• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-Label Learning Based on Transfer Learning and Label Correlation

    2019-11-07 03:12:24KehuaYangChaoweiSheWeiZhangJiqingYaoandShaosongLong
    Computers Materials&Continua 2019年10期

    Kehua Yang,Chaowei SheWei Zhang Jiqing Yao and Shaosong Long

    Abstract:In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local label correlations can appear in real-world situation at same time.On the other hand,we should not be limited to pairwise labels while ignoring the high-order label correlation.In this paper,we propose a novel and effective method called GLLCBN for multi-label learning.Firstly,we obtain the global label correlation by exploiting label semantic similarity.Then,we analyze the pairwise labels in the label space of the data set to acquire the local correlation.Next,we build the original version of the label dependency model by global and local label correlations.After that,we use graph theory,probability theory and Bayesian networks to eliminate redundant dependency structure in the initial version model,so as to get the optimal label dependent model.Finally,we obtain the feature extraction model by adjusting the Inception V3 model of convolution neural network and combine it with the GLLCBN model to achieve the multi-label learning.The experimental results show that our proposed model has better performance than other multi-label learning methods in performance evaluating.

    Keywords:Bayesian networks,multi-label learning,global and local label correlations,transfer learning.

    1 Introduction

    Nowadays,we live in an information age.An instance cannot be labeled with just single label,so the instance is often associated with more than one class label.For example,an image can be annotated with several labels[Su,Chou,Lin et al.(2011)],a piece of music can belong to many types[Turnbull,Barrington,Torres et al.(2008)],a text can reflect different themes[Ueda and Saito(2002)].Therefore,multi-label classification attracts more and more researchers to research.

    There are two categories in multi-label learning algorithms[Zhang and Zhou(2007)]:problem transformation and algorithm adaption.Problem transformation is a straightforward method.The main idea is to convert multi-label problem as one or more traditional single label problems.Algorithms include Binary Relevance(BR)[Boutell,Luo,Shen et al.(2004)],Pruned Problem Transformation(PPT)[Read,Pfahringer and Holmes(2009)]and so on.Algorithm adaptation is an adaptive method.The main idea is to use single-label classification algorithm to adapt to multi-label classification.Classic algorithms include C4.5 Decision Tree[Quinlan(1992)],Multi-label Dimensionality reduction via Dependence Maximization(MDDM)[Zhang and Zhou(2010)],Multi-label Informed Latent Semantic Indexing(MLSL)[Yu,Yu and Tresp(2005)]and so on.

    Label correlation can provide important information for multi-label classification.For example,“blue sky” and “white cloud” are highly symbiotic labels,while “sunny” and“black clouds” are highly exclusive labels.“ocean” and “sailboat” appear at the same time,it is highly likely that the “fish” label will be included,while the “desert” label will not appear.However,most of the existing methods mainly focus on the sharing characteristics of global label and ignore the label correlation of local data sets.For example,“Jack Ma” is associated with “Alibaba” in the IT company data set[Liu,Peng and Wang(2018)],but it is weakly related to global label correlation.Therefore,according to the above analysis,it is more practical and comprehensive to consider the global and local label correlations in multi-label classification.

    Each instance has characteristics of multi-dimensional label in multi-label learning.If the label of instance is annotated simply by manual labeling,human may sometimes ignore labels that they do not know or of little interest,or follow the guide by some algorithm to reduce labeling costs[Huang,Chen and Zhou(2015)].Some labels may be missing from the training set,which is a kind of weakly supervised learning.So subjectivity factors are unavoidable in the labels.As a result,some labels may be missing from the data set,resulting in label imbalance,which makes it more difficult and potentially negatively impacting performance to estimate label correlations.

    In this paper,we propose a novel and effective method called “Bayesian Networks with Global and Local Label Correlation”(GLLCBN).The main idea of GLLCBN is to use the global label semantics correlation and local label correlation of data set to balance label correlation and reduce the impact of label noise on data set.First of all,the probability of each individual label is obtained by analyzing the data set.Similarly,we get the probability between pairwise labels by using the data set.And then,the global label correlation matrix is constructed by label semantic similarity.After that,according to the relevant probability information received in the first to three steps,the initial Bayesian networks topology is constructed to obtain the high-order label correlation.In addition,redundant edge(label correlation)in the network structure are optimized by graph theory and probability theory.Subsequently,GLLCBN model is constructed.Finally,the initial prediction label is obtained by using transfer learning to adjust and train the Inception V3 model,and then,the prediction result is combined with GLLCBN to achieve multi-label classification.

    The remainder of this paper is organized as follows.Section 2 introduces the related work of multi-label learning.Section 3 presents our proposed algorithm in detail.We experimented to verify the performance of our proposed method in Section 4.Finally,conclusions and future work are given in Section 5.

    2 Related work

    In recent years,multi-label learning has been extensively studied and many methods have been proposed[Zhang and Zhou(2007)].In addition,the role of label correlation has gradually become the focus of researchers.Methods can be divided into three categories according to the degree of label correlation[Zhang and Zhang(2010)].

