• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Privacy-Aware Service Subscription in People-Centric Sensing:A Combinatorial Auction Approach

    2019-11-07 03:12:22YuanyuanXuShanLiandYixuanZhang
    Computers Materials&Continua 2019年10期

    Yuanyuan Xu,Shan Li and Yixuan Zhang

    Abstract:With the emergence of ambient sensing technologies which combine mobile crowdsensing and Internet of Things,large amount of people-centric data can be obtained and utilized to build people-centric services.Note that the service quality is highly related to the privacy level of the data.In this paper,we investigate the problem of privacy-aware service subscription in people-centric sensing.An efficient resource allocation framework using a combinatorial auction(CA)model is provided.Specifically,the resource allocation problem that maximizes the social welfare in view of varying requirements of multiple users is formulated,and it is solved by a proposed computationally tractable solution algorithm.Furthermore,the prices of allocated resources that winners need to pay are figured out by a designed scheme.Numerical results demonstrate the effectiveness of the proposed scheme.

    Keywords:Privacy-aware service subscription,combinatorial auction,winner determination.

    1 Introduction

    In recent years,various sensing technologies emerge covering mobile crowdsensing and Internet of things,which have been widely used for health care[Islam,Kwak,Kabir et al.(2015)],banking,cyber security,commerce,and transportation[Pham,Tsai,Nguyen et al.(2015)].These technologies enable sensing data sharing,and accordingly,large amount of people-centric sensing data can be collected.The collected data can be analyzed(e.g.,through machine learning algorithms)to build people-centric services for customers.However,the collection and analysis of raw data may pose a threat to people's privacy which is closely related to the provided service quality.For example,higher service quality can be achieved by disclosing more data of individuals[Zhang,Shi,Zhang et al.(2013)].The relation between the privacy level and the service quality is analyzed in Alsheikh et al.[Alsheikh,Niyato,Leong et al.(2017)].

    In this paper,we investigate the problem of privacy-aware service subscription in peoplecentric sensing.That is,how to efficiently allocate the privacy-aware services to accommodate various demands of the crowdsensing users,while achieving high resource utilization and the capability of resource customization.Therefore,an efficient resource allocation mechanism needs to be designed to achieve these goals.

    Also,it is worth noting that there are a variety of people-centric services,which are complementarities or substitutions for each other.Complementary services are associated services or concurrently required to satisfy the customers' needs,while substituted services are similar or comparable services that can be replaced with each other.Due to the complementarities or substitutions among various services,customers are not just interested in subscribing a particular type of service but sets of services(sometimes termed as bundles)[De Vries and Vohra(2003)].Accordingly,we use a combinatorial auction approach to perform service allocation.Auction-based mechanisms have been widely applied for resource allocation in different areas,e.g.,radio resource allocation[Wang,Xu,Song et al.(2015)],cloud resource allocation[Zaman and Grosu(2013);Zhang,Xie,Zhang et al.(2018);Zhang,Jiang,Li et al.(2016);Samimi,Teimouri and Mukhtar(2016)],and wireless virtualization[Cao,Lang,Li et al.(2015);Zhu and Hossain(2016);Zhu,Cheng,Chen et al.(2017)].

    Specifically,for applying combinatorial auction for privacy-aware people-centric service allocation,the following issues need to be addressed,which are the design of combinatorial auction model,the formulation of the winner determination problem(WDP),its solution algorithm,and the design of an incentive compatible pricing scheme.The main contributions of this work that address these issues are listed as follows:

    · A combinatorial auction model is designed for the service subscription problem,where one-sided auction is performed among one service provider and multiple users.

    · A computationally efficient algorithm is proposed to determine the winners in the combinatorial auction.

    · The prices of allocated services are figured out by a designed scheme.

    The organization for the rest of this paper is as follows.System model and combinatorial auction model are presented in Section 2.In Section 3,the service allocation for peoplecentric services is investigated.The allocation problem is formulated and the corresponding solution algorithm and pricing scheme are presented.Numerical results are analyzed in Section 4.Section 5 concludes the paper.

    2 System model and assumptions

    The system model of people-centric service allocation is shown in Fig.1.Crowdsensing users sense and collect data through multiple devices,such as mobile devices,Internet of things gadgets and other devices.The raw data are sent to service provider.The service provider should pay the cost of the raw data to crowdsensing users and apply data analytics to build people-centric services.Then the service provider sends the advertisement of the peoplecentric services to customers,and customers bid for their required bundles of services.Finally,the service provider decides winner lists and final prices that customers should pay.The major entities involved in the people-centric services can be described as follow:

    · Crowdsensing participants are the providers of raw sensing data.

