• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Semantics Analytics of Origin-Destination Flows from Crowd Sensed Big Data

    2019-11-07 03:12:36NingCaoShengfangLiKeyongShenShengBinGengxinSunDongjieZhuXiuliHanGuangshengCaoandAbrahamCampbell
    Computers Materials&Continua 2019年10期

    Ning Cao,Shengfang LiKeyong ShenSheng Bin,Gengxin Sun,,Dongjie Zhu,Xiuli Han,Guangsheng Cao and Abraham Campbell

    Abstract:Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used to mine the semantics of OD flows.In this paper,we firstly construct and analyze a complex network of OD flows based on large-scale GPS taxi traces of a city in China.The spatiotemporal analysis for the OD flows complex network showed that there were distinctive patterns in OD flows.Then based on a novel complex network model,a semantics mining method of OD flows is proposed through compounding Points of Interests(POI)network and public transport network to the OD flows network.The propose method would offer a novel way to predict the location characteristic and future traffic conditions accurately.

    Keywords:Origin-destination(OD)flows,semantics analytics,complex network,big data analysis.

    1 Introduction

    In recent years,with the development of up-to-date technology in wireless network communication,such as 5G and Global Position System,a dramatic rise of crowd sensed data collecting and processing had been seen.Analytics of sensing data has been widely used to enable a broad spectrum of applications,ranging from city planning[Horner and O"Kelly(2001)]or traffic[Kitamura,Chen,Pendyala et al.(2000);Lakhina,Mark,Christophe et al.(2005)]to epidemic disease monitoring[Colizza,Barrat,Barthelemy et al.(2007);Hufnagel,Brockmann and Geisel(2004)]or real-time reporting from disaster situations[Li,Li,Chen et al.(2018)].

    In the field of mobile crowd sensing,for example,cellphones,vehicular sensors,or people themselves collected information.Hence,the obtained data through using crowd sensing methods is a new trend for big data acquisition[Sun and Bin(2017)].Position information would become a type of core data for constructing smart vehicles[Pan,Xu,Wu et al.(2011);Wu,Wu,Cheng et al.(2007)].These core data can form position-based social networks[Song,Hu,Leng et al.(2015)].

    The most important position-based social networks which stand for behavior of crowds in a town are origin-destination flows.It describes a journey by its departure point(Origin)and arrival point(Destination)[Sun and Bin(2018)].OD flows not only can reflect people'behavior but also traffic jam.However,a major challenge for broader adoption of these patterns under OD flows is that the sensed data is not always reliable[Han,Dai,Paritosh et al.(2016)].Taxi is acted as the most frequently used means of transportation,its tracks can be accurately recorded with the help of GPS.So it is a very appropriate data for gathering and evaluating OD flows.

    We firstly build a taxi flow complex network by GPS tracks and detect some distinctive and implicit patterns through detecting community structure[Bin and Sun(2011)].Then we use a novel complex network model to build a complex network[Shao and Sui(2014)]through compounding POI network and public transport network to OD flows network.Based on the composited complex network,spatiotemporal analysis is done to those patterns and discovers that there are close relationships between the semantics of OD flows and those patterns.At last,we design a new method to analyze semantics of OD flows through multiple relationships,and the new method is verified on actual dataset.

    Our contribution lies on the following two aspects:Firstly,a novel method to evaluate the OD flows between geographical positions is proposed.We use multi-subnet composited complex network model to express multiple kinds of actual impact factors for OD flows in a city.Secondly,through topological analytics of the composited complex network,we discover that there are distinctive patterns which have tight relations with semantics of OD flows.Through spatiotemporal analysis,geographical location of boarding and disembarking can be discovered.Combined with POIs and public transport lines,we can get more accurate semantics of OD flows.

    2 Related work

    Research on taxi trajectory for understanding people behavior in location-based social networks is a very active research field at present.There had been many related research results.

    Yuan et al.[Yuan,Zheng,Xie et al.(2012)]presented a decision model for statistical analysis of the dataset of taxi trajectory,the model can predict the passenger flow of taxis.Ying et al.[Ying,Kuo,Tseng et al.(2014)]proposed a new algorithm that depends on historical data to compute the shortest path for a given departure position and arrival position.Zhang et al.[Zhang,Sun,Li et al.(2015)]proposed a data mining algorithm to find abnormal driving behavior based on taxi's tracks,it can be used to automatically detect dangerous driving behavior or traffic jam.Chang et al.[Chang,Tai and Hsu(2009)]proposed a taxi passenger flow forecasting model based on multiple demand factors.Based on historical data,the model can successfully predict passenger demand in different time periods.