    First-order method is to convert a multi-label classification into multiple one-dimensional independent classifiers.For example,the classic BR[Boutell,Luo,Shen et al.(2004)]trained a corresponding classifier for each label independently.Obviously,the advantage of this approach is its simplicity,but it ignores label correlation.Second-order method refers to the correlation between pairs of labels.For example,the CLR[Brinker(2008)]achieved conversion of multi-label classification problems by analyzing the correlation of pairwise labels and establishing label rankings.Although the advantage of this method is that it considers the internal pairwise label correlations,which has a certain efficiency improvement.However,multi-label learning generally has high dimensions,we should not be limited only to consider the existence of pairwise labels.Therefore,higher-order methods are proposed.High-order method refers to analyzing the correlation between the high-dimensional of the labels and is not limited to the pairwise labels.For example,MLLRC[Huang and Zhou(2012)]solves multi-label classification problem by using characteristics of the matrix rank.Obviously,the advantage of high-order method is to extract the intrinsic connection of label and strengthen the dependency of labels,but label correlation analysis is more difficult and the label correlation structure is more complicated.

    Labeling of an instance may result in label imbalance due to subjectivity factors.For example,the actual label for this image should contain “bull”,“mountain” and “road” in Fig.1.By manual labeling,on the one hand,the picture on the left can be marked in the order of “cattle”,“mountain”,“road”.On the other hand,the picture on the right may be marked as “mountain”,“road”,“bull”.Sometimes the label of “bull” even be lost by visual effects.GLOCAL[Zhu,Kwok and Zhou(2017)]indicated that missing label and label order are influential factors for multi-label classification.

    Figure 1:Image annotation

    In summary,for the study of multi-label classification,not only global label correlation should be considered,but also local label correlation.Therefore,a more balanced and comprehensive label correlation can be received.

    3 The proposed approach

    In this section,details of the proposed approach GLLCBN will be presented.Firstly,we perform predefined of model and analysis global and local label correlation to obtain GLLCBN model.Secondly,we combine the optimized Inception V3[Szegedy,Vanhoucke,Ioffe et al.(2016)]model by transfer learning with GLLCBN to achieve multi-label classification.

    3.1 Preliminaries

    Since multi-label classification has high-dimensional features,this is the difference between multi-label classification and single-label classification,we have following predefined processing.LetD=Rnbe n-dimensional sample space andwheremis the number of labels in dataset.On the one hand,the correspondence between the data set instance and the sample label is defined asQ=({Ni,Mi)|i=1,2,...,n},wherenrepresents the total number of data set andNi∈Dis an n-dimensional feature vector.So we defineto represent the feature vector of a sample instance.On the other hand,we denoteas sample label matrix,whereis the label vector of instance associated withNi.In addition,we denoteas each elementif thei-th instance hasj-th label,otherwise.

    3.2 Label correlation

    Label correlation contains potentially important information for multi-label classification problem,so label correlation is an essential part of our analysis[Punera,Rajan and Ghosh(2005)].However,there are certain difficulties in the analysis of this aspect,then how to solve this problem has become a new research direction.In order to analyze label correlation more reasonably and comprehensively,we deal with local correlation of the data set and global correlation of the label semantics.

    3.2.1 Local label correlation

    We consider local label correlation from the data set.Since data in the data set is random,the probability of different labels is inconsistent.According to this feature,we denoteP=[p(l1),p(li),...,p(lm)]as the probability of each label occurrence,wheremrepresents the total number of sample labels andp(li)indicate the probability of thei-th label in the data set.Since label correlation is at least second-order,we need to calculate the probability of pairwise labels.The local label correlation is defined as:

    wherei,jare a single label in the label set andi,j∈m.We denoteT(Nlj)as the number of sample instances with the labellj.However,to avoid anomalous expressions,ifT(Nlj)value is equal to 0,it means thatp(li|lj)is also equal to 0.Similarly,T(Nli|lj)represents the number of sample instances that simultaneously have both labelsliandlj.In addition,we denotep(li|lj)andX(li|lj)as the probability of pairwise label correlations.It is important to note that pairwise label correlations is not a symmetric equivalent relationship,which is defined as:

    For example,there is a data set as shown in Tab.1:

    Table 1:Data set

    According to the above table,,there isp(lA|lB)≠p(lB|lA),so Eq.(2)is correct.

    3.2.2 Global label correlation

    We obtain global correlation by analyzing the word similarity.At present,the correlation between words mainly uses context semantics of words,the word vector is used to judge correlation between two words and Word2vec[Mikolov,Chen,Corrado et al.(2013)]is a classic algorithm.For example,words “man” and “woman” are highly relevant to “man”and “beautiful”,because they are used in a similar context.For example the word “man”can be used in the position of the sentence and the word “woman” can be replaced.Therefore,we defineW=[W1,W2,...,Wm]T∈[0,1]m×mas word matrix,whereW1=[w(l1|l1),w(l1|l2),...,w(l1|lm)]is a vector of pairwise words correlation andw(li|lj)is the word correlation probability between labelsiandj.The process is defined as:

    As shown in Eq.(3),each label is perfectly correlated with itself,so the value is 1 and a small value means that the label correlation is low,otherwise the opposite.

    3.3 GLLCBN model

    According to the analysis in Section 3.2,we have dealt with global and local label correlations.The relationship between them is defined as Eq.(4):

    wherei,jare pairwise labels,andλ1,λ2∈[0,1],λ1+λ2=1are trade-off parameters for controlling the weight between global and local label correlations.Then that,E(li|lj)is the comprehensive label correlation.