    · The service provider buys raw data from the crowdsensing users,which are used to build the people-centric services.

    · Customers are the consumers of people-centric services,who buy services from the service provider.

    Figure 1:System model of people-centric service allocation

    Specifically,we consider one service provider providing a set of K services to N users,where K represents the number of service types which are classified by the functions of services,and each type of service owns Q service levels which are sorted by the corresponding privacy levels.

    Moreover,we show the tradeoff between the service quality and the privacy level.The privacy level and the service quality are closely related.The higher the privacy level,the less true data the service provider can buy from crowdsensing participants,so the service provider will have a lower quality of service,and vice versa.A utility function u(·)can be used to measure the quality of service,given a privacy levelr,where r∈[0,1].There are three assumptions about the service quality.The first is that u(·)is nonnegative,because the service quality can only be zero or positive.Secondly,u(·)is inversely proportional to r.This is an empirical assumption,since the quality of data analytics degrades as the privacy level increases.The third assumption is that u(·)is convex and decreases at an increasing rate over r.According to these three assumptions,Dwork[Dwork(2008)]concluded that the relationship between the utility function of data u(·)and the privacy level r in people-centric services can be obtained as follows:

    where α1,α2,and α3are the curve fitting parameters that can be obtained empirically.From(1),Dwork[Dwork(2008)]concluded that the quality of service is inversely proportional to the privacy level.The best fitting parameters,α1,α2,and α3,can be obtained by solving[Dwork(2008)]

    whereBis the number of measurements in the experiment,while r(i)and τ(i)are the privacy level and the measured real-world service quality during the it?measurement,respectively.

    2.1 The proposed combinatorial auction model

    In the proposed combinatorial auction model,the service provider acts as the seller that maximizes her own prof it and tries to meet services requirements of customers who act as buyers.Also,the service provider acts as the auctioneer who collects bids,decides allocation lists,and figures out final prices.In general,an auction can be describe as follows:

    · Bidding:According to his own valuation viof the services bundle,a bidder i places a bid bi.The valuation is the evaluation of the services bundle which the bidder i wants to bid,and this personal information can be private or public.Valuations for the same bundle may be varying with different bidders.

    · Allocation:After bid collection from all the bidders,the auctioneer has to decide the service allocation among the bidders.A bidder who will be given his required service is a winner.

    · Pricing:After winner determination or service allocation,the auctioneer has to figure out the price piwhich is the charge for each winner i.

    In this paper,the proposed combinatorial auction is a single-seller multiple-buyer auction model,and the seller also acts as the auctioneer.In this model,the buyers place bids for their required services bundles,and bidders can only obtain resources from a single seller.We define bias the users' bids.Assume that the service provider hasKdifferent types of services,denoted as S1,S2,··,SK.Each service SihasQlevels of services,denoted as SSi1,SSi2,··,SSiQ,which are classified by the privacy levels of people-centric data.In addition,the service provider has a type of service,S0,which is the network bandwidth.We assume that S0also hasQlevels of varying network bandwidth that users can choose to support their required services.Each type of service Sihas two basic attributes which are computing capability Ciand running memory size Mi.Privacy level,computing capacity and memory size are all important factors related to the service quality.For example,the automated detection of cancer cells is a people-centric service that is used in the field of medical diagnosis.The characteristics and regularities of cancer cells are obtained by deep learning.The lower the privacy level,the more accurate the results of the data analysis.As we all know,data analysis(e.g.,through deep learning)requires high computing capacity and large memory size.In this case,users should choose suitable services to satisfy their needs.Bidders must convey their requirements and valuations clearly,and how to express the bids will be detailed in Section 3.1.

    2.2 Utility functions and social welfare

    1)Utility functions:In our combinatorial auction model,each bidder is assumed to be selfinterested who chooses a bidding strategy carefully to maximize his own utility with the knowledge of auction mechanism(i.e.,service allocation and pricing schemes).Specially,the utility of bidderiis defined as follows:

    where uiis the utility of bidderi.The set U={u1,u2,··,ui}can be used to represent the utilities of all the bidders.