    Human travel behavior had tight relationship with social data.Li et al.[Li,Wu,Xu et al.(2014)]studied taxi users' social network information,and they found the intrinsic relationship between taxi trajectory and users' sharing of social network information.The most major function of taxi tracks research is detecting urban areas of different roles in a town.Zhong et al.[Zhong,Huang,Stefan et al.(2014)]investigated the relation between the location of users getting on and getting off and the function of urban areas.Zheng et al.[Zheng,Capra,Wolfson et al.(2014)]designed a method which maybe detect various functional areas of a town through using points of interests.

    3 Preliminaries

    This section introduces compounding mapping operation and subnet compounding operation of multi-subnet composited complex network model.

    Definitions 1(Compounding mapping):Given subnet networkGa=(Va,Ea,Ra,Fa),Gb=(Vb,Eb,Rb,Fb),R′is called as set of compounding interrelations,r′∈R′,Ψ:V1×V2→r′is called as compounding mapping betweenG1andG2according tor′,which is called as compounding relation.R′is called as set of compounding relations.

    Definitions 2(Subnet compounding):Given subnet networkGa=(Va,Ea,Ra,Fa),Gb=compounding mapping Ψ:V1×V2→r′,r′∈R′,compounding subnetG1toG2would generate a new composited one networkG=(V,E,R,F),

    An example of subnet compounding is illustrated in Fig.1.

    Figure 1:Subnet compounding of multiple network(G1,G2,G3,G4)

    4 Dataset description

    Firstly,the taxi trace dataset provided by Transportation Committee of Qingdao city is introduced.The dataset with about 20 million taxi-GPS records consists of 5872 taxi and covers 371 days.State of taxi is defined in a predetermined time interval of one minute,the state includes some fields as follows:

    ●ID:the identification of data record;

    ●GPS LONGITUDE:longitude of a record;

    ●GPS LATITUDE:latitude of a record;

    ●LADEN/UNLADEN STATE:whether a taxi is laden at sampled time,1 represents it is laden and 0 represents it is unladen;

    ●TIME:the sampled time.

    An example of state explanation is show in Tab.1.

    Table 1:An example of state explanation

    Abnormal data cleaning process is a necessary step in big data analysis.We remove taxi traces whose length is less than 500 m and more than 30 km or travel time less than 2 mins.

    5 Spatiotemporal study and pattern analysis

    For the purpose of analysis,Qingdao urban map is divided into cells of 0.5×0.5 km2.To estimate the OD flows,we count the quantity of taxi traces from position Lito position Lj.The quantity of taxi traces cijcan be approximated as OD flow between position Liand position Lj.Through statistical analysis,we found that cijis rather uneven.Statistical analysis indicates that most of human behavioral activities by taxi can be reflected by OD flows.The quantity of OD flows whose cijvalue is more than1000 per month is 237,and the quantity of grids bound up with those 237 OD flows is 75.We think that they can represent typical human behavior by taxi.

    We use the 75 location grids as nodes and those 237 OD flows as edges to build a complex network,which is shown as Fig.2.

    Figure 2:The complex network of OD flows

    For the complex network,we use Mapping Vertex into Vector algorithm to detect community structure.Nodes of the complex network are divided into three communities(green grids,red grids,orange grids)as shown in Fig.3.

    Figure 3:Distribution of grids belonged to three communities in Qingdao urban map

    For better understanding OD flows and identifying emerging patterns,then we explore spatial and temporal distribution of OD flows.

    According to the LADEN/UNLADEN STATE and TIME in source dataset,we can get taxi demands variation trend varying time.The taxi demands with hours in a day is shown in Fig.4.

    Figure 4:Percentage of laden taxis according to the hours of day

    As expected,the percentage of laden taxis varies with working hours.It begins to increase sharply from 7:00,it will gradually reach peak value between17:00 and 19:00,then it will slowly fall back at night.