    It is not enough to finally acquire pairwise label correlations through theE(li|lj),because according to the global and local label correlation,this will result in a cyclic relationship between pairwise labels,the labelsliandljhave a relationship betweenE(li|lj)andE(lj|li).When a symmetrical relationship occurs,it becomes ambiguous because it is impossible to determine which side of the pairwise labels is strongly dependent on the other.Therefore,in order to solve this problem,it is necessary to eliminate the ambiguous dependencies of pairwise labels,so that the definition can be defined as Eq.(5):

    whereli,ljare pairwise labels,andlx1|lx2is finalized label dependency.

    For example,there is a structure in Fig.2,where a circle represents a label(e.g.,A,B)and the edges between the circles represent the probability of pairwise label correlations(e.g.,E(lB|lA),E(lA|lB)).

    Figure 2:Correlation between label A and B

    According to the description of the Eq.(5),since correlation follow the principle of maximum value,correlation between label A and label B should be such that the structure of Fig.2 should be optimized to the structure of Fig.3.Therefore,this shows that label A is more dependent on label B.

    Figure 3:Optimized label A and B correlation

    As shown in Fig.4,it is worth noting that if there are multiple reachable paths for one label to another.As shown in the Eq.(6),it is used to determine label dependencies of multiple reachable edges.

    Figure 4:Multiple reachable paths between label

    Eq.(6)can be equivalent to the form as shown in the Eq.(7):

    wherek1,k2,...are the middle label node on the path from labelitoj.Then that,Q1=The

    specific proof of the Eq.(7)is as follows:

    Proof.First,we are based on Fig.4.On the one hand,N(A),N(B),N(C),N(A,B),N(A,C),N(B,C),N(A,B,C)are the number of sample instances.On the other hand,p(lC|lA),p(lB|lA),p(lC|lB)are the probability of pairwise local label correlations.Then,w(lB|lA),w(lC|lA),w(lC|lB)are the probability of label semantic correlation.Moreover,their values are known according to the analysis from Eq.(1)to Eq.(5).

    Second,according to graph theory and probability theory,we have the following defines:

    If we have to proveE(lC|lA)≥(E(lB|lA),E(lC|lB)),according to Eq.(8)and Eq.(9),we only need to prove.

    We observe that the data set can be able to guaranteeN(A,C)≥N(A,B,C),because both of them belong to the inclusion relationship,and the former has a larger scope.By the same logic,we know thatN(A)≥N(A,B)and the values ofλ1and λ2 on both sides of the equation are the same,so it does not require additional consideration.In addition,w(lABC|lAB)=w(lB|lA)×w(lC|lB)×(lC),wherew(lC)is equal 1,thus,w(lABC|lAB)=w(lB|lA)×w(lC|lB).

    According to the above analysis,we know that only if the sample data set satisfies the value of,thenE(lC|lA)≥(E(lB|lA),E(lC|lB))can be obtained,otherwise,the opposite is true.Therefore,we prove that Eq.(7)is true.

    According to the Eq.(7),the reachable path for eliminating the dependency of the label correlation can be performed,but the following two cases require special handling.

    Case 1.E(li|lj)=E(li|lk1|lk2...|lj)

    According to the principle of maximum label correlation,Fig.4 is optimized as shown in Fig.5.

    Figure 5:Optimized GLLCBN model

    Case 2.E(li|lj)=E(li|lj)

    Fig.4 does not need to be changed.Because there may be pairwise label correlations,the intermediate nodes in them cannot be eliminated,and the correlation structure of each intermediate node should be retained.

    In summary,directed graph model of GLLCBN can be constructed by analyzing label correlation and Bayesian networks[Friedman,Linial,Nachman et al.(2000)].The GLLCBN model can be used to optimize the label correlation and facilitate the extraction of potential association information between labels,and reduce the impact of label imbalances in the sample data set.

    3.4 Adjustment of Inception V3 model

    Convolutional Neural Network(CNN)plays a very important role in the research of image classification[Song,Hong,Mcloughlin et al.(2017)].There are many excellent models of CNN,such as AlexNet[Krizhevsky,Sutskever and Hinton(2012)],VGGNet[Russakovsky,Deng,Su et al.(2015)],ResNet[He,Zhang,Ren et al.(2015)]and GoogleNet[Szegedy,Liu,Jia et al.(2014)].Among them,Inception V3[Szegedy,Vanhoucke,Ioffe et al.(2016)]created by Google is a very portable and highly usable model.Therefore,we use transfer learning approach to make related adjustments for the Inception V3 model to improve the performance of the multi-label classification problem.In order to adjust the Inception V3 model,we need to make some adjustments.First of all,since the Inception V3 model was initially trained for single classification,but our images are multi-label attributes,we need to treat the label storage of the input data as multidimensional,rather than only as single label.Secondly,in order to achieve applicability,it is generally necessary to remove the top-level structure and then add some new various layers of customization.Therefore,we add a fully connected layer of 1024 nodes for association with the last pooling layer.Finally,since the softmax in Inception V3 outputs 1000 nodes(the ImageNet[Deng,Dong,Socher et al.(2009)]data set has 1000 categories),we need to modify the last layer of the network and convert it to the number of nodes(it equivalent to the label type in the data set)so that label classification is achieved through our model.

    4 Experiments

    In this section,to evaluate the performance of GLLCBN,a description of the multi-label data set used in the experiments,the performance evaluation of multi-label classification and comparative algorithm with GLLCBN model are explained.Finally,the experimental results and analysis are presented.

