 久久香蕉精品热| 免费av中文字幕在线| www.精华液| 黄色丝袜av网址大全| 亚洲av成人一区二区三| 天堂俺去俺来也www色官网| 国产精品亚洲一级av第二区| 91字幕亚洲| 成年动漫av网址| 国产男女超爽视频在线观看| 欧美乱妇无乱码| 精品久久蜜臀av无| 欧美精品av麻豆av| 免费日韩欧美在线观看| 少妇粗大呻吟视频| 两个人免费观看高清视频| 欧美精品人与动牲交sv欧美| av福利片在线| 久久精品aⅴ一区二区三区四区| 欧美乱妇无乱码| 欧美色视频一区免费| 国产欧美日韩一区二区精品| 成人手机av| 欧美成狂野欧美在线观看| 99香蕉大伊视频| 十分钟在线观看高清视频www| 欧美成人免费av一区二区三区 | 国产精品 国内视频| 午夜福利在线观看吧| 欧美丝袜亚洲另类 | 高清视频免费观看一区二区| 在线国产一区二区在线| 日韩中文字幕欧美一区二区| 新久久久久国产一级毛片| 大香蕉久久网| 国产极品粉嫩免费观看在线| 免费观看a级毛片全部| 99国产精品一区二区蜜桃av | 久久人人爽av亚洲精品天堂| 亚洲午夜精品一区,二区,三区| 国产精品久久久av美女十八| 女性生殖器流出的白浆| 三级毛片av免费| av天堂久久9| 亚洲中文字幕日韩| 亚洲精品美女久久久久99蜜臀| 久久中文字幕人妻熟女| 中文字幕人妻熟女乱码| 人人澡人人妻人| 久热爱精品视频在线9| 在线观看免费视频网站a站| 少妇裸体淫交视频免费看高清 | 精品久久久久久久久久免费视频 | 高清毛片免费观看视频网站 | 国产在视频线精品| 久久国产亚洲av麻豆专区| 欧美激情久久久久久爽电影 | 免费不卡黄色视频| 亚洲av成人一区二区三| 亚洲成人免费电影在线观看| 亚洲成人免费av在线播放| 国产亚洲欧美在线一区二区| av福利片在线| 久久 成人 亚洲| 男人舔女人的私密视频| 99re6热这里在线精品视频| 久久精品亚洲av国产电影网| 我的亚洲天堂| 999久久久国产精品视频| 在线免费观看的www视频| 一级,二级,三级黄色视频| 久久精品国产99精品国产亚洲性色 | 男女下面插进去视频免费观看| 制服诱惑二区| 老司机福利观看| 午夜激情av网站| 人妻 亚洲 视频| 这个男人来自地球电影免费观看| 制服人妻中文乱码| 欧美 亚洲 国产 日韩一| 久久人人97超碰香蕉20202| 国产av一区二区精品久久| 大型av网站在线播放| 99久久综合精品五月天人人| 中文字幕高清在线视频| 精品电影一区二区在线| 亚洲av日韩精品久久久久久密| 国产成人av教育| 色尼玛亚洲综合影院| 成年人午夜在线观看视频| 免费黄频网站在线观看国产| 91av网站免费观看| bbb黄色大片| 国产精品免费大片| 国产精品99久久99久久久不卡| 亚洲片人在线观看| 嫁个100分男人电影在线观看| 国产在线精品亚洲第一网站| 三上悠亚av全集在线观看| 国产精品一区二区在线观看99| 制服诱惑二区| 午夜久久久在线观看| 欧美日韩av久久| 久久久国产欧美日韩av| 午夜亚洲福利在线播放| 久久久国产成人精品二区 | 国产高清国产精品国产三级| 欧美人与性动交α欧美软件| 国产成人欧美| 99re在线观看精品视频| 一本一本久久a久久精品综合妖精| 香蕉丝袜av| 免费观看a级毛片全部| 黑人欧美特级aaaaaa片| 久久久久国产精品人妻aⅴ院 | 免费看十八禁软件| 男女高潮啪啪啪动态图| 变态另类成人亚洲欧美熟女 | x7x7x7水蜜桃| 精品国内亚洲2022精品成人 | 欧美激情 高清一区二区三区| 桃红色精品国产亚洲av| 免费观看精品视频网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产毛片av蜜桃av| 