    2)Social welfare:To perform auction on a service bundle,a single-item auction can be performed repeatedly for each included item.However,due to possible substituted or complementary services,the value of the bundle may be different from the sum of individual services' values.Therefore,a combinatorial auction is a better choice that allows the bidders to bid for combinations or bundles of people-centric services.If a bidderiwins,he can receive the required service bundle that has a value vi.In a combinatorial auction,multiple winning bidders exist.The social welfare can be expressed as the sum of valuations of all the winners.Specifically,it could be represented as:

    whereVrepresents the social welfare.In our scheme,social efficiency can be achieved in combinatorial auction if all bidders place truthful bids.

    3 Services allocation as a combinatorial auction

    In this section,the above combinatorial auction model is used to perform service allocation.The bidding expressions of bidders,the WDP problem with its solution,and an incentive compatible pricing scheme are presented.

    3.1 Bidding expressions

    We consider the case that users convey their service demands in an explicit way in auctions for services allocation.Each user is assumed to be single-minded who submits a bid for only one bundle in each round.A useridemands particular services and needs related hardware support.In this case,the bid Biof userican be represented as:

    where viis the useri's valuation to his required bundle.is a vector that represents the useri's demand on the jt?type of service,which can be further expressed as follows:

    3.2 Problem formulation

    We consider the case that the service provider is self-interested who wishes to maximize her prof it,with the following assumptions.

    3.2.1 Assumption

    In real world,each type of service has no preference over users and it can be allocated to every user.

    However,these services are limited by the service provider's computing capacity and memory size.In the case of S0,it is limited by the provider's network bandwidth.

    3.2.2 Assumption

    Privacy level of each service is transparent.

    With these assumptions,the WDP for services allocation can be formulated as:

    where xiis a binary variable to represent whether useriis a winner.Mis the total memory of the service provider such as the cloud computing platforms.InC2,Crepresents the computing capacity of the service provider.In addition,Wis the maximum network bandwidth which the service provider can provide.The first constraint in the formulation(7)ensures that if the following users' requirements for services are beyond the total memory,they will be never allocated,unless in next auction round,because the auctions could run periodically.The second constraint ensures that the sum of the required computing capacity cannot exceed the total of computing capacityCof the service provider.The third and fourth constraints mean that the users' requirements of each type of services cannot be more than the maximum allocated memory and computing capacity for that service.The constraintC5ensures that all the network bandwidth required by all the users cannot exceedW.The constraintC6guarantees that a usericould only choose one service level SSjtfor each type of services Sj.The last two constraints represent whether the service or the bundle is allocated,where1represents that it is allocated and0vice versa.

    3.3 Solution of WDP

    The formulated problem is an NP-hard integer programming problem.With a sufficiently small problem scale or restricted allowable bid combinations,the optimal solution can be found by exhaustive search.However,considering the problem scale and the limited computation capability of the auctioneer in our case,a computationally efficient algorithm is needed to find approximate optimal solutions.Motivated by Sandholm[Sandholm(2000)],a greedy solution algorithm is proposed considering the “density” of bids.This greedy solution is shown in Algorithm 1:

    A buyeri's bid density can be defined as.The greedy algorithm first queues the users according to their bid density,and then allocates their required bundles starting from the user with the largest bid density until the resources are exhausted.In this way,the winners are determined in a greedy way.

    3.4 The VCG pricing scheme

    Having the winners,we need to determine the final prices.A proper pricing scheme should be incentive compatible with which that all bidders can bid truthfully.The VCG scheme[Gao,Li,Pan et al.(2016)]generalizes a second-price auction model for multiple items,and achieves the incentive compatibility.However,the maximization of the seller's revenue is not considered in the VCG scheme.The resulting revenue is far from the optimal one in some cases.

    To address this issue,we design a modified-VCG pricing scheme,where each resource has a minimum base price.If a userkis the one with the highest valuation when the winneriis not participated in the auction,the charged price for the useriis calculated as follows:

    4 Performance evaluation

    For numerical analysis,we consider users requesting 10 kinds of people-centric services from a service provider,and each type of service is divided into 10 service levels.The number of users varies from 100 to 350.For performance evaluations,we assume that the service provider is equipped with 1000GB memory,10000 MIPS computing capacity,and 1000Mbyte network bandwidth.The memory size and computing capacity for each type of service are randomly selected from[10,100]and[0,10],respectively,according to a uniform distribution.Similarly,the privacy level of each people-centric service is randomly set to a value from 0 to 1.The parameters,α1,α2,and α3,related to the function of service quality in Eq.(1)are set to 0.822,0.004,and 2.813,respectively.

