• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of an Hα diagnostic system and its application to determine neutral hydrogen densities on the Keda Torus eXperiment?

    2019-11-06 00:44:56JunfengZhu朱軍鋒TaoLan蘭濤GeZhuang莊革TijianDeng鄧體建JieWu吳捷HangqiXu許航齊ChenChen陳晨SenZhang張森JiarenWu鄔佳仁YimingZu祖一鳴HongLi李弘JinlinXie謝錦林AhdiLiu劉阿娣ZixiLiu劉子奚ZhengweiWu吳征威HaiWang汪海XiaohuiWen溫曉輝HaiyangZhou周海洋ChijinX
    Chinese Physics B 2019年10期

    Junfeng Zhu(朱軍鋒), Tao Lan(蘭濤),?, Ge Zhuang(莊革), Tijian Deng(鄧體建), Jie Wu(吳捷),Hangqi Xu(許航齊), Chen Chen(陳晨), Sen Zhang(張森),Jiaren Wu(鄔佳仁), Yiming Zu(祖一鳴),Hong Li(李弘), Jinlin Xie(謝錦林), Ahdi Liu(劉阿娣), Zixi Liu(劉子奚), Zhengwei Wu(吳征威),Hai Wang(汪海), Xiaohui Wen(溫曉輝), Haiyang Zhou(周海洋),Chijin Xiao(肖持進(jìn)),2, Weixing Ding(丁衛(wèi)星), and Wandong Liu(劉萬東)

    1KTX Laboratory and Department of Engineering and Applied Physics,University of Science and Technology of China,Hefei 230026,China

    2Plasma Physics Laboratory,University of Saskatchewan,Saskatoon,SK S7N 5E2,Canada

    Keywords:Hα diagnostic,neutral density,Keda Torus eXperiment(KTX)device

    1.Introduction

    The Hαdiagnostic is one of the most fundamental diagnostic systems on magnetically confined plasmas;many plasma properties can be obtained by analyzing the spatial and temporal distributions of the Hαemission.Its intensity can reflects the electron density,electron temperature,plasma confinement condition,recycling processes in the plasma,etc.[1,2]In addition,the particle confinement time,neutral density,total hydrogen,and impurity radiation can be determined from the local emissivities and the electron temperature and density.[3,4]

    Neutral particles,serving as the plasma fuel through ionization,are obviously very important for investigating recycling phenomena and particle balance in magnetically confined plasmas.For example,the neutral density is closely involved with the loss of fast ions by charge exchange,and it is necessary to control the neutral density to prevent the loss of fast ions.[5,6]In magnetic confinement devices,the Monte–Carlo method is often used to determine the neutral density with the Hαemission data.[3,7]

    On the Keda Torus eXperiment(KTX),a new built reversed field pinch(RFP)device,the recyling and the wall condition require the fundamental Hαdiagnostic for the inductive backing,pulse discharge cleaning,and glow discharge cleanning in the conditioning phase.Currently,the KTX has attained a maximum plasma current of 205 kA and a maximum discharge time of 21 ms,and it has achieved typical reversed field pinch(RFP)discharges lasting 2 ms in RFP state.Presently,there are a few foundational diagnostic systems operating on the KTX[8–10]and the Hαdiagnostic is one of the most fundamental diagnostics on KTX.

    An Hαdiagnostic system has been designed and implemented successfully to obtain the plasma confinement condition and determine the neutral density on KTX.Lenses are widely used in the design of the Hαdiagnostic system.However,to obtain better spatial resolution,the lenses have been replaced with an aperture slit in the KTX Hαdiagnostic system.A flexural interference filter is designed to avoid excessive angle of incidence and so that the detector can receive Hαlight for each channel.Generally,Hαdiagnostic systems in current low-β fusion devices have a maximum frequency response of a few tens of kHz.However,the magneto-hydrodynamics(MHD)activities have a higher frequency range in RFP plasmas.And the Hαdiagnostic is designed to have a bandwidth up to 300 kHz for high frequency fluctuation measurement on the KTX.In RFP configuration,the vacuum vessel wall is very close to plasma,thus it is necessary to consider the proportion of the reflection in the Hαsignals.In Section 2 of this paper,we describe the setup and laboratory tests of the KTX Hαdiagnostic system.In addition,the proportion of the reflection and some experimental data are analyzed and discussed for the KTX plasmas.The method used to calculate the neutral hydrogen density is described in Section 3.Section 4 provides a summary of the paper.

    2.Experimental setup and laboratory tests

    2.1.Experimental setup of the Hα diagnostic system

    The KTX is a new RFP device with a major radius of R=1.4 m and a minor radius of a=0.4 m.[9,11–13]The materials of the first wall and limiter are stainless steel and molybdenum,respectively.The height of the poloidal and toroidal molybdenum limiters is 2 cm.The Hαdiagnostic is the most basic and important of all diagnostics operating on the KTX at present.

    Figure 1 shows the schematic of the Hαdetector,which is cylindrical in shape with 45 mm diameter and 300 mm long.As shown,it consists of an aperture slit,protective glass,interference filter,photodiode array,and a preamplifier,all surrounded by black aluminum foil.Light from the plasma first passes through an aperture slit(0.5 mm×10 mm)and a protective glass.A 1.5 mm thick protective glass is placed behind the aperture slit and plays an important role in stopping both plasma sputtering and strong electromagnetic radiation such as x-rays.Thus the signal quality will improve significantly because the photodiode and preamplifier inside the diagnostic system will not be affected by the strong electromagnetic radiation.And the glass of 1.5 mm thick has the light refracted but it does not affect the adjacent channels.After passing through the narrow bandpass interference filter,the light shines onto the photodiode array,and the weak photocurrent signal is amplified by the preamplifier.