    4.1 Data sets

    In order to verify the performance of GLLCBN,we chose the open source data set collected by Nanjing University.The download link for the data set ishttp://lamda.nju.edu.cn/files/miml-image-data.rar.The data set contains 2,000 landscape images and five labels(desert,ocean,sunset,mountains,trees).In addition,each instance has an average of two labels.It is worth noting that the original data set archive contains a file called miml_data with a.mat suffix(Matlab file format).It contains three files:bags.mat,targets.mat and class_name.mat.The first file can be ignored directly because it has no special effect.The second file is the label definition for each image,which means a matrix of 5×2000,each column represents label for an instance image,and the value 1 indicates the presence of the label,and-1 means that there is no corresponding label,and the label order is the same as the class_name.mat file.In addition,we need to deal with label format content and convert the matrix into a.txt format file in order to facilitate follow-up training of Inception V3 model.The last file shows all possible label names for the data set.

    4.2 Performance evaluation

    Since an instance has multiple label attributes in the multi-label classification,prediction label may belong to a subset of the actual label,which is represented as.To evaluate the performance of GLLCBN model,we select five widely-used evaluation metrics[Gibaja and Ventura(2015)].

    Hamming Loss expresses the degree of inconsistency between the prediction label and the actual label.Eq.(10)shows the expression of the Hamming Loss.

    Coverage evaluates how far it is needed,on average,to go down the ranked list of labels in order to cover all ground true labels.Eq.(11)shows the expression of the Coverage.

    Ranking Loss evaluates the average fraction of mis-ordered label pairs.Ranking Loss is defined as follows:

    Average Precision represents the average accuracy of the predicted instance label set,just like Eq.(13).

    Average Predicted Time expresses the average time to predict each instance and it time unit is second,which is expressed as follows:

    It is worth noting that in the above five performance evaluation,Hamming Loss,Ranking Loss,Coverage,Ranking Loss and Average Predicted Time,the smaller value means the better performance.But for Average Precision,the larger value means better performance.

    4.3 Comparative algorithms

    In order to validate the validity of GLLCBN model,we compare GLLCBN to the following most advanced multi-label learning algorithms:

    1.Binary Relevance(BR)[Boutell,Luo,Shen et al.(2004)]is first-order method.The main idea is to train a binary linear SVM classifier independently for each label.

    2.Calibarated Label Ranking(CLR)[Brinker(2008)]is second-order method.The main idea is to establish a label ranking by analyzing the pairwise labels.

    3.Multi-label Learning Using Local Correlation(ML-LOC)[Huang and Zhou(2012)]is high-order method.The main idea is to analyze the local label correlation by encoding instance features.

    4.Random K-Labelsets(RAKEL)[Tsoumakas,Katakis and Vlahavas(2011)]is highorder method.The main idea is to transform the multi-label classification problem into several multi-class learning problems by exploiting high-order global label correlation.

    All compared algorithms are summarized in Tab.2.

    Table 2:Compared methods

    4.4 Experimental results

    In our experiments,we randomly use 30%,50% and 70% of the data in data set as the training set,and the rest of data as test data set.Experimental results are shown from Tab.3 to Tab.5.In addition,all of our experimental methods are studied by using the Python or Matlab environment.

    Table 3:Performance evaluation of different algorithms for randomly marking 30% data sets as training data sets:mean ±std(rank)

    Table 4:Performance evaluation of different algorithms for randomly marking 50% data sets as training data sets:mean ±std(rank)

    Table 5:Performance evaluation of different algorithms for randomly marking 70% data sets as training data sets:mean ±std(rank)

    4.5 Experimental analysis

    According to experimental results in Section 4.4,we get the following summary:

    1.When the training data set is 30% of the data set,BR algorithm has some advantages in the performance evaluation of Hamming Loss,Coverage,Ranking Loss,Average Precision and Average Prediction Time.Global label correlation algorithm is superior to local label correlation algorithm.

    2.When the training data set is 50% of the data set,BR algorithm has better performance evaluation in Hamming Loss than the label correlation algorithm.In terms of Coverage,Ranking Loss,Average Precision and Average Prediction Time,the CLR,ML-LOC and GLLCBN algorithms that consider local label correlation have a better advantage than the RAKEL algorithm that considers global label correlation.

    3.When the training data set is 70% of the data set,the advantages of BR are gradually replaced by other algorithms.CLR algorithm in Hamming Loss is higher than other algorithms.For the label correlation algorithm,GLLCBN has better performance evaluation in terms of Coverage,Ranking Loss and Average Precision than MLLOC and RAKEL algorithms,but it is longer in Average Prediction Time.

    4.By analyzing the above three points,we can know that when the training data set is gradually increased,the advantage of the label correlation algorithm in the performance evaluation is gradually reflected,indicating that the label correlation has a certain influence on the multi-label classification problem.

    5 Conclusion and future work

    For the study of multi-label classification,how to mine the potential label correlation information is still a worthy direction in the future.In this paper,we propose a novel and effective approach named GLLCBN for multi-label learning.In the GLLCBN model,the node represents label space,and edge represents global and local comprehensive label correlation.We firstly obtain a complex model by analyzing label,global semantic relevance and local label correlation of data set(This process is called building node association graph),and secondly by using probability theory,Bayesian networks and graph theory to optimize label dependency graph(This process is called eliminating redundant edges),thus we construct a label-dependent network called GLLCBN model.Finally,the multi-label classification is solved by combining the initial prediction results by the Inception V3 model with the GLLCBN model.In addition,experimental results show that our proposed approach has certain effectiveness in performance evaluation.