    For numerical analysis,three aspects of the performance for resource allocation are considered:total utility,resource utilization(i.e.,the proportion of allocated services),and user satisfaction(i.e.,the percentage of users who get the requested services).Also,four algorithms are compared,which are the proposed scheme(termed as “APProx”),the proposed scheme with group buying discounts(termed as “Approx-GB”)which gives a discount price if the number of users is larger than a threshold,a fixed allocation scheme(termed as “Fixed”)which allocates resources based on an existing contract,and a random allocation scheme(termed as “Rand”)that allocates resources randomly.

    Fig.2 presents comparison of total utilities of these schemes.It can be seen that the proposed scheme and its group-buying-discounts version can achieve higher utilities than other algorithms.The “Fixed” scheme charges the winners with a market price.However,the priority and competitiveness of users are not considered in the fixed resource allocation resulting a lower utility value.The performance of the random allocation is not as good as the proposed ones due to the same reason.Comparison of average resource utilization of the four schemes is shown in Fig.3.The trends in the results are similar to those for the total utility.

    Figure 2:Total utility with varying number of users

    Figure 3:Resource utilization with varying number of users

    Comparison of user satisfaction for explicit resource requests is presented in Fig.4.It can be seen that the user satisfaction ratios of all the four schemes decrease as the number of users increases.Among them,the proposed scheme can achieve higher satisfactions ratios than other three schemes.The reason is that the proposed scheme can choose the best combination from different resource combinations to accommodate the individual users'varying needs.

    Figure 4:User satisfaction with varying number of users

    5 Conclusion

    In this paper,a combinatorial auction model has been used for efficient resource allocation to maximize social welfare in people-centric sensing.Specifically,a single-seller multiplebuyer auction model has been used,and a winner determination problem(WDP)has been formulated in view of different people-centric service requirements and priorities of users.To solve the formulated problem,a greedy algorithm has been proposed to determine the winners in this one-side auction.An incentive compatible pricing scheme has been designed considering the seller's revenue.Finally,simulations have been conducted to show the effectiveness of the proposed scheme.

    Acknowledgement:This work was partially supported by National Natural Science Foundation of China under Grant No.61801167 and Natural Science Foundation of Jiangsu Province of China under Grant No.BK20160874.