    When the incident angle increases from vertical incidence,the wavelengths transmitted through the filter will shift toward shorter wavelengths and can be described by the equation[14],where θ is the angle of incidence,λ0is the unshifted wavelength at vertical incidence,and neffis the effective index of refraction,which is relative with filter,spectral feature,and polarization. For the KTX Hαdiagnostic,the maximum incident angle reaches about 37?(see Fig.1),which makes Hαlight cannot pass through the filter used on the KTX with a center wavelength of 658 nm and a bandwidth of 20 nm. Therefore the actual design of the flexural interference filter is shown in Fig.1 and it has a 30?bend,which ensures the angle of incidence,θ,is less than 15?for each channel.According to the formula above,a 15?angle of incident will give about 1%change in wavelength,which is nearly 7 nm for the Hαline. On account of the bandwidth of 20 nm for the filter,thus the detector can receive Hαlight for each channel.The AXUV20ELG photodiode array from IRD is chose as the Hαlight detector,because it has nearly 100%internal quantum efficiency(QE),includes a sensitive area of 3 mm2per element,has a rise time of 200 ns,and has a minimum shunt resistance of 100 M? at 25?C. This 20-element photodiode array also retains a stable response after exposure to high energy radiation with the responsivity of about 0.35 A/W at 656.3 nm.To avoid the impact of the crosstalk between adjacent photodiode elements,only all the even number elements in the array are selected to detect the ten-channel Hαsignals.The preamplifier has a frequency bandwidth of 500 kHz with a high current-to-voltage conversion factor of 106V/A,and it is connected with a data acquisition card.

    Fig.1.Schematic of the Hα detector:1.light from the plasma;2.aperture slit;3.protective glass;4.interference filter;5.photodiode array;6.preamplifier;7.black aluminum foil.

    Fig.2.A poloidal cross section of the KTX,showing the experimental layout of the Hα detector.

    The entire diagnostic system is installed in a 2 mm thick cylindrical aluminum cylinder to reduce the influence of electromagnetic interference.Black aluminum foil,BKF12 from Thorlabs,[15]with a reflectance of only 5%in the visible and near-infrared(VIS NIR)waveband,is attached to the interior surface of the aluminum shielding cylinder and effectively eliminates the reflected light inside the device.The Hαdetector is placed on port GU of the KTX,which is a vertical top port with an inside diameter of 47 mm.An aperture slit has been employed instead of an optical lens to increase the spatial resolution because of the limited port size.Figure 2 shows the experimental layout of the Hαdiagnostic system on a round poloidal cross section of the KTX.As shown,the 10 chords cover almost the entire poloidal cross section.

    2.2.Laboratory tests of the Hα diagnostic system

    The frequency bandwidth of the diagnostic system is 300 kHz,as obtained by laboratory tests. We use a highfrequency(100 MHz)wide spectrum light emitting diode(LED)as the visible light source and it is biased with a DC voltage to ensure that it is operated in the linear I–V range.The oscillations added onto the DC bias voltage vary from 1 kHz to 1 MHz. Figure 3 shows the output amplitude and phase shift of the system.As shown,the amplitude of the output signal remains roughly constant with increasing frequency up to about 50 kHz,and it decreases to half the value at 50 kHz at a frequency of 400 kHz.The phase shift increases to 180?when the frequency is 300 kHz.Thus,the Hαdiagnostic system has a frequency bandwidth of 300 kHz.

    Fig.3.Calibration of the amplitude and phase shift frequency response of the Hα diagnostic system.

    The geometrical parameters of the diagnostic system were also tested,including the chord positions and the overlap between two neighboring channels. Figure 4 shows a schematic illustration of the spatial geometry used for the calibration.The dashed circle represents the poloidal cross section of the KTX vacuum vessel.The geometric position of the Hαdiagnostic system in the laboratory test setup is the same as that in the experimental device.The 420 mm distance shown in the schematic is the actual distance from the aperture slit to the center of the KTX vacuum vessel.As shown,the linear actuator based on the stepping motor technique is placed crossing the center of the poloidal cross section for the laboratory test. A cold cathode fluorescent tube(CCFT)is used as an isotropic light source having a slender shape,and it is mounted vertically on the linear actuator.During the test,the CCFT moves along the linear actuator over a total distance of 800 mm,which equals the diameter of the poloidal cross section of the KTX.The test results are shown in Fig.5 and these data in Table 1 are obtained from the results.Table shows a list of the full width at half maximum(FWHM)of the channels,and the maximum FWHM is about 40 mm. The degrees of overlap between the channels listed in Table 2 are each about 3%,based on these test data. For each column in Table 2,which shows HαAvs.HαB,overlap rate 1 refers to the former and overlap rate 2 to the latter.Here,the overlap between the 8th and the 9th channels is higher than others,which may be the crosstalk defect between these two elements of the photodiode array.

    Fig.4.Schematic of the spatial geometry used for calibration.

    Fig.5.Results of the laboratory tests.The r axis is the perpendicular distance from the center of the vacuum vessel to the chord.

    Table 1.FWHM for each of the 10 channels.

    Table 2.Overlap between adjacent channels.