    Percentage of taxi traces over time of the day and over weekday and weekend are individually shown in Fig.5 and Fig.6.

    Figure 5:Percentage of taxi traces over time of the day

    From Fig.5 we can see that the percentage of taxi traces over time of the day also follows the business hours,time interval from 7 a.m.to 8 a.m.,and from 4 p.m.to 5 p.m.form two peaks.The result is basically consistent with laden taxis variation.

    From Fig.6 we can see that there are more taxis carrying passengers on weekdays than on weekends.

    Figure 6:Percentage of taxi traces over time of weekday and weekend

    We use vertex in-degree and out-degree of complex networks[Barabási and Albert(1999)]to identify some major locations.The top-10 largest in-degree and out-degree of grid locations is shown in Fig.7 and Fig.8.

    Figure 7:The top-10 largest in-degree of grid locations

    Fig.7 presents the major locations of taxi drop-offs distribution in Qingdao,these locations mainly includes downtown(C,G,H),hospitals(A,E,J),governments(B,F,I)and university(D).

    Figure 8:The top-10 largest out-degree of grid locations

    Fig.8 presents the major locations of taxi pick-ups distribution in Qingdao,these locations mainly include Central Business Districts and large residential districts.

    The related stopping grid positions are shown as Fig.9,where the thickness of links stands for intensity between two grid positions.

    Figure 9:The related taxi stopping positions

    6 OD flows semantics mining method

    POIs are grouped into seven categories including downtown,education,health facilities,public transport hub,central business districts,governments and residential district.

    Percentage of POIs Categories is shown as Fig.10.

    Figure 10:Percentage of POIs Categories

    Fig.11 shows the POI distribution for distinguishing the main POI on each position grid.

    Figure 11:Predominant POI category on each location grid

    We use multi-subnet composited complex network model to compound OD flows network and POI network.Then the semantics of OD flow is defined by the semantics of its starting position grid and ending position grid,such as residential district to public transport hub or central business districts to governments.Through topological analytics of the composited complex network,the quantity of OD flows with each kind of semantics is shown in Tab.2.

    Table 2:Quantity of each semantics

    We select 3 representative semantics to explore their relations with behavioral patterns.

    Figure 12:Percentage of OD flow from residential district to central business districts and OD flow from central business districts to residential district

    From Fig.12 we can see that the OD flow from residential district to central business districts has a peak from 8:00 a.m.to 9:00 a.m.and the OD flow from central business districts to residential district has a peak value from 16:00 to 17:00.The two patterns are in accordance with daily behavior experience which people go to work in the morning and return home in the evening.

    From Fig.13 we can see that residential district to health facilities OD flow is flat distributed in day-time.It means that there are no peaks for some OD flows.Based on the analysis mentioned above,the percentage of OD flows with hours distribution can be acted as their feature to identify these OD flows.So,we could explain each OD flow by using a feature vectorSd.

    So,in like manner,we could explain each OD flow with another feature vectorWd.

    We have divided the primary 75 location grids into three communities,there are dense OD flows in the same community,and there are sparse OD flows between two communities.To analyze the empirical observation,we use multi-subnet composited complex network again to compound public transportation network to the former composited network.The public transport network consists of 873 bus station nodes and 1522 lines between bus stations,its topology is shown as Fig.14.

    Figure 14:The complex network of Qingdao public transport

    We found that the more there are public transport lines between two grid locations,the less there are OD flows between them.Distance is not the most important factor of OD flows.An example is shown in Fig.15.

    Figure 15:Relationship between OD flow and public transport line

    From Fig.15 we can see that the distance of grid A-grid B and he distance of grid A-grid C are almost the same,but there are much more OD flows between grid A and grid B than them between grid A and grid C.It is because that there are public transport stations nearby grid A and grid C.So taking public transport into consideration,it will mine better the semantics of OD flows.

    We use an improved Support Vector Machine[Fung and Mangasarian(2005)]to classify above defined feature vectors.Our experimental dataset is actual taxi trajectory data of Qingdao.The actual dataset is stochastically divided into three subsets,train set accounts for 70%,validation accounts for 20% and test set accounts for 10%.The results are limited to several semantic types shown in Tab.2.The classification process is run 100 times and the accurate rate is shown in Tab.3.