    啦啦啦观看免费观看视频高清| 不卡一级毛片| 他把我摸到了高潮在线观看| 亚洲欧美一区二区三区黑人| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 日韩欧美 国产精品| 1024香蕉在线观看| 嫩草影院入口| 亚洲天堂国产精品一区在线| 久久香蕉精品热| 少妇人妻一区二区三区视频| 精品免费久久久久久久清纯| 蜜桃久久精品国产亚洲av| 超碰成人久久| 99re在线观看精品视频| 欧美在线一区亚洲| 国产精品久久电影中文字幕| 黄色日韩在线| 国产精品一及| 男人和女人高潮做爰伦理| www.熟女人妻精品国产| 中文亚洲av片在线观看爽| 男女做爰动态图高潮gif福利片| 黄频高清免费视频| e午夜精品久久久久久久| 中文字幕av在线有码专区| 亚洲成人久久性| 中文字幕人妻丝袜一区二区| 日韩有码中文字幕| 国产亚洲精品综合一区在线观看| 日韩人妻高清精品专区| 精品久久久久久久毛片微露脸| 18美女黄网站色大片免费观看| 亚洲av电影不卡..在线观看| 成年版毛片免费区| 91麻豆精品激情在线观看国产| 亚洲国产欧美一区二区综合| 天堂影院成人在线观看| 国产极品精品免费视频能看的| 色吧在线观看| 1024手机看黄色片| 精品久久久久久久人妻蜜臀av| 人妻夜夜爽99麻豆av| 亚洲av美国av| 在线观看免费午夜福利视频| 在线观看舔阴道视频| 波多野结衣高清无吗| 久久久久久大精品| 又爽又黄无遮挡网站| 久久精品亚洲精品国产色婷小说| 国产又色又爽无遮挡免费看| 性色avwww在线观看| 精品久久久久久久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 国产精品香港三级国产av潘金莲| 99riav亚洲国产免费| 级片在线观看| 身体一侧抽搐| 亚洲av日韩精品久久久久久密| 亚洲成人久久爱视频| 国产精品野战在线观看| 国产野战对白在线观看| 男女之事视频高清在线观看| 熟女少妇亚洲综合色aaa.| 欧美日韩瑟瑟在线播放| 香蕉av资源在线| 丝袜人妻中文字幕| 最新美女视频免费是黄的| 黑人巨大精品欧美一区二区mp4| 99久久精品热视频| 青草久久国产| 一级毛片高清免费大全| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲aⅴ乱码一区二区在线播放| 国产成人欧美在线观看| 亚洲avbb在线观看| 国产爱豆传媒在线观看| 婷婷精品国产亚洲av在线| 香蕉av资源在线| 亚洲七黄色美女视频| 麻豆成人午夜福利视频| www.精华液| 香蕉久久夜色| 我的老师免费观看完整版| 日本黄大片高清| 中文字幕人成人乱码亚洲影| 国产三级黄色录像| 国产亚洲欧美98| 不卡av一区二区三区| www日本黄色视频网| 狠狠狠狠99中文字幕| 熟女少妇亚洲综合色aaa.| 黄色成人免费大全| 九色成人免费人妻av| 美女 人体艺术 gogo| 国产精品野战在线观看| 色噜噜av男人的天堂激情| 国产精品久久视频播放| 国产激情偷乱视频一区二区| 亚洲欧美日韩无卡精品| 成人午夜高清在线视频| 国产又黄又爽又无遮挡在线| 成年女人看的毛片在线观看| 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| 一级黄色大片毛片| 国产三级黄色录像| 午夜福利成人在线免费观看| 精品国产超薄肉色丝袜足j| 国产精品一区二区三区四区久久| 一进一出抽搐动态| 欧美激情久久久久久爽电影| 国产高清视频在线观看网站| 女警被强在线播放| 国产精品99久久久久久久久| 国产私拍福利视频在线观看| 在线免费观看不下载黄p国产 | 老汉色av国产亚洲站长工具| 国产69精品久久久久777片 | 午夜激情福利司机影院| 又黄又粗又硬又大视频| 午夜a级毛片| 日本一二三区视频观看| 欧美日本视频| 国产精品久久久久久精品电影| 久久性视频一级片| 国产午夜精品论理片| 一区福利在线观看| 日韩有码中文字幕| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 欧美丝袜亚洲另类 | 嫁个100分男人电影在线观看| 啦啦啦观看免费观看视频高清| 久久欧美精品欧美久久欧美| 国产精品久久视频播放| 欧美高清成人免费视频www| 一级a爱片免费观看的视频| 最近最新免费中文字幕在线| 真人做人爱边吃奶动态| 午夜a级毛片| 免费观看的影片在线观看| 天堂av国产一区二区熟女人妻| 亚洲精品一区av在线观看| 91久久精品国产一区二区成人 | 在线观看舔阴道视频| 最新中文字幕久久久久 | 