    In the future,we consider optimizing the performance of our proposed methods in large scale label space data sets and applying this approach to more different multi-label data sets.

    Acknowledgement:The authors gratefully acknowledge support from National Key R&D Program of China(No.2018YFC0831800)and Innovation Base Project for Graduates(Research of Security Embedded System).

    免费一级毛片在线播放高清视频| 一夜夜www| 国产精品一区二区三区四区免费观看| 国产精品一区www在线观看| 国产成人精品婷婷| 亚洲国产高清在线一区二区三| 久久久久久久国产电影| 最近手机中文字幕大全| 美女国产视频在线观看| 久久久久国产网址| 精品久久久久久久末码| 汤姆久久久久久久影院中文字幕 | 特级一级黄色大片| 亚洲欧美日韩卡通动漫| 在线观看av片永久免费下载| 欧美潮喷喷水| 美女内射精品一级片tv| 最近最新中文字幕免费大全7| 国产精品不卡视频一区二区| 免费黄色在线免费观看| 亚洲av.av天堂| 久久精品91蜜桃| 直男gayav资源| 一区二区三区乱码不卡18| 国产黄色小视频在线观看| 爱豆传媒免费全集在线观看| 国产精品国产高清国产av| 亚洲国产成人一精品久久久| 国产私拍福利视频在线观看| 天天一区二区日本电影三级| 国产精品美女特级片免费视频播放器| 久久精品久久久久久噜噜老黄 | 亚洲精品久久久久久婷婷小说 | 亚洲欧洲日产国产| 人体艺术视频欧美日本| 日韩欧美国产在线观看| 最近手机中文字幕大全| 91午夜精品亚洲一区二区三区| 男女那种视频在线观看| 亚洲美女视频黄频| 99久久九九国产精品国产免费| 麻豆成人午夜福利视频| 国产一区亚洲一区在线观看| 国产精品一区二区三区四区免费观看| 99久久人妻综合| 亚洲av福利一区| 天天躁夜夜躁狠狠久久av| 成年免费大片在线观看| 免费观看性生交大片5| 亚洲国产精品专区欧美| av在线亚洲专区| 久久久国产成人精品二区| 日日干狠狠操夜夜爽| www日本黄色视频网| 伊人久久精品亚洲午夜| 美女内射精品一级片tv| 国产极品天堂在线| 国产亚洲av片在线观看秒播厂 | 亚洲精品国产成人久久av| 国产乱人视频| 欧美日韩国产亚洲二区| 麻豆精品久久久久久蜜桃| 日本猛色少妇xxxxx猛交久久| 亚洲电影在线观看av| 国产在线一区二区三区精 | 久99久视频精品免费| 久久精品综合一区二区三区| www.色视频.com| 尾随美女入室| 美女内射精品一级片tv| av又黄又爽大尺度在线免费看 | 日韩欧美在线乱码| 成人性生交大片免费视频hd| 我要搜黄色片| 日韩欧美在线乱码| 亚洲久久久久久中文字幕| 九九热线精品视视频播放| 日本免费在线观看一区| 尤物成人国产欧美一区二区三区| 国产成人a∨麻豆精品| 日本午夜av视频| 国产一级毛片七仙女欲春2| 精品99又大又爽又粗少妇毛片| 久久久久免费精品人妻一区二区| 岛国在线免费视频观看| 亚洲欧美精品专区久久| 赤兔流量卡办理| 免费黄色在线免费观看| 亚洲av福利一区| 免费无遮挡裸体视频| 嘟嘟电影网在线观看| 91久久精品国产一区二区成人| 日本一本二区三区精品| 色播亚洲综合网| 91久久精品电影网| 国产亚洲av片在线观看秒播厂 | 免费av观看视频| 久久精品夜色国产| 亚洲国产欧洲综合997久久,| 国产成人午夜福利电影在线观看| 毛片一级片免费看久久久久| 身体一侧抽搐| 亚洲无线观看免费| 午夜福利成人在线免费观看| videossex国产| 美女被艹到高潮喷水动态| 中文欧美无线码| 亚洲在线自拍视频| 亚洲18禁久久av| 大又大粗又爽又黄少妇毛片口| 久久精品久久精品一区二区三区| 只有这里有精品99| 国产伦一二天堂av在线观看| 欧美高清性xxxxhd video| 男女国产视频网站| 国产黄片美女视频| 色尼玛亚洲综合影院| 在线观看av片永久免费下载| 波多野结衣巨乳人妻| 亚洲欧美日韩卡通动漫| 日本五十路高清| 亚洲最大成人中文| 国产乱人偷精品视频| 老司机影院成人| 亚洲精品国产成人久久av| 国产爱豆传媒在线观看| 国产探花极品一区二区| 国产黄色视频一区二区在线观看 | 欧美日韩在线观看h| 