    2.3.The simulation analysis of the proportion of the reflection

    Because of the smooth surfaces of the metals at the inner wall of the vacuum vessel on KTX,the effect of reflection on the Hαsignals has to be considered. To assess the proportion of the reflection,a two-dimensional model is constructed according to ray tracing equation dr/dt=?ω/?k,dk/dt=??ω/?r,where r is the minor radius of the KTX.In the model,the geometric positions of every part,including the ports,slit,detector elements,and so on,are the same with the real experimental geometry.The number of rays from the plasma we used in the model is 4000.The ray direction vector is spherical and the number of rays in wave vector space is 150.The source power per unit thickness is from the emissivity profile.And some other main parameters we used are as follows:the refractive index of a vacuum,n=1;wavelength,656.3 nm;plasma minor radius,rp=0.36 m.In the model,when the rays from plasma strike the detector element,the detector element will record the power of the incident rays.On KTX,the material of the first wall is stainless steel,the reflection coefficient of which is from 0.55 to 0.65.According to the smoothness of the KTX first wall,we chose a reflection coefficient of 0.6 in the model.The transmitted ray power recorded by the detector elements was obtained with the reflection coefficients of 0.6 and 0,respectively.In this way,the proportion of reflection can be estimated in the signals.Firstly,we use the experimental data to obtain Hαemissivity profile by the Abel inversion without the reflection.Then the Hαemissivity profile is inputted into the numerical model and the proportion of the reflection can be roughly estimated in the signals.Afterwards,in the case of wall reflection,the results are used to calculate a new Hαemissivity profile and estimate a new proportion of the reflection.Finally,the optimal results can be converged by repeated iterations.

    2.4.Experiments on KTX

    The ultra-low q discharge[9]is the typical discharge on the KTX.For an ultra-low q discharge,figure 6 shows the waveforms of the plasma current Ip,loop voltage Vloop,and 10-channel Hαsignals.As shown by the locations of the different Hα-signal channels,the level of Hαemission is currently strong in the center of the KTX.Since Hαis the first spectral line of the Balmer series(with a wavelength of 656.3 nm),the intensity of the Hαemission is proportional to the neutral hydrogen density in the atomic energy level p=3.[16]Because the KTX plasma is currently in a low temperature state of about several tens eV,the neutral hydrogen cannot be ionized rapidly and the recombination of hydrogen ions occurs easily to form neutral atoms,so it maintains a high density in the p=3 excited state in the core plasma.The relative level of the Hαemission will be lower in the plasma center when the plasma is heated to a higher temperature,[16]e.g.,to 500 eV.

    Fig.6. Waveforms for an ultra-low q discharge on KTX:(a)plasma current Ip;(b)loop voltage Vloop;(c)ten-channel Hα signals.

    Fig.7.Waveforms for a tokamak discharge on KTX:(a)plasma current Ip;(b)two-channel Hα signals(Hα5 and Hα6);(c)cross-power spectrogram of Hα5 and Hα6;(d)two-channel differential poloidal magnetic field signals(Bθ1 and Bθ2);(e)cross-power spectrogram of Bθ1 and Bθ2.

    To demonstrate the frequency response of the Hαdiagnostic system,the Hαsignals with obvious MHD activity are shown in Fig.7 in a tokamak discharge.[9]The MHD activity oscillates with a frequency of about 10 kHz,as observed in the cross-power spectrogram of Hα5and Hα6.Oscillations at about 10 kHz are confirmed by the cross-power spectrogram of Bθ1and Bθ2,which are differential poloidal in vessel magnetic field signals at the poloidal angles of θ=303?and θ=348?,respectively. Moreover,the 2nd and 3rd harmonic peaks of the MHD activity also can be seen clearly from the Hαcrosspower spectrogram in the high frequency region.Thus,with its high-frequency response and good spatial resolution,this diagnostic is capable of providing more detailed analysis of the physics of RFP plasmas.

    3.Neutral density determination

    3.1.Relationship between neutral density and Hα emission

    The Hαemission originates from neutral hydrogen when an electron undergoes a transition from energy level p=3 to p=2.The main mechanism for the Hαemission is electron–neutral collisions.Hence,the neutral density has a direct relation to the intensity of the Hαemission. An approximate expression for the neutral hydrogen density is given by[16]

    Here γαis the emissivity of Hα,Eα=3.03×10?19J is the energy of an Hαphoton,and A32is the Einstein spontaneous emission coefficient for Hα. The quantities r0(3)and r1(3)are numerical coefficients given in Ref.[17],which vary with the electron temperature and density,where 3 indicates the atomic energy level p=3. The quantities nE(1)and nE(3)are the Saha-equilibrium population densities in atomic energy levels 1 and 3,respectively;they are given by[17]nE(p)=n(H+)nep2(h2/2πmkBTe)3/2exp(Eip/kBTe),where Eipis the ionization energy for atomic energy level p,and n(H+)is assumed to be equal to the electron density. The expression given by Eq.(1)agrees closely with the ADAS simulation code,[18]although it becomes incorrect at low electron temperatures and densities.The comparisons between the neutral density calculated using a fixed emissivity of 0.1 MW/m3and the ADAS database are shown in Fig.8.

    Fig.8.The comparisons between the computed results and the ADAS database.