    Table 3:The predictive accuracy for each type of feature vectors

    7 Conclusion

    In this paper,our research pays close attention to the OD flows from taxi-GPS traces and understands crowd movement.Through data gathered in Qingdao,China,the distinctive human behavioral patterns which closely related with OD flows are found.Then,a semantics mining method of OD flows is proposed through compounding Points Of Interests(POI)network and public transport network to OD flows network.Experimental results show that we can mine more accurate unknown rules based on the method.

    Future work includes being able to accurately predict taxi flow,comparing pattern of OD flow under different conditions,and suggesting for urban traffic planning.

    Acknowledgement:This work is supported by Shandong Provincial Natural Science Foundation,China under Grant No.ZR2017MG011.This work is also supported by Key Research and Development Program in Shandong Provincial(2017GGX90103).

    日本五十路高清| 男女边摸边吃奶| 久久久久久久久久久久大奶| 日韩大码丰满熟妇| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品人与动牲交sv欧美| 国产一区二区激情短视频 | 黄网站色视频无遮挡免费观看| 制服人妻中文乱码| 精品一区二区三区四区五区乱码 | 黄片播放在线免费| 午夜日韩欧美国产| www.自偷自拍.com| 黄色一级大片看看| 午夜av观看不卡| 成人18禁高潮啪啪吃奶动态图| 欧美日韩精品网址| 日韩精品免费视频一区二区三区| 精品国产乱码久久久久久男人| 亚洲国产av新网站| 真人做人爱边吃奶动态| 午夜精品国产一区二区电影| 岛国毛片在线播放| 欧美日韩视频精品一区| 午夜免费鲁丝| 久久精品久久久久久久性| 国产午夜精品一二区理论片| a级毛片在线看网站| 又粗又硬又长又爽又黄的视频| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频| 成人手机av| 亚洲av电影在线观看一区二区三区| 国产精品免费视频内射| 美女中出高潮动态图| 中文字幕人妻丝袜制服| 各种免费的搞黄视频| 欧美乱码精品一区二区三区| videos熟女内射| 人人妻人人澡人人爽人人夜夜| 在线观看免费午夜福利视频| 日日爽夜夜爽网站| 在现免费观看毛片| 久久精品久久久久久噜噜老黄| 国产欧美日韩一区二区三区在线| 亚洲精品中文字幕在线视频| 每晚都被弄得嗷嗷叫到高潮| 欧美av亚洲av综合av国产av| 高清视频免费观看一区二区| 午夜福利在线免费观看网站| 大香蕉久久网| av视频免费观看在线观看| 欧美日韩综合久久久久久| 欧美精品一区二区大全| 日韩大片免费观看网站| 精品一区二区三区av网在线观看 | 免费看av在线观看网站| 悠悠久久av| 国产精品香港三级国产av潘金莲 | 两个人看的免费小视频| 校园人妻丝袜中文字幕| www.