手机成人av网站| 1024香蕉在线观看| 欧美3d第一页| 黄色 视频免费看| 噜噜噜噜噜久久久久久91| 最新在线观看一区二区三区| netflix在线观看网站| 国产毛片a区久久久久| 国产成人欧美在线观看| 国产人伦9x9x在线观看| 国产成+人综合+亚洲专区| 每晚都被弄得嗷嗷叫到高潮| 九九久久精品国产亚洲av麻豆 | 一本久久中文字幕| 亚洲欧美精品综合久久99| 亚洲中文日韩欧美视频| 国产极品精品免费视频能看的| 亚洲美女视频黄频| 黄频高清免费视频| 99热6这里只有精品| 麻豆一二三区av精品| 欧美av亚洲av综合av国产av| 丝袜人妻中文字幕| 欧美日韩国产亚洲二区| 亚洲激情在线av| 国产成人aa在线观看| 日本熟妇午夜| 亚洲国产欧洲综合997久久,| 日韩欧美在线二视频| 亚洲一区二区三区色噜噜| 99国产综合亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人久久性| 亚洲av第一区精品v没综合| 久久国产精品人妻蜜桃| 无遮挡黄片免费观看| 中国美女看黄片| 可以在线观看毛片的网站| av国产免费在线观看| 男人和女人高潮做爰伦理| 国产成+人综合+亚洲专区| 久久天堂一区二区三区四区| 免费看日本二区| 国产精品久久久久久久电影 | xxxwww97欧美| av天堂中文字幕网| 欧美一区二区国产精品久久精品| 一本精品99久久精品77| 一级a爱片免费观看的视频| 免费观看的影片在线观看| 国产午夜精品论理片| 美女黄网站色视频| 国产单亲对白刺激| 好男人电影高清在线观看| 91久久精品国产一区二区成人 | 成人高潮视频无遮挡免费网站| 丰满人妻一区二区三区视频av | 色尼玛亚洲综合影院| 国产爱豆传媒在线观看| 久久久久九九精品影院| 成年人黄色毛片网站| 久久人妻av系列| 国产野战对白在线观看| 欧美日韩福利视频一区二区| h日本视频在线播放| 亚洲国产欧美人成| 制服人妻中文乱码| 欧美在线黄色| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 亚洲七黄色美女视频| 国产av一区在线观看免费| 伊人久久大香线蕉亚洲五| 中亚洲国语对白在线视频| 国产激情偷乱视频一区二区| 久久久久久久久久黄片| 亚洲精品乱码久久久v下载方式 | 国产黄色小视频在线观看| 亚洲在线观看片| av国产免费在线观看| 成人av在线播放网站| 国产精品国产高清国产av| 国产黄a三级三级三级人| 欧美极品一区二区三区四区| 国产精品综合久久久久久久免费| 男人的好看免费观看在线视频| 欧美日韩国产亚洲二区| 视频区欧美日本亚洲| 黄色丝袜av网址大全| 2021天堂中文幕一二区在线观| 久久性视频一级片| 久久国产精品影院| 岛国在线免费视频观看| 窝窝影院91人妻| www日本黄色视频网| 亚洲精华国产精华精| 国产精品 欧美亚洲| 成人国产综合亚洲| 久久精品aⅴ一区二区三区四区| 偷拍熟女少妇极品色| 黄色片一级片一级黄色片| 丁香六月欧美| 亚洲av成人不卡在线观看播放网| 国产精品av久久久久免费| 成年免费大片在线观看| 又黄又粗又硬又大视频| 搡老岳熟女国产| 亚洲黑人精品在线| 国产精品久久电影中文字幕| 女同久久另类99精品国产91| 中文字幕人妻丝袜一区二区| 午夜激情欧美在线| 动漫黄色视频在线观看| 日韩高清综合在线| h日本视频在线播放| av在线天堂中文字幕| 久久久精品大字幕| 宅男免费午夜| 国产av一区在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久性生活片| 91字幕亚洲| 一本久久中文字幕| 婷婷亚洲欧美| 极品教师在线免费播放| 看黄色毛片网站| 黄片小视频在线播放| 欧美成人免费av一区二区三区| 精品电影一区二区在线| 成年人黄色毛片网站| 国产精品99久久99久久久不卡| 亚洲性夜色夜夜综合| 怎么达到女性高潮| 亚洲av美国av| 久久热在线av| 国产精品香港三级国产av潘金莲| 性欧美人与动物交配| 精品电影一区二区在线| 一级作爱视频免费观看| 亚洲中文字幕一区二区三区有码在线看 | 三级毛片av免费| 久久精品91蜜桃| 日日干狠狠操夜夜爽| 午夜日韩欧美国产| 欧美日韩中文字幕国产精品一区二区三区| 九色国产91popny在线| 91av网一区二区| 成人无遮挡网站| 2021天堂中文幕一二区在线观| 亚洲午夜理论影院| 波多野结衣高清无吗| av视频在线观看入口| 高潮久久久久久久久久久不卡| 日本与韩国留学比较| 在线观看午夜福利视频| 波多野结衣巨乳人妻| 男女做爰动态图高潮gif福利片| 