    In a plasma,the emissivity of Hαis a quantity that changes in both space and time. For each Hαchannel,the measured value of the local Hαemissivity is relative to the geometrical position of the aperture optics. And the radiation of the Hαline is assumed to be isotropic in the plasma.Therefore,the overall power of a photodiode viewing along the chord L(p,φ)is given by

    where T1and T2are the transmissivity of the protective glass and the interference filter,respectively;Aapand Adetare the effective area of the aperture slit and the sensitive area per element for the photodiode;and cosθincand cosare the angle between the surface normal to the photodiode and the chord viewed and the angle between the surface normal to the aperture slit and the chord viewed,respectively. The d is the distance between the photodiode and the aperture slit.The output voltage from the preamplifier can then be written as Voutput=PαR(λ)RL,where R(λ)=0.35 A/W is the responsivity of the AXUV20ELG photodiode at 656.3 nm,and RL=106? is the transimpedance gain of the preamplifier.Thus,Pαcan be calculated from Voutputand the emissivity γα(r,θ)can be obtained by the Abel inversion of Eq.(2):[19,20]where f(p,φ)is the brightness of a chord in units of W/m2.Finally,the neutral density profile in the plasma can be calculated from Eq.(1)using the results for γα(r,θ).

    3.2.Neutral densities on KTX

    Fig.9.(a)Time evolution of the plasma current Ip and(b)the Hα signals for the ultra-low q discharge.

    Figure 9 shows the time evolution of Ipand the Hαsignals for an ultra-low q discharge on KTX.We use the data for the Hαemission at 3.8 ms,when the plasma current reaches its peak value(see Fig.9).The proportion of the reflection is estimated by numerical simulation with the emissivity profile of Hα,and the results of multiple iterations are shown in Table 3.The considerable proportion of the reflection in the simulated results suggests that the effects caused by the reflection of the vacuum vessel should not be ignored.The profiles of electron density and temperature at 3.8 ms are shown in Fig.10 by the blue-dashed and red-dashed lines,respectively.The profiles of these plasma parameters are measured with a radially movable Langmuir probe at the mid-plane.The blue and red solid lines are fittings to the measured data.The quantities r0(3),r1(3),nE(1),and nE(3)in Eq.(1)can be obtained with the profiles of electron density and temperature. The brightness for 10-channel Hαsignals and the Hαemissivity profile at 3.8 ms are shown in Figs.11(a)and 11(b),respectively.The brightness is about 35 W/m2and the emissivity profile is not hollow at 3.8 ms.Figure 11(c)shows the profile of neutral density obtained from Eq.(1)using the data for the Hαemission and the fittings to the profiles of electron density and temperature at 3.8 ms. In this ultra-low q discharge,the neutral density in the core plasma is about 2.9×1016m?3,and at the edge it is about 4.5×1016m?3.Based on the ideal gaseity equation and the breakdown pressure P=6.0×10?3Pa,the background neutral density is about 1.5×1018m?3at normal temperature.The red dashed line at r=0.38 m in the figure indicates the position of the limiter on KTX.

    Table 3.The proportion of the reflection in the Hα signals.

    Fig.10.Profiles of the electron temperature Te(r)and electron density ne(r)at 3.8 ms,as obtained using the Langmuir probe.

    Figure 12 shows the experimental data for Ipand the Hαsignals for a tokamak discharge on KTX.The plasma current reaches its peak value at 4.0 ms.Figure 13 shows the profiles of electron density and electron temperature at 4.0 ms as measured by the Langmuir probe.Figures 14(a)and 14(b)show the brightness for the 10-channel Hαsignals and the Hαemissivity profile,respectively.The brightness is about 40 W/m2and the emissivity profile has a peak value at the plasma center.With the low electron temperature in KTX,the Hαemission mainly comes from the center rather than the edge of the KTX,thus the plasma facing components do not contribute a major impact.As a result,the Hαradiation would be approximately symmetric on KTX.In the same manner as above,the profile of neutral hydrogen density is obtained at 4.0 ms(see Fig.14(c)).In the tokamak discharge,the neutral density in the core plasma is about 3.0×1016m?3,and at the edge it is about 1.0×1017m?3.The background neutral density is about 9.7×1017m?3with a breakdown pressure P=4.0×10?3Pa at normal temperature. The neutral hydrogen density in the tokamak discharge is currently higher than that in the ultra-low q discharge,because the KTX plasmas are in a lower temperature state in the tokamak discharge.Also,due to the lower plasma temperature,there is a higher bump at the edge of the poloidal cross section in the profile of neutral density in the tokamak discharge.

    Fig.11.The ultra-low q discharge on KTX at 3.8 ms:(a)the brightness for 10-channel Hα signals;(b)profile of Hα emissivity γα(r);(c)profile of neutral density nN(r).

    Fig.12. (a)Time evolution of the plasma current Ip and(b)the Hα signals for a tokamak discharge.

    Fig.13. Profiles of electron temperature Te(r)and electron density ne(r)at 4.0 ms from the Langmuir probe.

    Fig.14.The tokamak discharge on KTX at 4.0 ms:(a)the brightness for 10-channel Hα signals;(b)profile of Hα emissivity γα(r);(c)profile of neutral density nN(r).