熟女人妻精品国产| 真人做人爱边吃奶动态| 一区二区三区激情视频| 国产日韩欧美亚洲二区| 亚洲成人国产一区在线观看 | 国产精品99久久99久久久不卡| 国产精品麻豆人妻色哟哟久久| 亚洲av美国av| 叶爱在线成人免费视频播放| 国产成人影院久久av| 久久久久国产一级毛片高清牌| 91精品国产国语对白视频| a级毛片黄视频| 久久久国产欧美日韩av| 欧美黑人欧美精品刺激| 国产精品九九99| 亚洲激情五月婷婷啪啪| 亚洲国产欧美在线一区| 欧美日韩国产mv在线观看视频| 精品国产超薄肉色丝袜足j| 精品亚洲成a人片在线观看| 国产精品.久久久| 一区二区三区精品91| 国产成人啪精品午夜网站| 欧美大码av| 久久综合国产亚洲精品| 亚洲精品国产一区二区精华液| av一本久久久久| 午夜福利视频精品| 国产黄色视频一区二区在线观看| 亚洲少妇的诱惑av| 日韩中文字幕欧美一区二区 | 精品高清国产在线一区| 久热爱精品视频在线9| 精品人妻1区二区| 日韩,欧美,国产一区二区三区| 国产福利在线免费观看视频| 一级片免费观看大全| 久久久久久亚洲精品国产蜜桃av| 又粗又硬又长又爽又黄的视频| 高潮久久久久久久久久久不卡| 美女福利国产在线| 男男h啪啪无遮挡| 五月天丁香电影| 国产成人精品无人区| 亚洲五月婷婷丁香| 久久这里只有精品19| 国产亚洲欧美精品永久| 黄片播放在线免费| 老司机深夜福利视频在线观看 | 黑人巨大精品欧美一区二区蜜桃| 日韩视频在线欧美| 中文字幕人妻丝袜一区二区| 黑丝袜美女国产一区| 欧美日韩一级在线毛片| 精品一区二区三区av网在线观看 | 老司机在亚洲福利影院| 97精品久久久久久久久久精品| 国产一级毛片在线| 日本91视频免费播放| 午夜福利,免费看| 亚洲九九香蕉| 亚洲五月婷婷丁香| 婷婷丁香在线五月| xxxhd国产人妻xxx| 男人爽女人下面视频在线观看| 麻豆乱淫一区二区| 欧美黑人精品巨大| 少妇裸体淫交视频免费看高清 | 亚洲国产精品一区三区| 国产爽快片一区二区三区| 美女脱内裤让男人舔精品视频| 国产亚洲欧美精品永久| 999精品在线视频| 成人亚洲精品一区在线观看| 大片电影免费在线观看免费| 久久久精品区二区三区| 夫妻性生交免费视频一级片| 久久久久视频综合| 亚洲熟女毛片儿| 国产在线免费精品| 啦啦啦在线观看免费高清www| 一二三四在线观看免费中文在| 18禁国产床啪视频网站| 国产成人av教育| 婷婷色综合www| 一区福利在线观看| 久久性视频一级片| 美女福利国产在线| 精品人妻一区二区三区麻豆| 黑丝袜美女国产一区| 性少妇av在线| 免费在线观看视频国产中文字幕亚洲 | 美女国产高潮福利片在线看| 十八禁网站网址无遮挡| 精品欧美一区二区三区在线| 免费看av在线观看网站| 肉色欧美久久久久久久蜜桃| 中文字幕最新亚洲高清| 国产高清视频在线播放一区 | 成人国语在线视频| 亚洲精品第二区| 19禁男女啪啪无遮挡网站| 成人国语在线视频| 另类精品久久| 免费观看av网站的网址| 国产一区二区 视频在线| av线在线观看网站| 久久久亚洲精品成人影院| 欧美日韩视频高清一区二区三区二| 99久久人妻综合| 永久免费av网站大全| 久久热在线av| 女人高潮潮喷娇喘18禁视频| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频| 欧美av亚洲av综合av国产av| 日本av免费视频播放| netflix在线观看网站| 国产精品香港三级国产av潘金莲 | av天堂在线播放| 老鸭窝网址在线观看| 亚洲 欧美一区二区三区| 丝袜喷水一区| 成人手机av| 人妻人人澡人人爽人人| 国产91精品成人一区二区三区 | 亚洲激情五月婷婷啪啪| 亚洲中文日韩欧美视频| 国产精品国产av在线观看| 人人妻人人澡人人看| 五月天丁香电影| 久久久久精品人妻al黑| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人爽人人夜夜| 亚洲国产中文字幕在线视频| 悠悠久久av| 国产免费福利视频在线观看| av国产精品久久久久影院| 国产xxxxx性猛交| 日本av免费视频播放| 亚洲自偷自拍图片 自拍| 亚洲,欧美精品.