男女下面插进去视频免费观看| 夫妻午夜视频| 老司机在亚洲福利影院| 午夜福利一区二区在线看| 别揉我奶头~嗯~啊~动态视频| 人妻丰满熟妇av一区二区三区 | 久久精品国产亚洲av高清一级| x7x7x7水蜜桃| 热re99久久国产66热| 亚洲美女黄片视频| 色精品久久人妻99蜜桃| 精品第一国产精品| 男人舔女人的私密视频| 亚洲性夜色夜夜综合| 免费av中文字幕在线| 午夜两性在线视频| 免费黄频网站在线观看国产| 狠狠狠狠99中文字幕| 亚洲国产中文字幕在线视频| 97人妻天天添夜夜摸| 亚洲精品一二三| 一区在线观看完整版| 国产在线精品亚洲第一网站| 12—13女人毛片做爰片一| 国产精品av久久久久免费| 欧美黄色淫秽网站| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇粗大呻吟视频| 俄罗斯特黄特色一大片| 欧美另类亚洲清纯唯美| 欧美 日韩 精品 国产| 午夜福利在线免费观看网站| 亚洲人成电影免费在线| 热re99久久国产66热| 91成人精品电影| 亚洲国产精品一区二区三区在线| 色尼玛亚洲综合影院| 欧美日韩黄片免| 精品久久久久久久毛片微露脸| 很黄的视频免费| 久久精品亚洲熟妇少妇任你| 一进一出好大好爽视频| 亚洲一卡2卡3卡4卡5卡精品中文| 热re99久久国产66热| 99re在线观看精品视频| 电影成人av| 脱女人内裤的视频| 免费黄频网站在线观看国产| 嫁个100分男人电影在线观看| 久久久久久亚洲精品国产蜜桃av| 一边摸一边做爽爽视频免费| 国产免费现黄频在线看| 色综合欧美亚洲国产小说| 大香蕉久久网| 男女免费视频国产| 国产精品久久电影中文字幕 | 韩国精品一区二区三区| 欧美日韩乱码在线| 中文字幕最新亚洲高清| 悠悠久久av| 男女免费视频国产| 高潮久久久久久久久久久不卡| 亚洲成人免费av在线播放| 69av精品久久久久久| 美女福利国产在线| 国产男靠女视频免费网站| 亚洲精品自拍成人| 看免费av毛片| 韩国精品一区二区三区| 久久久久久久午夜电影 | 亚洲五月天丁香| 高潮久久久久久久久久久不卡| 乱人伦中国视频| 国产成人精品久久二区二区91| 制服人妻中文乱码| 国产成人欧美| 欧美日韩乱码在线| 亚洲免费av在线视频| 亚洲午夜精品一区,二区,三区| 99re6热这里在线精品视频| 两人在一起打扑克的视频| 麻豆成人av在线观看| 老司机影院毛片| 精品第一国产精品| 亚洲欧美色中文字幕在线| 在线观看日韩欧美| 国产精品1区2区在线观看. | 高清毛片免费观看视频网站 | 91国产中文字幕| 久久精品国产综合久久久| av视频免费观看在线观看| 精品一区二区三区四区五区乱码| 手机成人av网站| 90打野战视频偷拍视频| √禁漫天堂资源中文www| 精品电影一区二区在线| 亚洲国产欧美一区二区综合| 亚洲中文日韩欧美视频| 一区二区日韩欧美中文字幕| 十分钟在线观看高清视频www| 激情视频va一区二区三区| 视频区欧美日本亚洲| 国产激情久久老熟女| 少妇粗大呻吟视频| 亚洲精品中文字幕一二三四区| 亚洲欧美日韩高清在线视频| 国产男靠女视频免费网站| 亚洲五月天丁香| 精品一区二区三区av网在线观看| 亚洲美女黄片视频| 久久性视频一级片| 超碰成人久久| 深夜精品福利| 多毛熟女@视频| 欧美 日韩 精品 国产| 人人妻人人爽人人添夜夜欢视频| 久久久久国产一级毛片高清牌| 美女视频免费永久观看网站| 久久久久久久久久久久大奶| 91在线观看av| 天堂√8在线中文| 日本精品一区二区三区蜜桃| 久久精品国产亚洲av高清一级| 