    4.Summary

    An Hαdiagnostic system has been successfully implemented on the KTX and have shown that it is capable of analyzing the physical phenomena in RFP plasmas. Our 10-channel Hαdiagnostic system has a rapid response rate of 300 kHz,spatial resolution of about 40 mm,and overlap between adjacent channels of about 3%.With the design of an aperture slit replacing the optical lens,the Hαdiagnostic system has better spatial resolution and smaller overlap between adjacent channels. The design of a flexural interference filter keeps the light incidence angle within an allowable scope.And the use of black aluminum foil can also help to reduce the influence of stray light.Moreover,the accuracy of experimental results is improved by simulation analysis of the proportion.We used the data for the Hαemission,together with the electron density and temperature profiles to calculate the neutral density profiles on the KTX for cases in which the plasma current has reached its maximum value.The calculated neutral density is high for neutral hydrogen not being rapidly ionized and hydrogen ions can recombine fleetly with electrons in present low temperature plasma situations.In the future with the diagnostic upgrades of multi-chord interferometer for electron density and 2D double-foil soft x-ray for electron temperature,the time-varying profile of the neutral density will also be able to be obtained.

    Acknowledgments

    The authors are grateful for the support from the Madison Symmetric Torus(MST)team and the RFX team. The authors also thank Xiaoqing Zhang and Zhifeng Cheng(College of Electrical and Electronic Engineering,Huazhong University of Science and Technology)for the helpful discussions and suggestions.