欧美+日韩+精品| 99久国产av精品| 免费大片18禁| 少妇被粗大猛烈的视频| 永久免费av网站大全| 欧美激情久久久久久爽电影| 久久精品国产鲁丝片午夜精品| 人妻少妇偷人精品九色| 男插女下体视频免费在线播放| 精品久久国产蜜桃| 又粗又爽又猛毛片免费看| 熟妇人妻久久中文字幕3abv| 久久久久久久久久久丰满| 成人午夜高清在线视频| 午夜日本视频在线| 国产v大片淫在线免费观看| 亚洲精品影视一区二区三区av| 日本免费在线观看一区| 国产亚洲精品久久久com| 淫秽高清视频在线观看| 免费观看a级毛片全部| 国产白丝娇喘喷水9色精品| 成人美女网站在线观看视频| 国产91av在线免费观看| 久99久视频精品免费| 最后的刺客免费高清国语| 久久精品影院6| 久久精品夜夜夜夜夜久久蜜豆| 国产一级毛片七仙女欲春2| 免费av观看视频| 成人美女网站在线观看视频| 成人二区视频| 午夜激情福利司机影院| av在线天堂中文字幕| 精品久久久久久电影网 | 国产一区有黄有色的免费视频 | 亚洲av电影在线观看一区二区三区 | 欧美成人精品欧美一级黄| 少妇猛男粗大的猛烈进出视频 | 在线观看av片永久免费下载| av.在线天堂| 国产精品99久久久久久久久| 亚洲欧美日韩高清专用| 少妇猛男粗大的猛烈进出视频 | 美女cb高潮喷水在线观看| 69av精品久久久久久| 成人特级av手机在线观看| 国产精品av视频在线免费观看| 日本-黄色视频高清免费观看| 国产伦精品一区二区三区四那| 亚洲欧美精品综合久久99| 91精品伊人久久大香线蕉| 精品一区二区免费观看| 国产在线男女| 亚洲怡红院男人天堂| 亚州av有码| 亚洲欧洲日产国产| 全区人妻精品视频| 天天一区二区日本电影三级| 天堂av国产一区二区熟女人妻| 麻豆一二三区av精品| 国产黄色视频一区二区在线观看 | 欧美日本亚洲视频在线播放| 男女那种视频在线观看| 综合色av麻豆| 国产成年人精品一区二区| 色综合亚洲欧美另类图片| 日韩,欧美,国产一区二区三区 | 啦啦啦韩国在线观看视频| 国产精品永久免费网站| 久久人人爽人人片av| 精品免费久久久久久久清纯| 有码 亚洲区| 亚州av有码| 亚洲激情五月婷婷啪啪| 天堂影院成人在线观看| av国产久精品久网站免费入址| 丝袜美腿在线中文| 成人漫画全彩无遮挡| or卡值多少钱| 久久久欧美国产精品| 赤兔流量卡办理| 尾随美女入室| 亚洲三级黄色毛片| 欧美潮喷喷水| 国产大屁股一区二区在线视频| 高清毛片免费看| 少妇熟女欧美另类| 99热6这里只有精品| 最近2019中文字幕mv第一页| 丰满少妇做爰视频| 18禁在线播放成人免费| 亚洲欧美精品自产自拍| 三级经典国产精品| 国产精品人妻久久久久久| 成人一区二区视频在线观看| 久久精品国产亚洲av天美| 国产精品美女特级片免费视频播放器| 性色avwww在线观看| 99在线人妻在线中文字幕| 亚洲性久久影院| 国产亚洲av嫩草精品影院| 高清av免费在线| 久久精品国产自在天天线| 国产精品1区2区在线观看.| 熟女电影av网| 在线观看66精品国产| 欧美不卡视频在线免费观看| 成年版毛片免费区| 亚洲国产成人一精品久久久| 久久精品久久精品一区二区三区| 国产黄片视频在线免费观看| videossex国产| av在线天堂中文字幕| 国产精品爽爽va在线观看网站| 欧美性猛交╳xxx乱大交人| or卡值多少钱| 国产国拍精品亚洲av在线观看| 国产亚洲最大av| 在线免费观看的www视频| 22中文网久久字幕| 伊人久久精品亚洲午夜| 赤兔流量卡办理| 亚洲在线自拍视频| 国产色婷婷99| 观看免费一级毛片| 直男gayav资源| 亚洲国产精品久久男人天堂| 国产片特级美女逼逼视频| 好男人在线观看高清免费视频| 天天躁日日操中文字幕| 亚洲四区av| 在线观看美女被高潮喷水网站| 麻豆国产97在线/欧美| 欧美一区二区亚洲| 国产亚洲最大av| 两个人视频免费观看高清| 欧美性感艳星| 偷拍熟女少妇极品色| 有码 亚洲区| 免费不卡的大黄色大毛片视频在线观看 | 丝袜美腿在线中文| 噜噜噜噜噜久久久久久91| 久久久a久久爽久久v久久| 国产 一区 欧美 日韩| 成人欧美大片| 美女高潮的动态| 九九久久精品国产亚洲av麻豆| 国产精品一及| 我要看日韩黄色一级片| 亚洲av电影不卡..在线观看| 国产精品永久免费网站| 精品人妻熟女av久视频| 三级毛片av免费| 亚洲精品色激情综合| 亚洲国产欧美人成| 久久精品国产自在天天线| www日本黄色视频网| 免费电影在线观看免费观看| 九九热线精品视视频播放| 欧美性猛交╳xxx乱大交人| 淫秽高清视频在线观看| 嫩草影院入口| 热99re8久久精品国产| 女人被狂操c到高潮| 国产亚洲av片在线观看秒播厂 | 18+在线观看网站| 日本黄色片子视频| 三级国产精品片| av.