久久久久精品国产欧美久久久| 涩涩av久久男人的天堂| 欧美日韩成人在线一区二区| 热99国产精品久久久久久7| 在线免费观看的www视频| 婷婷丁香在线五月| 亚洲精品在线观看二区| 国产色视频综合| 欧美日韩av久久| 大陆偷拍与自拍| 91大片在线观看| 久久久国产欧美日韩av| 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 俄罗斯特黄特色一大片| av国产精品久久久久影院| 1024香蕉在线观看| 久久草成人影院| 嫩草影视91久久| tocl精华| 中文亚洲av片在线观看爽 | av天堂久久9| 人妻 亚洲 视频| 欧美成人免费av一区二区三区 | 久久久久精品人妻al黑| 久久影院123| 国产一区有黄有色的免费视频| 99香蕉大伊视频| 国产精品免费视频内射| 亚洲国产精品一区二区三区在线| 精品高清国产在线一区| 精品乱码久久久久久99久播| 欧美中文综合在线视频| 亚洲欧美色中文字幕在线| 99久久国产精品久久久| 亚洲国产欧美日韩在线播放| 国产成人影院久久av| 欧美日韩av久久| 国产精品一区二区在线观看99| 黄色怎么调成土黄色| 久久久精品免费免费高清| 久久精品国产99精品国产亚洲性色 | 精品欧美一区二区三区在线| 美女视频免费永久观看网站| 午夜福利在线观看吧| av不卡在线播放| 久久中文字幕人妻熟女| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区| 亚洲人成伊人成综合网2020| 国产一区二区三区视频了| 久久久国产成人免费| 午夜视频精品福利| 男人操女人黄网站| 麻豆成人av在线观看| 午夜日韩欧美国产| 国产精品二区激情视频| 黄片播放在线免费| 19禁男女啪啪无遮挡网站| 亚洲第一青青草原| 国产日韩一区二区三区精品不卡| 一级a爱片免费观看的视频| 女人被狂操c到高潮| 精品亚洲成a人片在线观看| 18禁黄网站禁片午夜丰满| 少妇粗大呻吟视频| 一区二区三区精品91| 一级黄色大片毛片| 亚洲精华国产精华精| 麻豆乱淫一区二区| 成人手机av| 在线观看www视频免费| 99riav亚洲国产免费| 亚洲专区国产一区二区| 电影成人av| 亚洲一区中文字幕在线| 欧美日韩乱码在线| 超碰成人久久| 天天添夜夜摸| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线 | 校园春色视频在线观看| 日韩欧美一区二区三区在线观看 | 欧美成人午夜精品| 桃红色精品国产亚洲av| 在线观看www视频免费| 后天国语完整版免费观看| 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 12—13女人毛片做爰片一| 欧美日韩一级在线毛片| 国产亚洲精品第一综合不卡| 最新在线观看一区二区三区| 村上凉子中文字幕在线| 大码成人一级视频| 精品国产一区二区三区四区第35| av网站在线播放免费| 国产一卡二卡三卡精品| 亚洲在线自拍视频| 亚洲九九香蕉| 岛国在线观看网站| 后天国语完整版免费观看| 国产欧美日韩一区二区三区在线| 免费在线观看黄色视频的| 日韩成人在线观看一区二区三区| 多毛熟女@视频| 深夜精品福利| 咕卡用的链子| 色精品久久人妻99蜜桃| 亚洲国产欧美日韩在线播放| 女人被狂操c到高潮| 一进一出好大好爽视频| 中文字幕av电影在线播放| 亚洲九九香蕉| 国产精品一区二区精品视频观看| 午夜精品在线福利| 日韩欧美国产一区二区入口| 国产激情久久老熟女| 亚洲成av片中文字幕在线观看| 啦啦啦在线免费观看视频4| 女人久久www免费人成看片|