    亚洲欧美日韩东京热| 99热这里只有精品一区| 亚洲综合精品二区| 亚洲国产精品成人久久小说| 一区二区三区乱码不卡18| 亚洲av电影在线观看一区二区三区 | 欧美最新免费一区二区三区| 人人妻人人澡人人爽人人夜夜 | 亚洲国产色片| 国产探花在线观看一区二区| 欧美精品一区二区大全| 美女黄网站色视频| 免费观看av网站的网址| 亚洲欧美成人综合另类久久久| 久久久久久久午夜电影| 日本欧美国产在线视频| 国产乱人偷精品视频| 成人高潮视频无遮挡免费网站| 亚洲精品日韩在线中文字幕| 日韩强制内射视频| 成人特级av手机在线观看| 国产成人午夜福利电影在线观看| 高清在线视频一区二区三区| 日本三级黄在线观看| 欧美成人午夜免费资源| 成年人午夜在线观看视频 | 五月玫瑰六月丁香| 久久久国产一区二区| 久久久精品欧美日韩精品| 丝袜美腿在线中文| 国产精品美女特级片免费视频播放器| 天堂网av新在线| 免费av不卡在线播放| 日本色播在线视频| 欧美一区二区亚洲| 久久人人爽人人片av| 日韩一区二区视频免费看| 国产午夜福利久久久久久| 日日撸夜夜添| 一区二区三区乱码不卡18| 又爽又黄a免费视频| 三级经典国产精品| 草草在线视频免费看| 一级二级三级毛片免费看| 午夜免费激情av| 2021少妇久久久久久久久久久| 精品久久久精品久久久| 在现免费观看毛片| 最近手机中文字幕大全| 国产精品一区www在线观看| 在线免费十八禁| 非洲黑人性xxxx精品又粗又长| 国产一区有黄有色的免费视频 | 日本免费a在线| 久久99热6这里只有精品| 午夜视频国产福利| 日韩人妻高清精品专区| 麻豆国产97在线/欧美| 国产老妇伦熟女老妇高清| 国产色爽女视频免费观看| 一级毛片黄色毛片免费观看视频| 国产欧美另类精品又又久久亚洲欧美| 好男人在线观看高清免费视频| av在线老鸭窝| 精品人妻偷拍中文字幕| av在线天堂中文字幕| 久久精品国产亚洲网站| 国产又色又爽无遮挡免| 国产极品天堂在线| 久久久精品94久久精品| 国产视频内射| 麻豆成人av视频| 91午夜精品亚洲一区二区三区| 国产极品天堂在线| 自拍偷自拍亚洲精品老妇| 亚洲欧美精品专区久久| 国产一区二区三区av在线| 热99在线观看视频| 2018国产大陆天天弄谢| 国产黄片视频在线免费观看| 五月天丁香电影| 亚洲精品国产av蜜桃| 日韩视频在线欧美| 成年免费大片在线观看| 成人av在线播放网站| 男人和女人高潮做爰伦理| 午夜福利在线观看吧| 嫩草影院入口| 一本一本综合久久| 五月天丁香电影| 亚洲av电影在线观看一区二区三区 | 日日摸夜夜添夜夜添av毛片| 男女那种视频在线观看| 中文字幕久久专区| 久久久久久久大尺度免费视频| 亚洲av在线观看美女高潮| 久久久久久久久久久丰满| 国产中年淑女户外野战色| 亚洲不卡免费看| 少妇的逼水好多| 成人亚洲精品一区在线观看 | 久久久精品欧美日韩精品| 一区二区三区四区激情视频| 一本一本综合久久| 中文字幕亚洲精品专区| 99久久精品一区二区三区| 岛国毛片在线播放| 国产女主播在线喷水免费视频网站 | 床上黄色一级片| 国产老妇伦熟女老妇高清| 精品久久久久久久人妻蜜臀av| 精品人妻偷拍中文字幕| 99九九线精品视频在线观看视频| 中文字幕制服av| 久久久久久久久久久免费av| 一级片'在线观看视频| 国产人妻一区二区三区在| 99久久精品一区二区三区| 国产精品国产三级专区第一集| av在线天堂中文字幕| 女人被狂操c到高潮| 亚洲婷婷狠狠爱综合网| 18禁动态无遮挡网站| 白带黄色成豆腐渣| 免费av毛片视频| 高清欧美精品videossex| 精品久久久噜噜| 国产免费福利视频在线观看| 激情 狠狠 欧美| 日本黄色片子视频| 日韩,欧美,国产一区二区三区| 亚洲国产av新网站| 国内精品宾馆在线| 日日摸夜夜添夜夜添av毛片| 婷婷六月久久综合丁香| 午夜福利视频1000在线观看| 亚洲欧美成人精品一区二区| 亚洲欧洲国产日韩| 日韩 亚洲 欧美在线| 欧美+日韩+精品| eeuss影院久久| 久久6这里有精品| 成人二区视频| 又爽又黄a免费视频| 麻豆国产97在线/欧美| 欧美一区二区亚洲| 午夜福利视频1000在线观看| 久久久久网色| 亚洲精品自拍成人| 国产亚洲5aaaaa淫片| 最近最新中文字幕免费大全7| 一边亲一边摸免费视频| 综合色丁香网| 亚洲最大成人手机在线| 蜜桃亚洲精品一区二区三区| 亚洲人成网站高清观看| 欧美激情久久久久久爽电影| 亚洲精品自拍成人| 国产成人精品婷婷| 春色校园在线视频观看| 美女高潮的动态| 亚洲一区高清亚洲精品| 最近最新中文字幕大全电影3| 一级毛片aaaaaa免费看小| 欧美日本视频| 国产伦一二天堂av在线观看| 欧美最新免费一区二区三区| 亚洲第一区二区三区不卡| 草草在线视频免费看| 久久97久久精品| 欧美3d第一页| 成人一区二区视频在线观看| 色网站视频免费| 国产精品一区二区三区四区久久| 亚洲国产成人一精品久久久| 边亲边吃奶的免费视频| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 熟妇人妻久久中文字幕3abv| 国产av在哪里看| 中文字幕亚洲精品专区| 熟妇人妻不卡中文字幕| 国产在线男女| 麻豆久久精品国产亚洲av| 亚洲av.av天堂| 丰满乱子伦码专区| 97热精品久久久久久| 女的被弄到高潮叫床怎么办| 在线播放无遮挡| 日本与韩国留学比较| 久久精品久久精品一区二区三区| 最近手机中文字幕大全| 女的被弄到高潮叫床怎么办| 国产成人freesex在线| 亚洲欧美日韩无卡精品| 久久久精品欧美日韩精品| 亚洲精品第二区| 人人妻人人看人人澡| 亚洲第一区二区三区不卡| 菩萨蛮人人尽说江南好唐韦庄| 深爱激情五月婷婷| 麻豆精品久久久久久蜜桃| 中文字幕久久专区| 国产免费一级a男人的天堂| 热99在线观看视频| 国产成人免费观看mmmm| 久久久久久久午夜电影| 国内精品宾馆在线| 成年av动漫网址| 国产激情偷乱视频一区二区| 