精品一区二区三区视频在线 | 中文字幕最新亚洲高清| 999久久久国产精品视频| 在线观看美女被高潮喷水网站 | 嫩草影院精品99| 啦啦啦韩国在线观看视频| 久久中文看片网| 国产精品久久电影中文字幕| 少妇人妻一区二区三区视频| 日本黄色片子视频| 婷婷精品国产亚洲av在线| 久99久视频精品免费| 国产午夜福利久久久久久| 成人无遮挡网站| 手机成人av网站| 18禁美女被吸乳视频| 91九色精品人成在线观看| 久久久久久久午夜电影| 精品久久久久久久人妻蜜臀av| 老汉色av国产亚洲站长工具| 欧美最黄视频在线播放免费| 九色成人免费人妻av| 久久久精品大字幕| 一二三四社区在线视频社区8| 制服人妻中文乱码| 岛国视频午夜一区免费看| 日韩欧美国产在线观看| 97超视频在线观看视频| 国产在线精品亚洲第一网站| 久久久久久久久久黄片| 亚洲在线观看片| 久久久久久久久久黄片| 夜夜躁狠狠躁天天躁| 一进一出好大好爽视频| 久久人妻av系列| 欧美午夜高清在线| 久久久久精品国产欧美久久久| 国产主播在线观看一区二区| 人妻久久中文字幕网| 国产一区二区三区视频了| 久久久久久久精品吃奶| 婷婷精品国产亚洲av| 久久香蕉国产精品| 国内久久婷婷六月综合欲色啪| 国产又色又爽无遮挡免费看| 日本三级黄在线观看| 国产主播在线观看一区二区| 国产高清videossex| 国产伦精品一区二区三区视频9 | 波多野结衣巨乳人妻| 国产午夜精品久久久久久| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| 久久午夜综合久久蜜桃| 国产精品一区二区三区四区久久| 啦啦啦韩国在线观看视频| 天堂√8在线中文| 久久久精品大字幕| 亚洲国产欧美人成| 黑人操中国人逼视频| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品| 亚洲午夜理论影院| 日本免费a在线| 免费在线观看视频国产中文字幕亚洲| 日本a在线网址| 又黄又粗又硬又大视频| 欧美激情在线99| 成人国产综合亚洲| 国模一区二区三区四区视频 | 国产美女午夜福利| 国产男靠女视频免费网站| 免费在线观看成人毛片| 美女大奶头视频| 亚洲精品456在线播放app | 久久人妻av系列| 97超视频在线观看视频| 国产精品电影一区二区三区| 淫秽高清视频在线观看| 搞女人的毛片| 母亲3免费完整高清在线观看| 手机成人av网站| a级毛片在线看网站| 国产精品1区2区在线观看.| 色精品久久人妻99蜜桃| 精品国产超薄肉色丝袜足j| 久久久色成人| 男人舔奶头视频| 在线看三级毛片| 亚洲精品一区av在线观看| 欧美3d第一页| 国产主播在线观看一区二区| 男女那种视频在线观看| 久久久水蜜桃国产精品网| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区| 国产午夜精品论理片| 日本a在线网址| 老熟妇乱子伦视频在线观看| 俺也久久电影网| 亚洲电影在线观看av| 后天国语完整版免费观看| 午夜福利高清视频| 日本撒尿小便嘘嘘汇集6| 久久国产乱子伦精品免费另类| 国产v大片淫在线免费观看| 亚洲国产看品久久| 久久午夜综合久久蜜桃| 女生性感内裤真人,穿戴方法视频| 欧美一级a爱片免费观看看| 色噜噜av男人的天堂激情| 两性夫妻黄色片| 一本一本综合久久| 少妇熟女aⅴ在线视频| 淫秽高清视频在线观看| 啦啦啦观看免费观看视频高清| 免费av毛片视频| 欧美极品一区二区三区四区| 午夜福利高清视频| 国产欧美日韩一区二区精品| 在线a可以看的网站| 免费看美女性在线毛片视频| 亚洲 欧美一区二区三区| 日韩欧美三级三区| 午夜福利成人在线免费观看| 免费看a级黄色片| 在线观看日韩欧美| 麻豆成人av在线观看| 欧美日韩乱码在线| 一级毛片高清免费大全| 在线免费观看的www视频| 国产精品久久电影中文字幕| 精品久久久久久,| 亚洲成人久久爱视频| 色哟哟哟哟哟哟| 中国美女看黄片| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| 亚洲 欧美一区二区三区| 精品国产美女av久久久久小说| 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av在线| 最近在线观看免费完整版| 成人特级黄色片久久久久久久| 日韩av在线大香蕉| 又黄又粗又硬又大视频| 久久久久久大精品| 欧美高清成人免费视频www| а√天堂www在线а√下载| 免费av不卡在线播放| 青草久久国产| 日本五十路高清| 亚洲av第一区精品v没综合| 