在线天堂| 久久精品91蜜桃| av在线蜜桃| 麻豆久久精品国产亚洲av| 精品人妻视频免费看| 午夜a级毛片| 变态另类丝袜制服| 国国产精品蜜臀av免费| 久久精品久久精品一区二区三区| 日日摸夜夜添夜夜爱| 美女内射精品一级片tv| 毛片女人毛片| 国产成人aa在线观看| 久久精品久久久久久久性| 日本三级黄在线观看| 小蜜桃在线观看免费完整版高清| 成人欧美大片| 亚洲欧美日韩东京热| 高清午夜精品一区二区三区| 在线天堂最新版资源| 欧美日本亚洲视频在线播放| 亚洲熟妇中文字幕五十中出| 成年女人永久免费观看视频| 在线观看美女被高潮喷水网站| 亚洲av一区综合| 中国国产av一级| 免费观看人在逋| 丝袜美腿在线中文| 最后的刺客免费高清国语| 精品一区二区三区视频在线| 男人狂女人下面高潮的视频| 天堂影院成人在线观看| 国产伦理片在线播放av一区| 特级一级黄色大片| av天堂中文字幕网| 亚洲欧美精品自产自拍| 色综合色国产| 成人毛片60女人毛片免费| 亚洲自拍偷在线| 国产精品国产三级专区第一集| 免费播放大片免费观看视频在线观看 | 免费观看的影片在线观看| 久99久视频精品免费| 国产精品蜜桃在线观看| 中文字幕久久专区| 国产免费男女视频| 人体艺术视频欧美日本| 国产午夜福利久久久久久| 亚洲精品亚洲一区二区| 婷婷六月久久综合丁香| 美女国产视频在线观看| 一级毛片电影观看 | 插阴视频在线观看视频| 国产精品av视频在线免费观看| 国产精品福利在线免费观看| 大话2 男鬼变身卡| 日本-黄色视频高清免费观看| 看非洲黑人一级黄片| 九色成人免费人妻av| 综合色丁香网| 99九九线精品视频在线观看视频| 久久精品91蜜桃| 中文字幕av在线有码专区| 熟妇人妻久久中文字幕3abv| 一级黄色大片毛片| 亚洲精品亚洲一区二区| 日韩精品有码人妻一区| 亚洲精品国产成人久久av| 偷拍熟女少妇极品色| 亚洲欧美精品专区久久| 久久久久网色| 天堂网av新在线| 亚洲欧美成人精品一区二区| 精品99又大又爽又粗少妇毛片| 大香蕉久久网| 赤兔流量卡办理| 麻豆久久精品国产亚洲av| 天天一区二区日本电影三级| 亚洲色图av天堂| av国产免费在线观看| 国产精品日韩av在线免费观看| 美女xxoo啪啪120秒动态图| 男人的好看免费观看在线视频| 午夜福利在线观看吧| 久热久热在线精品观看| 美女cb高潮喷水在线观看| 97热精品久久久久久| 最近的中文字幕免费完整| 国产 一区 欧美 日韩| 别揉我奶头 嗯啊视频| 国产色爽女视频免费观看| 国产精品一区二区性色av| 男人舔奶头视频| av又黄又爽大尺度在线免费看 | 小说图片视频综合网站| 国产一区二区三区av在线| 久久这里有精品视频免费| 97热精品久久久久久| 午夜精品在线福利| 国产成人福利小说| 九九热线精品视视频播放| 午夜激情欧美在线| 国产精品人妻久久久久久| 亚洲,欧美,日韩| 男的添女的下面高潮视频| 久久久成人免费电影| 亚洲精品成人久久久久久| 欧美精品国产亚洲| 禁无遮挡网站| 亚洲国产精品久久男人天堂| 亚洲久久久久久中文字幕| 欧美变态另类bdsm刘玥| 午夜福利在线观看免费完整高清在| 日本与韩国留学比较| 少妇人妻一区二区三区视频| 丰满少妇做爰视频| 日本一本二区三区精品| 岛国毛片在线播放| 亚洲精品久久久久久婷婷小说 | 国产免费视频播放在线视频 | 三级国产精品欧美在线观看| 纵有疾风起免费观看全集完整版 | 亚洲精华国产精华液的使用体验| 精品不卡国产一区二区三区| 精品一区二区免费观看| 国产精品国产三级国产av玫瑰| 欧美激情在线99| 国产真实乱freesex| 99久久人妻综合| 免费一级毛片在线播放高清视频| 乱码一卡2卡4卡精品| 丝袜喷水一区| 午夜福利在线观看免费完整高清在| 国产精品麻豆人妻色哟哟久久 | 特大巨黑吊av在线直播| 伊人久久精品亚洲午夜| 亚洲欧美精品专区久久| 永久免费av网站大全| 日本免费在线观看一区| 亚洲精品,欧美精品| 国产精品三级大全| 中文乱码字字幕精品一区二区三区 | 久久久久久久久大av| 校园人妻丝袜中文字幕| 免费黄色在线免费观看| 人人妻人人看人人澡| 乱码一卡2卡4卡精品| 一级av片app| 老女人水多毛片| 99视频精品全部免费 在线| 3wmmmm亚洲av在线观看| 九色成人免费人妻av| 亚洲综合精品二区| 久久精品综合一区二区三区| 亚洲怡红院男人天堂| 午夜老司机福利剧场| av国产久精品久网站免费入址| 