国产有黄有色有爽视频| 久久国产乱子免费精品| 色综合站精品国产| 日本一二三区视频观看| 国产高清三级在线| 亚洲国产高清在线一区二区三| 久久久久精品久久久久真实原创| 亚洲精品影视一区二区三区av| 国产精品一二三区在线看| 极品少妇高潮喷水抽搐| 我的老师免费观看完整版| 国产亚洲91精品色在线| 2021少妇久久久久久久久久久| 亚洲美女搞黄在线观看| 十八禁网站网址无遮挡 | 国产免费一级a男人的天堂| 久久99热这里只有精品18| 丝袜美腿在线中文| 国产视频内射| 久久久久免费精品人妻一区二区| 欧美精品一区二区大全| eeuss影院久久| 偷拍熟女少妇极品色| 狂野欧美白嫩少妇大欣赏| 久久精品熟女亚洲av麻豆精品 | 最近视频中文字幕2019在线8| 精品人妻熟女av久视频| 成人综合一区亚洲| 国产精品一区二区性色av| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 天堂影院成人在线观看| 全区人妻精品视频| 久久久久性生活片| 国产欧美日韩精品一区二区| h日本视频在线播放| 哪个播放器可以免费观看大片| 淫秽高清视频在线观看| 麻豆av噜噜一区二区三区| 色5月婷婷丁香| 精华霜和精华液先用哪个| 久久97久久精品| 久久这里有精品视频免费| 久久久成人免费电影| 韩国高清视频一区二区三区| 男女啪啪激烈高潮av片| 亚洲综合精品二区| 免费大片黄手机在线观看| 天堂√8在线中文| 精品久久久久久成人av| 美女大奶头视频| 国内精品宾馆在线| 人人妻人人看人人澡| 国产黄频视频在线观看| 成人漫画全彩无遮挡| 日韩大片免费观看网站| 欧美bdsm另类| 18禁在线播放成人免费| 国产一级毛片在线| 免费大片黄手机在线观看| www.色视频.com| 国内精品宾馆在线| 国产在线男女| 亚洲欧美日韩无卡精品| 青青草视频在线视频观看| 夜夜爽夜夜爽视频| 高清日韩中文字幕在线| 成人亚洲精品av一区二区| 久久久久久九九精品二区国产| 18禁裸乳无遮挡免费网站照片| 久久亚洲国产成人精品v| 免费不卡的大黄色大毛片视频在线观看 | 国产成人免费观看mmmm| 免费观看av网站的网址| 街头女战士在线观看网站| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 天堂俺去俺来也www色官网 | 中文字幕久久专区| 边亲边吃奶的免费视频| 国产成人免费观看mmmm| 国产精品久久视频播放| 女人被狂操c到高潮| 在线播放无遮挡| 日韩av不卡免费在线播放| 午夜激情久久久久久久| videossex国产| 精品久久久噜噜| 只有这里有精品99| 欧美成人a在线观看| 日本一本二区三区精品| 亚洲精品日韩在线中文字幕| 久久韩国三级中文字幕| 特大巨黑吊av在线直播| 国产精品一区二区在线观看99 | 毛片一级片免费看久久久久| 超碰97精品在线观看| 欧美高清成人免费视频www| eeuss影院久久| 禁无遮挡网站| 欧美高清成人免费视频www| 久久精品国产自在天天线| 2021少妇久久久久久久久久久| 看黄色毛片网站| 亚洲国产欧美在线一区| 亚洲在线观看片| 国产成人免费观看mmmm| av线在线观看网站| 哪个播放器可以免费观看大片| 久久久久性生活片| 男人舔奶头视频| 成人性生交大片免费视频hd| 国内少妇人妻偷人精品xxx网站| 2021少妇久久久久久久久久久| 国产高清不卡午夜福利| 成人午夜高清在线视频| 99久久九九国产精品国产免费| 综合色丁香网| 伊人久久精品亚洲午夜| 综合色丁香网| 日韩,欧美,国产一区二区三区| 美女xxoo啪啪120秒动态图| 国产午夜精品一二区理论片| 噜噜噜噜噜久久久久久91| 精品久久久久久久人妻蜜臀av| 国产国拍精品亚洲av在线观看| 日本一本二区三区精品| 亚洲熟妇中文字幕五十中出| 国产淫语在线视频| 男女边吃奶边做爰视频| 久久这里有精品视频免费| 一级片'在线观看视频| 一级爰片在线观看| 久久人人爽人人爽人人片va| 直男gayav资源| 国产免费一级a男人的天堂| 午夜免费激情av| 亚洲成人av在线免费| 国精品久久久久久国模美| 久久久欧美国产精品| 日韩伦理黄色片| 亚洲国产色片| 男女啪啪激烈高潮av片| 午夜福利在线观看吧| 精品久久久久久久人妻蜜臀av| 少妇的逼好多水| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区三区四区久久| 啦啦啦韩国在线观看视频| 黑人高潮一二区| 真实男女啪啪啪动态图| 七月丁香在线播放| 乱码一卡2卡4卡精品| 草草在线视频免费看| 亚洲不卡免费看| 亚洲美女视频黄频| 中文字幕制服av| 久久精品国产自在天天线| 欧美日韩亚洲高清精品| 搡女人真爽免费视频火全软件| 成年av动漫网址| 免费播放大片免费观看视频在线观看| 亚洲国产精品国产精品| 免费av毛片视频| 亚洲天堂国产精品一区在线| 国产精品人妻久久久影院| 国产日韩欧美在线精品| 久久人人爽人人爽人人片va| 赤兔流量卡办理| 色综合站精品国产| 一级毛片aaaaaa免费看小| 精华霜和精华液先用哪个| 久久综合国产亚洲精品| 麻豆av噜噜一区二区三区| 伦精品一区二区三区| 又大又黄又爽视频免费| 一区二区三区乱码不卡18| 免费少妇av软件| 国产高潮美女av| 国产精品精品国产色婷婷| 精品久久久久久成人av| ponron亚洲| 卡戴珊不雅视频在线播放| 亚洲人成网站在线观看播放| 亚洲av男天堂| 晚上一个人看的免费电影| 午夜福利在线观看免费完整高清在| 春色校园在线视频观看| 麻豆久久精品国产亚洲av| 在线免费十八禁| 亚洲av电影在线观看一区二区三区 | 免费人成在线观看视频色| 午夜激情久久久久久久| 中文字幕av在线有码专区| 国产精品爽爽va在线观看网站| 中国美白少妇内射xxxbb| 午夜亚洲福利在线播放| 内射极品少妇av片p| 日韩成人av中文字幕在线观看| 高清视频免费观看一区二区 | av.