| 亚洲免费av在线视频| 日韩 亚洲 欧美在线| 黄色一级大片看看| 国产精品三级大全| 精品人妻一区二区三区麻豆| 国产一区二区三区av在线| 国产精品久久久久成人av| 国产主播在线观看一区二区 | 美国免费a级毛片| 精品亚洲乱码少妇综合久久| 看免费成人av毛片| 制服诱惑二区| 亚洲欧洲日产国产| 亚洲国产精品成人久久小说| 国产日韩欧美在线精品| 男女免费视频国产| 亚洲综合色网址| 国产片特级美女逼逼视频| 日韩精品免费视频一区二区三区| 老司机在亚洲福利影院| 日韩 亚洲 欧美在线| 国产在线观看jvid| 精品免费久久久久久久清纯 | 国产又爽黄色视频| 叶爱在线成人免费视频播放| 亚洲国产av新网站| 日日摸夜夜添夜夜爱| 18禁观看日本| 亚洲成色77777| 日本vs欧美在线观看视频| 色视频在线一区二区三区| 成年av动漫网址| videosex国产| 午夜老司机福利片| 亚洲国产精品一区三区| 香蕉丝袜av| 久久久久视频综合| 亚洲欧美中文字幕日韩二区| 精品视频人人做人人爽| 男女免费视频国产| 亚洲情色 制服丝袜| 欧美日韩黄片免| 在线精品无人区一区二区三| 狂野欧美激情性xxxx| 韩国高清视频一区二区三区| 人体艺术视频欧美日本| 又粗又硬又长又爽又黄的视频| 国产成人免费无遮挡视频| 亚洲,一卡二卡三卡| 又紧又爽又黄一区二区| 国产精品香港三级国产av潘金莲 | 亚洲国产中文字幕在线视频| 欧美乱码精品一区二区三区| 狠狠精品人妻久久久久久综合| 日韩熟女老妇一区二区性免费视频| 男女之事视频高清在线观看 | √禁漫天堂资源中文www| 真人做人爱边吃奶动态| 国产无遮挡羞羞视频在线观看| 精品人妻1区二区| 18禁国产床啪视频网站| 亚洲一码二码三码区别大吗| 国产成人av教育| av国产精品久久久久影院| 久久久久久久大尺度免费视频| 日韩精品免费视频一区二区三区| 深夜精品福利| 欧美精品人与动牲交sv欧美| 黄色片一级片一级黄色片| av又黄又爽大尺度在线免费看| 高潮久久久久久久久久久不卡| 久久精品亚洲熟妇少妇任你| 国产亚洲精品第一综合不卡| 亚洲精品美女久久av网站| 欧美激情高清一区二区三区| 麻豆av在线久日| av又黄又爽大尺度在线免费看| 亚洲欧美清纯卡通| 99热全是精品| 老熟女久久久| 国产精品.久久久| 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| avwww免费| 免费观看a级毛片全部| 一级毛片我不卡| 久热这里只有精品99| 99香蕉大伊视频| 又黄又粗又硬又大视频| 久久天堂一区二区三区四区| 午夜老司机福利片| 亚洲欧美中文字幕日韩二区| 一二三四社区在线视频社区8| 国产97色在线日韩免费| 亚洲精品第二区| 久久精品人人爽人人爽视色| 日韩av免费高清视频| 黄色 视频免费看| 国产免费福利视频在线观看| 看免费av毛片| 一区福利在线观看| 欧美激情高清一区二区三区| 满18在线观看网站| 超色免费av| 国产成人91sexporn| 精品第一国产精品| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲av综合色区一区| 黄片小视频在线播放| 久久九九热精品免费| 亚洲色图综合在线观看| 国产成人欧美| 欧美黑人欧美精品刺激| 亚洲天堂av无毛| 久久青草综合色| 飞空精品影院首页| 精品人妻熟女毛片av久久网站| 国产黄频视频在线观看| 黑人猛操日本美女一级片| 国产黄色视频一区二区在线观看| 欧美黄色片欧美黄色片| 一区在线观看完整版| 99久久综合免费| 国产一区有黄有色的免费视频| 亚洲av欧美aⅴ国产| 黑人欧美特级aaaaaa片| 日韩一区二区三区影片| 岛国毛片在线播放| 国产成人一区二区三区免费视频网站 | av国产精品久久久久影院| 欧美日韩亚洲高清精品| 久久精品人人爽人人爽视色| 各种免费的搞黄视频| 777久久人妻少妇嫩草av网站| 