国产伦在线观看视频一区| 国产精品精品国产色婷婷| 日本熟妇午夜| 免费观看的影片在线观看| 又粗又爽又猛毛片免费看| 亚洲第一欧美日韩一区二区三区| 免费电影在线观看免费观看| 看黄色毛片网站| 国产高清有码在线观看视频| 精品国产亚洲在线| 可以在线观看的亚洲视频| 亚洲国产日韩欧美精品在线观看 | 亚洲五月婷婷丁香| 国产三级中文精品| 欧美成人免费av一区二区三区| 91麻豆精品激情在线观看国产| 成人欧美大片| 国产高清有码在线观看视频| 999久久久精品免费观看国产| 国内精品久久久久久久电影| 国产精品香港三级国产av潘金莲| 高潮久久久久久久久久久不卡| 极品教师在线免费播放| 又紧又爽又黄一区二区| 国产成人av教育| 美女午夜性视频免费| 国产高清三级在线| av在线天堂中文字幕| 免费av不卡在线播放| 在线观看日韩欧美| 中文字幕人成人乱码亚洲影| 亚洲人成网站高清观看| 国内毛片毛片毛片毛片毛片| 亚洲熟女毛片儿| x7x7x7水蜜桃| 久久久成人免费电影| 99热精品在线国产| 欧美成人性av电影在线观看| 不卡一级毛片| 久久草成人影院| 国产精品一及| 在线观看舔阴道视频| 久久精品91无色码中文字幕| 91字幕亚洲| 欧美另类亚洲清纯唯美| 日韩三级视频一区二区三区| 在线十欧美十亚洲十日本专区| 嫁个100分男人电影在线观看| 久久久久亚洲av毛片大全| 亚洲精品乱码久久久v下载方式 | 免费在线观看亚洲国产| 国产主播在线观看一区二区| 丁香六月欧美| 99久久无色码亚洲精品果冻| ponron亚洲| 亚洲av电影不卡..在线观看| 88av欧美| 日韩国内少妇激情av| 久久性视频一级片| 日韩欧美精品v在线| 亚洲欧洲精品一区二区精品久久久| 久久久久久国产a免费观看| 日韩精品中文字幕看吧| 别揉我奶头~嗯~啊~动态视频| 啦啦啦免费观看视频1| 午夜精品一区二区三区免费看| 久久中文字幕人妻熟女| 在线观看免费视频日本深夜| 97超级碰碰碰精品色视频在线观看| 久久久成人免费电影| 一级毛片高清免费大全| 久久精品91无色码中文字幕| 久久久久亚洲av毛片大全| 久久久久精品国产欧美久久久| 国产精品爽爽va在线观看网站| 国产精品99久久99久久久不卡| 狂野欧美白嫩少妇大欣赏| 最新中文字幕久久久久 | 美女黄网站色视频| 欧美日韩国产亚洲二区| 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| 真实男女啪啪啪动态图| 国产伦人伦偷精品视频| 色哟哟哟哟哟哟| 99久久综合精品五月天人人| 床上黄色一级片| 老司机在亚洲福利影院| 中文字幕精品亚洲无线码一区| 热99在线观看视频| 欧美高清成人免费视频www| 免费看十八禁软件| 最好的美女福利视频网| 久久久久久久久免费视频了| 男女之事视频高清在线观看| 日韩欧美 国产精品| 国产精品久久电影中文字幕| 90打野战视频偷拍视频| 熟女电影av网| 亚洲一区高清亚洲精品| 免费高清视频大片| 欧美日韩精品网址| 免费在线观看亚洲国产| av女优亚洲男人天堂 | 国产成人av激情在线播放| 男女之事视频高清在线观看| 日韩欧美 国产精品| 午夜成年电影在线免费观看| 亚洲无线在线观看| 中文亚洲av片在线观看爽| 久久精品国产99精品国产亚洲性色| 长腿黑丝高跟| 国产精品98久久久久久宅男小说| xxxwww97欧美| 天堂动漫精品| 精品福利观看| av片东京热男人的天堂| 99精品欧美一区二区三区四区| 在线十欧美十亚洲十日本专区| 99精品久久久久人妻精品| 国产主播在线观看一区二区| 亚洲国产日韩欧美精品在线观看 | 免费观看精品视频网站| 免费搜索国产男女视频| 国产av在哪里看| 欧美一级a爱片免费观看看| 欧美在线一区亚洲| 此物有八面人人有两片| 国产高清三级在线| 亚洲欧美日韩卡通动漫| 日韩欧美国产一区二区入口| 国产精品一区二区免费欧美| 亚洲精品中文字幕一二三四区| 国内少妇人妻偷人精品xxx网站 | a级毛片a级免费在线| 夜夜看夜夜爽夜夜摸| 老司机福利观看| 一个人免费在线观看的高清视频| 欧美三级亚洲精品| 婷婷丁香在线五月| 午夜福利免费观看在线| 午夜福利在线观看免费完整高清在 | 极品教师在线免费播放| 人妻夜夜爽99麻豆av| 成人18禁在线播放| 精品国产乱码久久久久久男人| 老熟妇仑乱视频hdxx| 欧美大码av| 亚洲av熟女| 午夜福利在线在线| 精品国产乱子伦一区二区三区| 精品久久久久久久末码| 日韩欧美精品v在线| 天堂av国产一区二区熟女人妻| 嫁个100分男人电影在线观看| 国产不卡一卡二| 欧美乱码精品一区二区三区|