在线天堂| 在线 av 中文字幕| av网站免费在线观看视频 | 日本黄大片高清| av女优亚洲男人天堂| 91久久精品电影网| 日韩一区二区三区影片| 两个人的视频大全免费| 一区二区三区四区激情视频| 人妻系列 视频| 一区二区三区免费毛片| 久久久久久久久久久丰满| 在线天堂最新版资源| 日韩强制内射视频| 成人综合一区亚洲| 亚洲欧美成人综合另类久久久| 国产亚洲一区二区精品| 午夜福利网站1000一区二区三区| 久久韩国三级中文字幕| 看十八女毛片水多多多| 美女cb高潮喷水在线观看| 亚洲第一区二区三区不卡| 简卡轻食公司| 日韩欧美精品v在线| 特大巨黑吊av在线直播| 七月丁香在线播放| 国产欧美日韩精品一区二区| 超碰av人人做人人爽久久| 国产探花极品一区二区| av国产久精品久网站免费入址| 男女那种视频在线观看| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| 日本爱情动作片www.在线观看| 欧美激情久久久久久爽电影| 美女cb高潮喷水在线观看| 男的添女的下面高潮视频| 麻豆精品久久久久久蜜桃| 少妇被粗大猛烈的视频| 午夜激情福利司机影院| 国内精品一区二区在线观看| 免费大片黄手机在线观看| 九九久久精品国产亚洲av麻豆| 国产片特级美女逼逼视频| 国产成人一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 久久久久精品性色| 岛国毛片在线播放| 九色成人免费人妻av| 国产一级毛片在线| 成人毛片60女人毛片免费| 免费大片18禁| 极品少妇高潮喷水抽搐| 亚洲精品久久久久久婷婷小说| 91精品伊人久久大香线蕉| 夜夜爽夜夜爽视频| 欧美日韩精品成人综合77777| 简卡轻食公司| 精品不卡国产一区二区三区| 一夜夜www| 一个人看视频在线观看www免费| 丰满乱子伦码专区| 欧美潮喷喷水| 国产精品人妻久久久影院| av在线老鸭窝| 日韩欧美三级三区| 三级国产精品片| 你懂的网址亚洲精品在线观看| 一级二级三级毛片免费看| 亚洲人成网站高清观看| 日韩中字成人| 免费看av在线观看网站| 边亲边吃奶的免费视频| 99久国产av精品国产电影| 美女脱内裤让男人舔精品视频| av在线播放精品| 久久久久免费精品人妻一区二区| 青春草亚洲视频在线观看| 色综合色国产| 亚洲av免费高清在线观看| 男女边摸边吃奶| 特大巨黑吊av在线直播| 亚洲国产欧美在线一区| 特级一级黄色大片| 性色avwww在线观看| ponron亚洲| 成人鲁丝片一二三区免费| 精品一区二区免费观看| 80岁老熟妇乱子伦牲交| 91久久精品国产一区二区成人| 亚洲欧美精品自产自拍| 麻豆精品久久久久久蜜桃| 亚洲怡红院男人天堂| av专区在线播放| 国产高清有码在线观看视频| 一级毛片黄色毛片免费观看视频| 韩国av在线不卡| 久久这里只有精品中国| 日韩视频在线欧美| 久久99热这里只频精品6学生| 免费无遮挡裸体视频| 麻豆成人午夜福利视频| 纵有疾风起免费观看全集完整版 | 国产在线一区二区三区精| 色哟哟·www| 国产毛片a区久久久久| 中文乱码字字幕精品一区二区三区 | 日本一二三区视频观看| 日本与韩国留学比较| 国产亚洲av片在线观看秒播厂 | 成年女人在线观看亚洲视频 | 内地一区二区视频在线| 国产亚洲午夜精品一区二区久久 | 日韩精品有码人妻一区| 欧美97在线视频| 日本av手机在线免费观看| 99视频精品全部免费 在线| 免费在线观看成人毛片| 七月丁香在线播放| av在线亚洲专区| 97热精品久久久久久| 久久久午夜欧美精品| 精品亚洲乱码少妇综合久久| 国国产精品蜜臀av免费| 国产精品一区二区在线观看99 | 麻豆久久精品国产亚洲av| 久久草成人影院| 欧美精品国产亚洲| 九草在线视频观看| 简卡轻食公司| 草草在线视频免费看| 看黄色毛片网站| 成人无遮挡网站| 免费看a级黄色片| 观看免费一级毛片| 99九九线精品视频在线观看视频| 日本免费在线观看一区| 亚洲精品中文字幕在线视频 | 国产久久久一区二区三区| 丰满乱子伦码专区| 精品国产一区二区三区久久久樱花 | 男人舔女人下体高潮全视频| 日韩欧美一区视频在线观看 | 中文天堂在线官网| 日本三级黄在线观看| 国产精品爽爽va在线观看网站| 精品国产一区二区三区久久久樱花 | 看免费成人av毛片| 嫩草影院精品99| 国产成人一区二区在线| 免费观看性生交大片5| 国产亚洲精品av在线| 国产精品精品国产色婷婷| 国产亚洲精品av在线| 国产亚洲最大av| 可以在线观看毛片的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品爽爽va在线观看网站| 亚洲无线观看免费| av在线播放精品| 在线a可以看的网站| 大香蕉97超碰在线| 在线观看av片永久免费下载| 少妇熟女欧美另类| 亚洲欧美日韩无卡精品| 老师上课跳d突然被开到最大视频| 国产综合精华液| 成年女人看的毛片在线观看| 青春草国产在线视频| 五月玫瑰六月丁香| 国产精品.久久久| 少妇人妻精品综合一区二区| 美女黄网站色视频| 成人高潮视频无遮挡免费网站| 精品人妻熟女av久视频| 国产成人免费观看mmmm| 日韩国内少妇激情av| 国产精品美女特级片免费视频播放器| 国产精品久久久久久精品电影| 国产亚洲精品av在线| 久久久色成人| av播播在线观看一区| 亚洲不卡免费看| 欧美精品国产亚洲| 18禁在线播放成人免费| 久久久久久久久中文| 成人特级av手机在线观看| 久久久久久久久中文| 国产综合精华液| 午夜福利网站1000一区二区三区| 别揉我奶头 嗯啊视频| 嫩草影院精品99| 大话2 男鬼变身卡| 久久精品国产亚洲av天美| 免费看美女性在线毛片视频| 91久久精品电影网| 亚洲天堂国产精品一区在线| 国产高清有码在线观看视频| 亚洲av国产av综合av卡| 国产高清三级在线| 久久韩国三级中文字幕| 午夜福利在线在线| 青春草视频在线免费观看| 国产成人a∨麻豆精品| 自拍偷自拍亚洲精品老妇|