久久av网站| 久久久精品国产亚洲av高清涩受| 男人爽女人下面视频在线观看| 亚洲精品美女久久av网站| 日本av免费视频播放| 精品卡一卡二卡四卡免费| 精品视频人人做人人爽| 超色免费av| 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 看十八女毛片水多多多| 在线av久久热| 欧美日韩精品网址| 久久亚洲精品不卡| 中文字幕人妻丝袜制服| 男女边吃奶边做爰视频| 久久久久久久大尺度免费视频| 亚洲成色77777| 人人澡人人妻人| 国产在线一区二区三区精| 在线看a的网站| 一区二区三区四区激情视频| 国产日韩欧美亚洲二区| 国产成人影院久久av| 亚洲 欧美一区二区三区| 欧美精品高潮呻吟av久久| 国产女主播在线喷水免费视频网站| 欧美少妇被猛烈插入视频| a 毛片基地| 亚洲av成人不卡在线观看播放网 | 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 亚洲五月色婷婷综合| 女性生殖器流出的白浆| bbb黄色大片| 国产免费一区二区三区四区乱码| 欧美av亚洲av综合av国产av| 纵有疾风起免费观看全集完整版| 久久性视频一级片| 永久免费av网站大全| 99热国产这里只有精品6| 亚洲欧洲精品一区二区精品久久久| 日本av手机在线免费观看| 成年av动漫网址| 赤兔流量卡办理| 只有这里有精品99| av电影中文网址| 天天躁狠狠躁夜夜躁狠狠躁| 纵有疾风起免费观看全集完整版| 黄色a级毛片大全视频| 午夜免费成人在线视频| 永久免费av网站大全| 啦啦啦视频在线资源免费观看| av欧美777| 国产麻豆69| 超碰97精品在线观看| 老鸭窝网址在线观看| 午夜日韩欧美国产| 亚洲男人天堂网一区| 大码成人一级视频| 女人被躁到高潮嗷嗷叫费观| 国产成人精品无人区| 99久久99久久久精品蜜桃| 欧美人与善性xxx| 91麻豆av在线| 亚洲 国产 在线| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 宅男免费午夜| 少妇人妻 视频| 欧美日韩黄片免| 美女主播在线视频| 十八禁高潮呻吟视频| 国产97色在线日韩免费| 日韩精品免费视频一区二区三区| 中国国产av一级| 国产精品二区激情视频| 日日摸夜夜添夜夜爱| 国产男女超爽视频在线观看| 亚洲精品日本国产第一区| 日韩一本色道免费dvd| 黄网站色视频无遮挡免费观看| 亚洲色图 男人天堂 中文字幕| 亚洲国产成人一精品久久久| 国产97色在线日韩免费| 午夜免费观看性视频| www.熟女人妻精品国产| 国产精品二区激情视频| 色播在线永久视频| 永久免费av网站大全| 国产视频一区二区在线看| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲高清精品| 最新在线观看一区二区三区 | 精品一区二区三区四区五区乱码 | 18禁黄网站禁片午夜丰满| 国产亚洲精品第一综合不卡| 夫妻午夜视频| 在线精品无人区一区二区三| 亚洲欧美一区二区三区久久| 满18在线观看网站| 精品少妇一区二区三区视频日本电影| 婷婷色综合大香蕉| av在线app专区| xxx大片免费视频| 另类亚洲欧美激情| 日日摸夜夜添夜夜爱| 叶爱在线成人免费视频播放| a 毛片基地| 91国产中文字幕| 久久久久久久大尺度免费视频| 免费不卡黄色视频| h视频一区二区三区| av天堂久久9| 岛国毛片在线播放| 日本欧美国产在线视频| 免费看十八禁软件| 欧美日韩亚洲高清精品| 爱豆传媒免费全集在线观看| 大香蕉久久成人网| 999精品在线视频| 别揉我奶头~嗯~啊~动态视频 | 精品视频人人做人人爽| 青青草视频在线视频观看| 亚洲av日韩精品久久久久久密 | 久久鲁丝午夜福利片| 99九九在线精品视频| 国产成人精品无人区| 丰满饥渴人妻一区二区三| 又大又黄又爽视频免费| 巨乳人妻的诱惑在线观看| 激情五月婷婷亚洲| 女性生殖器流出的白浆| 一边摸一边抽搐一进一出视频| 国产免费福利视频在线观看| 日本欧美国产在线视频| 