国产精品久久久久久久久免| 搞女人的毛片| 国产精品综合久久久久久久免费| 久久久成人免费电影| 麻豆国产97在线/欧美| 日本黄色视频三级网站网址| 偷拍熟女少妇极品色| 一卡2卡三卡四卡精品乱码亚洲| 国产成人精品久久久久久| 午夜日本视频在线| 欧美精品国产亚洲| 亚洲18禁久久av| 国产成人a∨麻豆精品| 欧美性猛交黑人性爽| 久久精品国产亚洲网站| 国产日韩欧美在线精品| 青春草国产在线视频| 热99re8久久精品国产| 欧美激情久久久久久爽电影| 精品国产一区二区三区久久久樱花 | www.av在线官网国产| 国产 一区精品| 一夜夜www| 午夜激情福利司机影院| 免费人成在线观看视频色| 国产极品天堂在线| 国产精品精品国产色婷婷| 极品教师在线视频| 国产精品99久久久久久久久| 亚洲国产高清在线一区二区三| 亚洲18禁久久av| 久久久国产成人免费| 国产免费又黄又爽又色| www.av在线官网国产| 国产精品三级大全| 晚上一个人看的免费电影| 成人高潮视频无遮挡免费网站| 岛国毛片在线播放| 亚洲精品亚洲一区二区| 国产真实伦视频高清在线观看| 一边亲一边摸免费视频| 精品久久久久久成人av| 国产精品.久久久| 久久这里只有精品中国| 欧美高清性xxxxhd video| 久久久久久久久久久丰满| 欧美极品一区二区三区四区| 赤兔流量卡办理| 亚洲一级一片aⅴ在线观看| 国产在视频线精品| av国产久精品久网站免费入址| 性插视频无遮挡在线免费观看| 久久人人爽人人片av| 中文在线观看免费www的网站| 一级黄色大片毛片| av在线观看视频网站免费| 亚洲av.av天堂| 亚洲国产精品成人久久小说| 欧美色视频一区免费| 国产人妻一区二区三区在| 床上黄色一级片| 青春草国产在线视频| 人妻制服诱惑在线中文字幕| 日韩制服骚丝袜av| 国产一区二区亚洲精品在线观看| 三级国产精品片| 最近中文字幕高清免费大全6| 国产精品永久免费网站| 国产精品1区2区在线观看.| 国产成人精品婷婷| 日韩人妻高清精品专区| 我要看日韩黄色一级片| 国产女主播在线喷水免费视频网站 | 久久久久国产网址| 国产伦在线观看视频一区| .国产精品久久| 欧美日韩在线观看h| 成人高潮视频无遮挡免费网站| 别揉我奶头 嗯啊视频| 欧美精品一区二区大全| 麻豆成人av视频| 男女下面进入的视频免费午夜| 91aial.com中文字幕在线观看| 亚洲精品国产av成人精品| 嫩草影院入口| kizo精华| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 老师上课跳d突然被开到最大视频| 联通29元200g的流量卡| 精品午夜福利在线看| eeuss影院久久| av视频在线观看入口| 嫩草影院新地址| 99热这里只有是精品50| 成人三级黄色视频| 亚洲欧美日韩东京热| 人人妻人人澡欧美一区二区| 91av网一区二区| 亚洲最大成人手机在线| 91精品国产九色| 插逼视频在线观看| 男女下面进入的视频免费午夜| 亚洲欧洲日产国产| 国产成人91sexporn| 国产v大片淫在线免费观看| 国产亚洲一区二区精品| 中文资源天堂在线| 国产激情偷乱视频一区二区| 99久久精品一区二区三区| 日韩欧美精品v在线| www.色视频.com| 国产成人91sexporn| 国产成人精品婷婷| 亚洲欧美日韩高清专用| 亚洲成人av在线免费| av.在线天堂| 亚洲人成网站高清观看| 精品久久久久久久久久久久久| 韩国高清视频一区二区三区| .国产精品久久| 亚洲第一区二区三区不卡| 亚洲一级一片aⅴ在线观看| 欧美xxxx黑人xx丫x性爽| 联通29元200g的流量卡| 国产一区二区在线观看日韩| av女优亚洲男人天堂| 亚洲av一区综合| 男女视频在线观看网站免费| 免费黄网站久久成人精品| 99在线视频只有这里精品首页| 欧美+日韩+精品| 国产一级毛片七仙女欲春2| 免费av毛片视频| av在线天堂中文字幕| 欧美成人午夜免费资源| 午夜爱爱视频在线播放| 欧美变态另类bdsm刘玥| 亚洲中文字幕日韩| 久久久成人免费电影| 亚洲av男天堂| 亚洲欧美日韩无卡精品| 日本色播在线视频| 在线观看一区二区三区| 搡女人真爽免费视频火全软件| 女人十人毛片免费观看3o分钟| 精品一区二区三区视频在线| 99热6这里只有精品| 亚洲欧美日韩高清专用| 午夜激情福利司机影院| 热99re8久久精品国产| 天天一区二区日本电影三级| 日韩人妻高清精品专区| 午夜日本视频在线| 国模一区二区三区四区视频| 特大巨黑吊av在线直播| 亚洲成色77777| 热99在线观看视频| av福利片在线观看| 美女大奶头视频|