久久久久久久久久久久大奶| 飞空精品影院首页| 亚洲欧洲国产日韩| 18禁观看日本| 老司机午夜十八禁免费视频| 一区二区日韩欧美中文字幕| 久久精品久久精品一区二区三区| 国产熟女欧美一区二区| 国产视频一区二区在线看| 国产欧美日韩综合在线一区二区| 日韩视频在线欧美| 黄色怎么调成土黄色| 国产高清不卡午夜福利| 亚洲专区国产一区二区| 亚洲欧洲国产日韩| 亚洲精品久久成人aⅴ小说| 高潮久久久久久久久久久不卡| 国产av精品麻豆| 手机成人av网站| 后天国语完整版免费观看| 国产欧美日韩一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 宅男免费午夜| 精品久久久精品久久久| 一级,二级,三级黄色视频| 在线亚洲精品国产二区图片欧美| 亚洲综合色网址| 91精品三级在线观看| 一本久久精品| 大香蕉久久成人网| 亚洲成人免费av在线播放| av一本久久久久| 成人免费观看视频高清| 9热在线视频观看99| 欧美人与性动交α欧美精品济南到| 精品人妻一区二区三区麻豆| 久久ye,这里只有精品| 亚洲av日韩精品久久久久久密 | 精品国产乱码久久久久久男人| 亚洲五月色婷婷综合| 午夜老司机福利片| av视频免费观看在线观看| av国产精品久久久久影院| 亚洲欧美一区二区三区黑人| 性色av一级| 两人在一起打扑克的视频| kizo精华| 国语对白做爰xxxⅹ性视频网站| 婷婷色麻豆天堂久久| 亚洲av成人不卡在线观看播放网 | 欧美精品人与动牲交sv欧美| 午夜视频精品福利| 国产男女内射视频| 女性生殖器流出的白浆| 国产精品免费视频内射| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人成网站在线观看播放| 色播在线永久视频| 18在线观看网站| 精品亚洲成a人片在线观看| 久久午夜综合久久蜜桃| 国产有黄有色有爽视频| 一区二区三区激情视频| 十分钟在线观看高清视频www| 亚洲第一青青草原| 国产在视频线精品| 欧美精品一区二区免费开放| 亚洲成人免费av在线播放| 国产精品一区二区免费欧美 | 大码成人一级视频| 成年人免费黄色播放视频| 五月天丁香电影| 99精品久久久久人妻精品| 精品视频人人做人人爽| 真人做人爱边吃奶动态| 久久天躁狠狠躁夜夜2o2o | 国产成人啪精品午夜网站| 国产精品.久久久| www日本在线高清视频| 99香蕉大伊视频| 午夜福利乱码中文字幕| 好男人视频免费观看在线| 亚洲精品久久久久久婷婷小说| 丁香六月天网| 日本av手机在线免费观看| 国产成人精品久久二区二区91| 三上悠亚av全集在线观看| 一级毛片电影观看| 亚洲人成77777在线视频| 97精品久久久久久久久久精品| 免费不卡黄色视频| 国产精品二区激情视频| 男人爽女人下面视频在线观看| 国产极品粉嫩免费观看在线| 国产av一区二区精品久久| 美女福利国产在线| 欧美亚洲 丝袜 人妻 在线| tube8黄色片| 啦啦啦中文免费视频观看日本| 男的添女的下面高潮视频| 91字幕亚洲| 制服人妻中文乱码| 人体艺术视频欧美日本| 亚洲av综合色区一区| 美女扒开内裤让男人捅视频| 波野结衣二区三区在线| 国产视频一区二区在线看| 中文字幕色久视频| 国产在线免费精品| 99热全是精品| 精品欧美一区二区三区在线| 国产亚洲欧美在线一区二区| 国产视频一区二区在线看| 国产一区亚洲一区在线观看| av有码第一页| 亚洲欧美激情在线| 中文字幕色久视频| 女性生殖器流出的白浆| 国产精品国产三级国产专区5o| 久久久久国产一级毛片高清牌| 国产亚洲欧美在线一区二区| 日韩一区二区三区影片| 777米奇影视久久| 成人亚洲精品一区在线观看| 黄网站色视频无遮挡免费观看| 91麻豆av在线| 久久女婷五月综合色啪小说| 热re99久久精品国产66热6| 又粗又硬又长又爽又黄的视频| 色94色欧美一区二区| 啦啦啦啦在线视频资源| 大片电影免费在线观看免费| 免费高清在线观看日韩| 婷婷色av中文字幕| 国产激情久久老熟女| 国产精品av久久久久免费| 婷婷成人精品国产| 男女国产视频网站| 男女免费视频国产|